TargetInstrInfo.h revision 2dbc8bdfe9191c2078daccbeefba9e69a690feb6
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/Target/TargetInstrDesc.h"
18#include "llvm/CodeGen/MachineFunction.h"
19
20namespace llvm {
21
22class CalleeSavedInfo;
23class LiveVariables;
24class MCAsmInfo;
25class MachineMemOperand;
26class SDNode;
27class SelectionDAG;
28class TargetRegisterClass;
29class TargetRegisterInfo;
30
31template<class T> class SmallVectorImpl;
32
33
34//---------------------------------------------------------------------------
35///
36/// TargetInstrInfo - Interface to description of machine instruction set
37///
38class TargetInstrInfo {
39  const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
40  unsigned NumOpcodes;                // Number of entries in the desc array
41
42  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
43  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
44public:
45  TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
46  virtual ~TargetInstrInfo();
47
48  unsigned getNumOpcodes() const { return NumOpcodes; }
49
50  /// get - Return the machine instruction descriptor that corresponds to the
51  /// specified instruction opcode.
52  ///
53  const TargetInstrDesc &get(unsigned Opcode) const {
54    assert(Opcode < NumOpcodes && "Invalid opcode!");
55    return Descriptors[Opcode];
56  }
57
58  /// isTriviallyReMaterializable - Return true if the instruction is trivially
59  /// rematerializable, meaning it has no side effects and requires no operands
60  /// that aren't always available.
61  bool isTriviallyReMaterializable(const MachineInstr *MI,
62                                   AliasAnalysis *AA = 0) const {
63    return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
64           (MI->getDesc().isRematerializable() &&
65            (isReallyTriviallyReMaterializable(MI, AA) ||
66             isReallyTriviallyReMaterializableGeneric(MI, AA)));
67  }
68
69protected:
70  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
71  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
72  /// specify whether the instruction is actually trivially rematerializable,
73  /// taking into consideration its operands. This predicate must return false
74  /// if the instruction has any side effects other than producing a value, or
75  /// if it requres any address registers that are not always available.
76  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
77                                                 AliasAnalysis *AA) const {
78    return false;
79  }
80
81private:
82  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
83  /// for which the M_REMATERIALIZABLE flag is set and the target hook
84  /// isReallyTriviallyReMaterializable returns false, this function does
85  /// target-independent tests to determine if the instruction is really
86  /// trivially rematerializable.
87  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
88                                                AliasAnalysis *AA) const;
89
90public:
91  /// isMoveInstr - Return true if the instruction is a register to register
92  /// move and return the source and dest operands and their sub-register
93  /// indices by reference.
94  virtual bool isMoveInstr(const MachineInstr& MI,
95                           unsigned& SrcReg, unsigned& DstReg,
96                           unsigned& SrcSubIdx, unsigned& DstSubIdx) const {
97    return false;
98  }
99
100  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
101  /// extension instruction. That is, it's like a copy where it's legal for the
102  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
103  /// true, then it's expected the pre-extension value is available as a subreg
104  /// of the result register. This also returns the sub-register index in
105  /// SubIdx.
106  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
107                                     unsigned &SrcReg, unsigned &DstReg,
108                                     unsigned &SubIdx) const {
109    return false;
110  }
111
112  /// isIdentityCopy - Return true if the instruction is a copy (or
113  /// extract_subreg, insert_subreg, subreg_to_reg) where the source and
114  /// destination registers are the same.
115  bool isIdentityCopy(const MachineInstr &MI) const {
116    unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
117    if (isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
118        SrcReg == DstReg)
119      return true;
120
121    if (MI.getOpcode() == TargetOpcode::EXTRACT_SUBREG &&
122        MI.getOperand(0).getReg() == MI.getOperand(1).getReg())
123    return true;
124
125    if ((MI.getOpcode() == TargetOpcode::INSERT_SUBREG ||
126         MI.getOpcode() == TargetOpcode::SUBREG_TO_REG) &&
127        MI.getOperand(0).getReg() == MI.getOperand(2).getReg())
128      return true;
129    return false;
130  }
131
132  /// isLoadFromStackSlot - If the specified machine instruction is a direct
133  /// load from a stack slot, return the virtual or physical register number of
134  /// the destination along with the FrameIndex of the loaded stack slot.  If
135  /// not, return 0.  This predicate must return 0 if the instruction has
136  /// any side effects other than loading from the stack slot.
