TargetInstrInfo.h revision 318093b6f8d21ac8eab34573b0526984895fe941
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instructions to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/CodeGen/MachineBasicBlock.h"
18#include "llvm/CodeGen/MachineFunction.h"
19#include "llvm/Support/DataTypes.h"
20#include <vector>
21#include <cassert>
22
23namespace llvm {
24
25class MachineInstr;
26class TargetMachine;
27class MachineCodeForInstruction;
28class TargetRegisterClass;
29class LiveVariables;
30
31//---------------------------------------------------------------------------
32// Data types used to define information about a single machine instruction
33//---------------------------------------------------------------------------
34
35typedef short MachineOpCode;
36typedef unsigned InstrSchedClass;
37
38//---------------------------------------------------------------------------
39// struct TargetInstrDescriptor:
40//  Predefined information about each machine instruction.
41//  Designed to initialized statically.
42//
43
44const unsigned M_BRANCH_FLAG           = 1 << 0;
45const unsigned M_CALL_FLAG             = 1 << 1;
46const unsigned M_RET_FLAG              = 1 << 2;
47const unsigned M_BARRIER_FLAG          = 1 << 3;
48const unsigned M_DELAY_SLOT_FLAG       = 1 << 4;
49const unsigned M_LOAD_FLAG             = 1 << 5;
50const unsigned M_STORE_FLAG            = 1 << 6;
51
52// M_CONVERTIBLE_TO_3_ADDR - This is a 2-address instruction which can be
53// changed into a 3-address instruction if the first two operands cannot be
54// assigned to the same register.  The target must implement the
55// TargetInstrInfo::convertToThreeAddress method for this instruction.
56const unsigned M_CONVERTIBLE_TO_3_ADDR = 1 << 7;
57
58// This M_COMMUTABLE - is a 2- or 3-address instruction (of the form X = op Y,
59// Z), which produces the same result if Y and Z are exchanged.
60const unsigned M_COMMUTABLE            = 1 << 8;
61
62// M_TERMINATOR_FLAG - Is this instruction part of the terminator for a basic
63// block?  Typically this is things like return and branch instructions.
64// Various passes use this to insert code into the bottom of a basic block, but
65// before control flow occurs.
66const unsigned M_TERMINATOR_FLAG       = 1 << 9;
67
68// M_USES_CUSTOM_DAG_SCHED_INSERTION - Set if this instruction requires custom
69// insertion support when the DAG scheduler is inserting it into a machine basic
70// block.
71const unsigned M_USES_CUSTOM_DAG_SCHED_INSERTION = 1 << 10;
72
73// M_VARIABLE_OPS - Set if this instruction can have a variable number of extra
74// operands in addition to the minimum number operands specified.
75const unsigned M_VARIABLE_OPS = 1 << 11;
76
77// M_PREDICABLE - Set if this instruction has a predicate operand that
78// controls execution. It may be set to 'always'.
79const unsigned M_PREDICABLE = 1 << 12;
80
81// M_REMATERIALIZIBLE - Set if this instruction can be trivally re-materialized
82// at any time, e.g. constant generation, load from constant pool.
83const unsigned M_REMATERIALIZIBLE = 1 << 13;
84
85// M_CLOBBERS_PRED - Set if this instruction may clobbers the condition code
86// register and / or registers that are used to predicate instructions.
87const unsigned M_CLOBBERS_PRED = 1 << 14;
88
89// Machine operand flags
90// M_LOOK_UP_PTR_REG_CLASS - Set if this operand is a pointer value and it
91// requires a callback to look up its register class.
92const unsigned M_LOOK_UP_PTR_REG_CLASS = 1 << 0;
93
94/// M_PREDICATE_OPERAND - Set if this is one of the operands that made up of the
95/// predicate operand that controls an M_PREDICATED instruction.
96const unsigned M_PREDICATE_OPERAND = 1 << 1;
97
98namespace TOI {
99  // Operand constraints: only "tied_to" for now.
100  enum OperandConstraint {
101    TIED_TO = 0  // Must be allocated the same register as.
102  };
103}
104
105/// TargetOperandInfo - This holds information about one operand of a machine
106/// instruction, indicating the register class for register operands, etc.
107///
108class TargetOperandInfo {
109public:
110  /// RegClass - This specifies the register class enumeration of the operand
111  /// if the operand is a register.  If not, this contains 0.
