TargetInstrInfo.h revision 33247d537ddce29e65bc324bf8d40a15d2d88c01
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instructions to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/CodeGen/MachineBasicBlock.h"
18#include "llvm/Support/DataTypes.h"
19#include <vector>
20#include <cassert>
21
22namespace llvm {
23
24class MachineInstr;
25class TargetMachine;
26class Value;
27class Type;
28class Instruction;
29class Constant;
30class Function;
31class MachineCodeForInstruction;
32class TargetRegisterClass;
33
34//---------------------------------------------------------------------------
35// Data types used to define information about a single machine instruction
36//---------------------------------------------------------------------------
37
38typedef short MachineOpCode;
39typedef unsigned InstrSchedClass;
40
41//---------------------------------------------------------------------------
42// struct TargetInstrDescriptor:
43//  Predefined information about each machine instruction.
44//  Designed to initialized statically.
45//
46
47const unsigned M_BRANCH_FLAG           = 1 << 0;
48const unsigned M_CALL_FLAG             = 1 << 1;
49const unsigned M_RET_FLAG              = 1 << 2;
50const unsigned M_BARRIER_FLAG          = 1 << 3;
51const unsigned M_DELAY_SLOT_FLAG       = 1 << 4;
52const unsigned M_LOAD_FLAG             = 1 << 5;
53const unsigned M_STORE_FLAG            = 1 << 6;
54
55// M_CONVERTIBLE_TO_3_ADDR - This is a 2-address instruction which can be
56// changed into a 3-address instruction if the first two operands cannot be
57// assigned to the same register.  The target must implement the
58// TargetInstrInfo::convertToThreeAddress method for this instruction.
59const unsigned M_CONVERTIBLE_TO_3_ADDR = 1 << 7;
60
61// This M_COMMUTABLE - is a 2- or 3-address instruction (of the form X = op Y,
62// Z), which produces the same result if Y and Z are exchanged.
63const unsigned M_COMMUTABLE            = 1 << 8;
64
65// M_TERMINATOR_FLAG - Is this instruction part of the terminator for a basic
66// block?  Typically this is things like return and branch instructions.
67// Various passes use this to insert code into the bottom of a basic block, but
68// before control flow occurs.
69const unsigned M_TERMINATOR_FLAG       = 1 << 9;
70
71// M_USES_CUSTOM_DAG_SCHED_INSERTION - Set if this instruction requires custom
72// insertion support when the DAG scheduler is inserting it into a machine basic
73// block.
74const unsigned M_USES_CUSTOM_DAG_SCHED_INSERTION = 1 << 10;
75
76// M_VARIABLE_OPS - Set if this instruction can have a variable number of extra
77// operands in addition to the minimum number operands specified.
78const unsigned M_VARIABLE_OPS = 1 << 11;
79
80// M_PREDICATED - Set if this instruction has a predicate that controls its
81// execution.
82const unsigned M_PREDICATED = 1 << 12;
83
84
85// Machine operand flags
86// M_LOOK_UP_PTR_REG_CLASS - Set if this operand is a pointer value and it
87// requires a callback to look up its register class.
88const unsigned M_LOOK_UP_PTR_REG_CLASS = 1 << 0;
89
90/// M_PREDICATE_OPERAND - Set if this is the first operand of a predicate
91/// operand that controls an M_PREDICATED instruction.
92const unsigned M_PREDICATE_OPERAND = 1 << 1;
93
94
95/// TargetOperandInfo - This holds information about one operand of a machine
96/// instruction, indicating the register class for register operands, etc.
97///
98class TargetOperandInfo {
99public:
100  /// RegClass - This specifies the register class enumeration of the operand
101  /// if the operand is a register.  If not, this contains 0.
102  unsigned short RegClass;
103  unsigned short Flags;
104  /// Lower 16 bits are used to specify which constraints are set. The higher 16
105  /// bits are used to specify the value of constraints (4 bits each).