137  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
138                                       int &FrameIndex) const {
139    return 0;
140  }
141
142  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
143  /// stack locations as well.  This uses a heuristic so it isn't
144  /// reliable for correctness.
145  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
146                                             int &FrameIndex) const {
147    return 0;
148  }
149
150  /// hasLoadFromStackSlot - If the specified machine instruction has
151  /// a load from a stack slot, return true along with the FrameIndex
152  /// of the loaded stack slot and the machine mem operand containing
153  /// the reference.  If not, return false.  Unlike
154  /// isLoadFromStackSlot, this returns true for any instructions that
155  /// loads from the stack.  This is just a hint, as some cases may be
156  /// missed.
157  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
158                                    const MachineMemOperand *&MMO,
159                                    int &FrameIndex) const {
160    return 0;
161  }
162
163  /// isStoreToStackSlot - If the specified machine instruction is a direct
164  /// store to a stack slot, return the virtual or physical register number of
165  /// the source reg along with the FrameIndex of the loaded stack slot.  If
166  /// not, return 0.  This predicate must return 0 if the instruction has
167  /// any side effects other than storing to the stack slot.
168  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
169                                      int &FrameIndex) const {
170    return 0;
171  }
172
173  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
174  /// stack locations as well.  This uses a heuristic so it isn't
175  /// reliable for correctness.
176  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
177                                            int &FrameIndex) const {
178    return 0;
179  }
180
181  /// hasStoreToStackSlot - If the specified machine instruction has a
182  /// store to a stack slot, return true along with the FrameIndex of
183  /// the loaded stack slot and the machine mem operand containing the
184  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
185  /// this returns true for any instructions that stores to the
186  /// stack.  This is just a hint, as some cases may be missed.
187  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
188                                   const MachineMemOperand *&MMO,
189                                   int &FrameIndex) const {
190    return 0;
191  }
192
193  /// reMaterialize - Re-issue the specified 'original' instruction at the
194  /// specific location targeting a new destination register.
195  virtual void reMaterialize(MachineBasicBlock &MBB,
196                             MachineBasicBlock::iterator MI,
197                             unsigned DestReg, unsigned SubIdx,
198                             const MachineInstr *Orig,
199                             const TargetRegisterInfo *TRI) const = 0;
200
201  /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
202  /// MachineFunction::CloneMachineInstr(), but the target may update operands
203  /// that are required to be unique.
204  ///
205  /// The instruction must be duplicable as indicated by isNotDuplicable().
206  virtual MachineInstr *duplicate(MachineInstr *Orig,
207                                  MachineFunction &MF) const = 0;
208
209  /// convertToThreeAddress - This method must be implemented by targets that
210  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
211  /// may be able to convert a two-address instruction into one or more true
212  /// three-address instructions on demand.  This allows the X86 target (for
213  /// example) to convert ADD and SHL instructions into LEA instructions if they
214  /// would require register copies due to two-addressness.
215  ///
216  /// This method returns a null pointer if the transformation cannot be
217  /// performed, otherwise it returns the last new instruction.
218  ///
219  virtual MachineInstr *
220  convertToThreeAddress(MachineFunction::iterator &MFI,
221                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
222    return 0;
223  }
224
225  /// commuteInstruction - If a target has any instructions that are commutable,
226  /// but require converting to a different instruction or making non-trivial
227  /// changes to commute them, this method can overloaded to do this.  The
228  /// default implementation of this method simply swaps the first two operands
229  /// of MI and returns it.
230  ///
231  /// If a target wants to make more aggressive changes, they can construct and
232  /// return a new machine instruction.  If an instruction cannot commute, it
233  /// can also return null.
234  ///
235  /// If NewMI is true, then a new machine instruction must be created.