112  unsigned short RegClass;
113  unsigned short Flags;
114  /// Lower 16 bits are used to specify which constraints are set. The higher 16
115  /// bits are used to specify the value of constraints (4 bits each).
116  unsigned int Constraints;
117  /// Currently no other information.
118};
119
120
121class TargetInstrDescriptor {
122public:
123  MachineOpCode   Opcode;        // The opcode.
124  unsigned short  numOperands;   // Num of args (may be more if variable_ops).
125  const char *    Name;          // Assembly language mnemonic for the opcode.
126  InstrSchedClass schedClass;    // enum  identifying instr sched class
127  unsigned        Flags;         // flags identifying machine instr class
128  unsigned        TSFlags;       // Target Specific Flag values
129  const unsigned *ImplicitUses;  // Registers implicitly read by this instr
130  const unsigned *ImplicitDefs;  // Registers implicitly defined by this instr
131  const TargetOperandInfo *OpInfo; // 'numOperands' entries about operands.
132
133  /// getOperandConstraint - Returns the value of the specific constraint if
134  /// it is set. Returns -1 if it is not set.
135  int getOperandConstraint(unsigned OpNum,
136                           TOI::OperandConstraint Constraint) const {
137    assert((OpNum < numOperands || (Flags & M_VARIABLE_OPS)) &&
138           "Invalid operand # of TargetInstrInfo");
139    if (OpNum < numOperands &&
140        (OpInfo[OpNum].Constraints & (1 << Constraint))) {
141      unsigned Pos = 16 + Constraint * 4;
142      return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
143    }
144    return -1;
145  }
146
147  /// findTiedToSrcOperand - Returns the operand that is tied to the specified
148  /// dest operand. Returns -1 if there isn't one.
149  int findTiedToSrcOperand(unsigned OpNum) const;
150};
151
152
153//---------------------------------------------------------------------------
154///
155/// TargetInstrInfo - Interface to description of machine instructions
156///
157class TargetInstrInfo {
158  const TargetInstrDescriptor* desc;    // raw array to allow static init'n
159  unsigned NumOpcodes;                  // number of entries in the desc array
160  unsigned numRealOpCodes;              // number of non-dummy op codes
161
162  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
163  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
164public:
165  TargetInstrInfo(const TargetInstrDescriptor *desc, unsigned NumOpcodes);
166  virtual ~TargetInstrInfo();
167
168  // Invariant opcodes: All instruction sets have these as their low opcodes.
169  enum {
170    PHI = 0,
171    INLINEASM = 1,
172    LABEL = 2
173  };
174
175  unsigned getNumOpcodes() const { return NumOpcodes; }
176
177  /// get - Return the machine instruction descriptor that corresponds to the
178  /// specified instruction opcode.
179  ///
180  const TargetInstrDescriptor& get(MachineOpCode Opcode) const {
181    assert((unsigned)Opcode < NumOpcodes);
182    return desc[Opcode];
183  }
184
185  const char *getName(MachineOpCode Opcode) const {
186    return get(Opcode).Name;
187  }
188
189  int getNumOperands(MachineOpCode Opcode) const {
190    return get(Opcode).numOperands;
191  }
192
193  InstrSchedClass getSchedClass(MachineOpCode Opcode) const {
194    return get(Opcode).schedClass;
195  }
196
197  const unsigned *getImplicitUses(MachineOpCode Opcode) const {
198    return get(Opcode).ImplicitUses;
199  }
200
201  const unsigned *getImplicitDefs(MachineOpCode Opcode) const {
202    return get(Opcode).ImplicitDefs;
203  }
204
205
206  //
207  // Query instruction class flags according to the machine-independent
208  // flags listed above.
209  //
210  bool isReturn(MachineOpCode Opcode) const {
211    return get(Opcode).Flags & M_RET_FLAG;
212  }
213
214  bool isPredicable(MachineOpCode Opcode) const {
215    return get(Opcode).Flags & M_PREDICABLE;
216  }
217  bool clobbersPredicate(MachineOpCode Opcode) const {
218    return get(Opcode).Flags & M_CLOBBERS_PRED;
219  }
220  bool isReMaterializable(MachineOpCode Opcode) const {
221    return get(Opcode).Flags & M_REMATERIALIZIBLE;
222  }
223  bool isCommutableInstr(MachineOpCode Opcode) const {
224    return get(Opcode).Flags & M_COMMUTABLE;
225  }
226  bool isTerminatorInstr(MachineOpCode Opcode) const {
227    return get(Opcode).Flags & M_TERMINATOR_FLAG;
228  }
229
230  bool isBranch(MachineOpCode Opcode) const {
231    return get(Opcode).Flags & M_BRANCH_FLAG;
232  }
233
234  /// isBarrier - Returns true if the specified instruction stops control flow
235  /// from executing the instruction immediately following it.  Examples include
236  /// unconditional branches and return instructions.