236  ///
237  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
238                                           bool NewMI = false) const = 0;
239
240  /// findCommutedOpIndices - If specified MI is commutable, return the two
241  /// operand indices that would swap value. Return true if the instruction
242  /// is not in a form which this routine understands.
243  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
244                                     unsigned &SrcOpIdx2) const = 0;
245
246  /// produceSameValue - Return true if two machine instructions would produce
247  /// identical values. By default, this is only true when the two instructions
248  /// are deemed identical except for defs.
249  virtual bool produceSameValue(const MachineInstr *MI0,
250                                const MachineInstr *MI1) const = 0;
251
252  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
253  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
254  /// implemented for a target).  Upon success, this returns false and returns
255  /// with the following information in various cases:
256  ///
257  /// 1. If this block ends with no branches (it just falls through to its succ)
258  ///    just return false, leaving TBB/FBB null.
259  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
260  ///    the destination block.
261  /// 3. If this block ends with a conditional branch and it falls through to a
262  ///    successor block, it sets TBB to be the branch destination block and a
263  ///    list of operands that evaluate the condition. These operands can be
264  ///    passed to other TargetInstrInfo methods to create new branches.
265  /// 4. If this block ends with a conditional branch followed by an
266  ///    unconditional branch, it returns the 'true' destination in TBB, the
267  ///    'false' destination in FBB, and a list of operands that evaluate the
268  ///    condition.  These operands can be passed to other TargetInstrInfo
269  ///    methods to create new branches.
270  ///
271  /// Note that RemoveBranch and InsertBranch must be implemented to support
272  /// cases where this method returns success.
273  ///
274  /// If AllowModify is true, then this routine is allowed to modify the basic
275  /// block (e.g. delete instructions after the unconditional branch).
276  ///
277  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
278                             MachineBasicBlock *&FBB,
279                             SmallVectorImpl<MachineOperand> &Cond,
280                             bool AllowModify = false) const {
281    return true;
282  }
283
284  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
285  /// This is only invoked in cases where AnalyzeBranch returns success. It
286  /// returns the number of instructions that were removed.
287  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
288    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
289    return 0;
290  }
291
292  /// InsertBranch - Insert branch code into the end of the specified
293  /// MachineBasicBlock.  The operands to this method are the same as those
294  /// returned by AnalyzeBranch.  This is only invoked in cases where
295  /// AnalyzeBranch returns success. It returns the number of instructions
296  /// inserted.
297  ///
298  /// It is also invoked by tail merging to add unconditional branches in
299  /// cases where AnalyzeBranch doesn't apply because there was no original
300  /// branch to analyze.  At least this much must be implemented, else tail
301  /// merging needs to be disabled.
302  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
303                            MachineBasicBlock *FBB,
304                            const SmallVectorImpl<MachineOperand> &Cond) const {
305    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
306    return 0;
307  }
308
309  /// copyRegToReg - Emit instructions to copy between a pair of registers. It
310  /// returns false if the target does not how to copy between the specified
311  /// registers.
312  virtual bool copyRegToReg(MachineBasicBlock &MBB,
313                            MachineBasicBlock::iterator MI,
314                            unsigned DestReg, unsigned SrcReg,
315                            const TargetRegisterClass *DestRC,
316                            const TargetRegisterClass *SrcRC) const {
317    assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!");
318    return false;
319  }
320
321  /// storeRegToStackSlot - Store the specified register of the given register
322  /// class to the specified stack frame index. The store instruction is to be
323  /// added to the given machine basic block before the specified machine
324  /// instruction. If isKill is true, the register operand is the last use and
325  /// must be marked kill.
326  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
327                                   MachineBasicBlock::iterator MI,
328                                   unsigned SrcReg, bool isKill, int FrameIndex,
329                                   const TargetRegisterClass *RC) const {
330    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
331  }
332
333  /// loadRegFromStackSlot - Load the specified register of the given register
334  /// class from the specified stack frame index. The load instruction is to be
335  /// added to the given machine basic block before the specified machine
336  /// instruction.
337  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
338                                    MachineBasicBlock::iterator MI,
339                                    unsigned DestReg, int FrameIndex,
340                                    const TargetRegisterClass *RC) const {
341    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
342  }
343
344  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
345  /// saved registers and returns true if it isn't possible / profitable to do
346  /// so by issuing a series of store instructions via
347  /// storeRegToStackSlot(). Returns false otherwise.
348  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
349                                         MachineBasicBlock::iterator MI,
350                                const std::vector<CalleeSavedInfo> &CSI) const {
351    return false;
352  }
353
354  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
355  /// saved registers and returns true if it isn't possible / profitable to do
356  /// so by issuing a series of load instructions via loadRegToStackSlot().
357  /// Returns false otherwise.
358  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
359                                           MachineBasicBlock::iterator MI,
360                                const std::vector<CalleeSavedInfo> &CSI) const {
361    return false;
362  }
363
364  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
365  /// slot into the specified machine instruction for the specified operand(s).
366  /// If this is possible, a new instruction is returned with the specified
367  /// operand folded, otherwise NULL is returned. The client is responsible for
368  /// removing the old instruction and adding the new one in the instruction
369  /// stream.
370  MachineInstr* foldMemoryOperand(MachineFunction &MF,
371                                  MachineInstr* MI,
372                                  const SmallVectorImpl<unsigned> &Ops,
373                                  int FrameIndex) const;
374
375  /// foldMemoryOperand - Same as the previous version except it allows folding
376  /// of any load and store from / to any address, not just from a specific
377  /// stack slot.
378  MachineInstr* foldMemoryOperand(MachineFunction &MF,
379                                  MachineInstr* MI,
380                                  const SmallVectorImpl<unsigned> &Ops,
381                                  MachineInstr* LoadMI) const;
382
383protected:
384  /// foldMemoryOperandImpl - Target-dependent implementation for
385  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
386  /// take care of adding a MachineMemOperand to the newly created instruction.
387  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
388                                          MachineInstr* MI,
389                                          const SmallVectorImpl<unsigned> &Ops,
390                                          int FrameIndex) const {
391    return 0;
392  }
393
394  /// foldMemoryOperandImpl - Target-dependent implementation for
395  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
396  /// take care of adding a MachineMemOperand to the newly created instruction.
397  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
398                                              MachineInstr* MI,
399                                              const SmallVectorImpl<unsigned> &Ops,
400                                              MachineInstr* LoadMI) const {
401    return 0;
402  }
403
404public:
405  /// canFoldMemoryOperand - Returns true for the specified load / store if
406  /// folding is possible.
407  virtual
408  bool canFoldMemoryOperand(const MachineInstr *MI,
409                            const SmallVectorImpl<unsigned> &Ops) const {
410    return false;
411  }
412
413  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
414  /// a store or a load and a store into two or more instruction. If this is
415  /// possible, returns true as well as the new instructions by reference.
416  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
417                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
418                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
419    return false;
420  }
421
422  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
423                                   SmallVectorImpl<SDNode*> &NewNodes) const {
424    return false;
425  }
426
427  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
428  /// instruction after load / store are unfolded from an instruction of the
429  /// specified opcode. It returns zero if the specified unfolding is not
430  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
431  /// index of the operand which will hold the register holding the loaded
432  /// value.
433  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
434                                      bool UnfoldLoad, bool UnfoldStore,
435                                      unsigned *LoadRegIndex = 0) const {
436    return 0;
437  }
438
439  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
440  /// to determine if two loads are loading from the same base address. It
441  /// should only return true if the base pointers are the same and the
442  /// only differences between the two addresses are the offset. It also returns
443  /// the offsets by reference.
444  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
445                                       int64_t &Offset1, int64_t &Offset2) const {
446    return false;
447  }
448
449  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
450  /// determine (in conjuction with areLoadsFromSameBasePtr) if two loads should
451  /// be scheduled togther. On some targets if two loads are loading from
452  /// addresses in the same cache line, it's better if they are scheduled
453  /// together. This function takes two integers that represent the load offsets
454  /// from the common base address. It returns true if it decides it's desirable
455  /// to schedule the two loads together. "NumLoads" is the number of loads that
456  /// have already been scheduled after Load1.