237  bool isBarrier(MachineOpCode Opcode) const {
238    return get(Opcode).Flags & M_BARRIER_FLAG;
239  }
240
241  bool isCall(MachineOpCode Opcode) const {
242    return get(Opcode).Flags & M_CALL_FLAG;
243  }
244  bool isLoad(MachineOpCode Opcode) const {
245    return get(Opcode).Flags & M_LOAD_FLAG;
246  }
247  bool isStore(MachineOpCode Opcode) const {
248    return get(Opcode).Flags & M_STORE_FLAG;
249  }
250
251  /// hasDelaySlot - Returns true if the specified instruction has a delay slot
252  /// which must be filled by the code generator.
253  bool hasDelaySlot(MachineOpCode Opcode) const {
254    return get(Opcode).Flags & M_DELAY_SLOT_FLAG;
255  }
256
257  /// usesCustomDAGSchedInsertionHook - Return true if this instruction requires
258  /// custom insertion support when the DAG scheduler is inserting it into a
259  /// machine basic block.
260  bool usesCustomDAGSchedInsertionHook(MachineOpCode Opcode) const {
261    return get(Opcode).Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION;
262  }
263
264  bool hasVariableOperands(MachineOpCode Opcode) const {
265    return get(Opcode).Flags & M_VARIABLE_OPS;
266  }
267
268  /// getOperandConstraint - Returns the value of the specific constraint if
269  /// it is set. Returns -1 if it is not set.
270  int getOperandConstraint(MachineOpCode Opcode, unsigned OpNum,
271                           TOI::OperandConstraint Constraint) const {
272    return get(Opcode).getOperandConstraint(OpNum, Constraint);
273  }
274
275  /// Return true if the instruction is a register to register move
276  /// and leave the source and dest operands in the passed parameters.
277  virtual bool isMoveInstr(const MachineInstr& MI,
278                           unsigned& sourceReg,
279                           unsigned& destReg) const {
280    return false;
281  }
282
283  /// isLoadFromStackSlot - If the specified machine instruction is a direct
284  /// load from a stack slot, return the virtual or physical register number of
285  /// the destination along with the FrameIndex of the loaded stack slot.  If
286  /// not, return 0.  This predicate must return 0 if the instruction has
287  /// any side effects other than loading from the stack slot.
288  virtual unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const{
289    return 0;
290  }
291
292  /// isStoreToStackSlot - If the specified machine instruction is a direct
293  /// store to a stack slot, return the virtual or physical register number of
294  /// the source reg along with the FrameIndex of the loaded stack slot.  If
295  /// not, return 0.  This predicate must return 0 if the instruction has
296  /// any side effects other than storing to the stack slot.
297  virtual unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const {
298    return 0;
299  }
300
301  /// isOtherReMaterializableLoad - If the specified machine instruction is a
302  /// direct load that is trivially rematerializable, not counting loads from
303  /// stack slots, return true. If not, return false.  This predicate must
304  /// return false if the instruction has any side effects other than
305  /// producing the value from the load, or if it requres any address
306  /// registers that are not always available.
307  virtual bool isOtherReMaterializableLoad(MachineInstr *MI) const {
308    return false;
309  }
310
311  /// convertToThreeAddress - This method must be implemented by targets that
312  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
313  /// may be able to convert a two-address instruction into one or moretrue
314  /// three-address instructions on demand.  This allows the X86 target (for
315  /// example) to convert ADD and SHL instructions into LEA instructions if they
316  /// would require register copies due to two-addressness.
317  ///
318  /// This method returns a null pointer if the transformation cannot be
319  /// performed, otherwise it returns the last new instruction.