457  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
458                                       int64_t Offset1, int64_t Offset2,
459                                       unsigned NumLoads) const {
460    return false;
461  }
462
463  /// ReverseBranchCondition - Reverses the branch condition of the specified
464  /// condition list, returning false on success and true if it cannot be
465  /// reversed.
466  virtual
467  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
468    return true;
469  }
470
471  /// insertNoop - Insert a noop into the instruction stream at the specified
472  /// point.
473  virtual void insertNoop(MachineBasicBlock &MBB,
474                          MachineBasicBlock::iterator MI) const;
475
476  /// isPredicated - Returns true if the instruction is already predicated.
477  ///
478  virtual bool isPredicated(const MachineInstr *MI) const {
479    return false;
480  }
481
482  /// isUnpredicatedTerminator - Returns true if the instruction is a
483  /// terminator instruction that has not been predicated.
484  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
485
486  /// PredicateInstruction - Convert the instruction into a predicated
487  /// instruction. It returns true if the operation was successful.
488  virtual
489  bool PredicateInstruction(MachineInstr *MI,
490                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
491
492  /// SubsumesPredicate - Returns true if the first specified predicate
493  /// subsumes the second, e.g. GE subsumes GT.
494  virtual
495  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
496                         const SmallVectorImpl<MachineOperand> &Pred2) const {
497    return false;
498  }
499
500  /// DefinesPredicate - If the specified instruction defines any predicate
501  /// or condition code register(s) used for predication, returns true as well
502  /// as the definition predicate(s) by reference.
503  virtual bool DefinesPredicate(MachineInstr *MI,
504                                std::vector<MachineOperand> &Pred) const {
505    return false;
506  }
507
508  /// isPredicable - Return true if the specified instruction can be predicated.
509  /// By default, this returns true for every instruction with a
510  /// PredicateOperand.
511  virtual bool isPredicable(MachineInstr *MI) const {
512    return MI->getDesc().isPredicable();
513  }
514
515  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
516  /// instruction that defines the specified register class.
517  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
518    return true;
519  }
520
521  /// GetInstSize - Returns the size of the specified Instruction.
522  ///
523  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const {
524    assert(0 && "Target didn't implement TargetInstrInfo::GetInstSize!");
525    return 0;
526  }
527
528  /// GetFunctionSizeInBytes - Returns the size of the specified
529  /// MachineFunction.
530  ///
531  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const = 0;
532
533  /// Measure the specified inline asm to determine an approximation of its
534  /// length.
535  virtual unsigned getInlineAsmLength(const char *Str,
536                                      const MCAsmInfo &MAI) const;
537};
538
539/// TargetInstrInfoImpl - This is the default implementation of
540/// TargetInstrInfo, which just provides a couple of default implementations
541/// for various methods.  This separated out because it is implemented in
542/// libcodegen, not in libtarget.
543class TargetInstrInfoImpl : public TargetInstrInfo {
544protected:
545  TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
546  : TargetInstrInfo(desc, NumOpcodes) {}
547public:
548  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
549                                           bool NewMI = false) const;
550  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
551                                     unsigned &SrcOpIdx2) const;
552  virtual bool PredicateInstruction(MachineInstr *MI,
553                            const SmallVectorImpl<MachineOperand> &Pred) const;
554  virtual void reMaterialize(MachineBasicBlock &MBB,
555                             MachineBasicBlock::iterator MI,
556                             unsigned DestReg, unsigned SubReg,
557                             const MachineInstr *Orig,
558                             const TargetRegisterInfo *TRI) const;
559  virtual MachineInstr *duplicate(MachineInstr *Orig,
560                                  MachineFunction &MF) const;
561  virtual bool produceSameValue(const MachineInstr *MI0,
562                                const MachineInstr *MI1) const;
563  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const;
564};
565
566} // End llvm namespace
567
568#endif
569