320  ///
321  virtual MachineInstr *
322  convertToThreeAddress(MachineFunction::iterator &MFI,
323                   MachineBasicBlock::iterator &MBBI, LiveVariables &LV) const {
324    return 0;
325  }
326
327  /// commuteInstruction - If a target has any instructions that are commutable,
328  /// but require converting to a different instruction or making non-trivial
329  /// changes to commute them, this method can overloaded to do this.  The
330  /// default implementation of this method simply swaps the first two operands
331  /// of MI and returns it.
332  ///
333  /// If a target wants to make more aggressive changes, they can construct and
334  /// return a new machine instruction.  If an instruction cannot commute, it
335  /// can also return null.
336  ///
337  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
338
339  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
340  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
341  /// implemented for a target).  Upon success, this returns false and returns
342  /// with the following information in various cases:
343  ///
344  /// 1. If this block ends with no branches (it just falls through to its succ)
345  ///    just return false, leaving TBB/FBB null.
346  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
347  ///    the destination block.
348  /// 3. If this block ends with an conditional branch and it falls through to
349  ///    an successor block, it sets TBB to be the branch destination block and a
350  ///    list of operands that evaluate the condition. These
351  ///    operands can be passed to other TargetInstrInfo methods to create new
352  ///    branches.
353  /// 4. If this block ends with an conditional branch and an unconditional
354  ///    block, it returns the 'true' destination in TBB, the 'false' destination
355  ///    in FBB, and a list of operands that evaluate the condition. These
356  ///    operands can be passed to other TargetInstrInfo methods to create new
357  ///    branches.
358  ///
359  /// Note that RemoveBranch and InsertBranch must be implemented to support
360  /// cases where this method returns success.
361  ///
362  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
363                             MachineBasicBlock *&FBB,
364                             std::vector<MachineOperand> &Cond) const {
365    return true;
366  }
367
368  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
369  /// this is only invoked in cases where AnalyzeBranch returns success. It
370  /// returns the number of instructions that were removed.
371  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
372    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
373    return 0;
374  }
375
376  /// InsertBranch - Insert a branch into the end of the specified
377  /// MachineBasicBlock.  This operands to this method are the same as those
378  /// returned by AnalyzeBranch.  This is invoked in cases where AnalyzeBranch
379  /// returns success and when an unconditional branch (TBB is non-null, FBB is
380  /// null, Cond is empty) needs to be inserted. It returns the number of
381  /// instructions inserted.
382  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
383                            MachineBasicBlock *FBB,
384                            const std::vector<MachineOperand> &Cond) const {
385    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
386    return 0;
387  }
388
389  /// BlockHasNoFallThrough - Return true if the specified block does not
390  /// fall-through into its successor block.  This is primarily used when a
391  /// branch is unanalyzable.  It is useful for things like unconditional
392  /// indirect branches (jump tables).
393  virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
394    return false;
395  }
396
397  /// ReverseBranchCondition - Reverses the branch condition of the specified
398  /// condition list, returning false on success and true if it cannot be
399  /// reversed.
400  virtual bool ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
401    return true;
402  }
403
404  /// insertNoop - Insert a noop into the instruction stream at the specified
405  /// point.
406  virtual void insertNoop(MachineBasicBlock &MBB,
407                          MachineBasicBlock::iterator MI) const {
408    assert(0 && "Target didn't implement insertNoop!");
409    abort();
410  }
411
412  /// isPredicated - Returns true if the instruction is already predicated.
413  ///
414  virtual bool isPredicated(const MachineInstr *MI) const {
415    return false;
416  }
417
418  /// isUnpredicatedTerminator - Returns true if the instruction is a
419  /// terminator instruction that has not been predicated.
420  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
421
422  /// PredicateInstruction - Convert the instruction into a predicated
423  /// instruction. It returns true if the operation was successful.
424  virtual
425  bool PredicateInstruction(MachineInstr *MI,
426                            const std::vector<MachineOperand> &Pred) const;
427
428  /// SubsumesPredicate - Returns true if the first specified predicate
429  /// subsumes the second, e.g. GE subsumes GT.
430  virtual
431  bool SubsumesPredicate(const std::vector<MachineOperand> &Pred1,
432                         const std::vector<MachineOperand> &Pred2) const {
433    return false;
434  }
435
436  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
437  /// values.
438  virtual const TargetRegisterClass *getPointerRegClass() const {
439    assert(0 && "Target didn't implement getPointerRegClass!");
440    abort();
441    return 0; // Must return a value in order to compile with VS 2005
442  }
443};
444
445} // End llvm namespace
446
447#endif
448