106  unsigned int Constraints;
107  /// Currently no other information.
108};
109
110
111class TargetInstrDescriptor {
112public:
113  MachineOpCode   Opcode;        // The opcode.
114  unsigned short  numOperands;   // Num of args (may be more if variable_ops).
115  const char *    Name;          // Assembly language mnemonic for the opcode.
116  InstrSchedClass schedClass;    // enum  identifying instr sched class
117  unsigned        Flags;         // flags identifying machine instr class
118  unsigned        TSFlags;       // Target Specific Flag values
119  const unsigned *ImplicitUses;  // Registers implicitly read by this instr
120  const unsigned *ImplicitDefs;  // Registers implicitly defined by this instr
121  const TargetOperandInfo *OpInfo; // 'numOperands' entries about operands.
122};
123
124
125//---------------------------------------------------------------------------
126///
127/// TargetInstrInfo - Interface to description of machine instructions
128///
129class TargetInstrInfo {
130  const TargetInstrDescriptor* desc;    // raw array to allow static init'n
131  unsigned NumOpcodes;                  // number of entries in the desc array
132  unsigned numRealOpCodes;              // number of non-dummy op codes
133
134  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
135  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
136public:
137  TargetInstrInfo(const TargetInstrDescriptor *desc, unsigned NumOpcodes);
138  virtual ~TargetInstrInfo();
139
140  // Invariant opcodes: All instruction sets have these as their low opcodes.
141  enum {
142    PHI = 0,
143    INLINEASM = 1
144  };
145
146  unsigned getNumOpcodes() const { return NumOpcodes; }
147
148  /// get - Return the machine instruction descriptor that corresponds to the
149  /// specified instruction opcode.
150  ///
151  const TargetInstrDescriptor& get(MachineOpCode Opcode) const {
152    assert((unsigned)Opcode < NumOpcodes);
153    return desc[Opcode];
154  }
155
156  const char *getName(MachineOpCode Opcode) const {
157    return get(Opcode).Name;
158  }
159
160  int getNumOperands(MachineOpCode Opcode) const {
161    return get(Opcode).numOperands;
162  }
163
164  InstrSchedClass getSchedClass(MachineOpCode Opcode) const {
165    return get(Opcode).schedClass;
166  }
167
168  const unsigned *getImplicitUses(MachineOpCode Opcode) const {
169    return get(Opcode).ImplicitUses;
170  }
171
172  const unsigned *getImplicitDefs(MachineOpCode Opcode) const {
173    return get(Opcode).ImplicitDefs;
174  }
175
176
177  //
178  // Query instruction class flags according to the machine-independent
179  // flags listed above.
180  //
181  bool isReturn(MachineOpCode Opcode) const {
182    return get(Opcode).Flags & M_RET_FLAG;
183  }
184
185  bool isPredicated(MachineOpCode Opcode) const {
186    return get(Opcode).Flags & M_PREDICATED;
187  }
188  bool isCommutableInstr(MachineOpCode Opcode) const {
189    return get(Opcode).Flags & M_COMMUTABLE;
190  }
191  bool isTerminatorInstr(unsigned Opcode) const {
192    return get(Opcode).Flags & M_TERMINATOR_FLAG;
193  }
194
195  bool isBranch(MachineOpCode Opcode) const {
196    return get(Opcode).Flags & M_BRANCH_FLAG;
197  }
198
199  /// isBarrier - Returns true if the specified instruction stops control flow
200  /// from executing the instruction immediately following it.  Examples include
201  /// unconditional branches and return instructions.
202  bool isBarrier(MachineOpCode Opcode) const {
203    return get(Opcode).Flags & M_BARRIER_FLAG;
204  }
205
206  bool isCall(MachineOpCode Opcode) const {
207    return get(Opcode).Flags & M_CALL_FLAG;
208  }
209  bool isLoad(MachineOpCode Opcode) const {
210    return get(Opcode).Flags & M_LOAD_FLAG;
211  }
212  bool isStore(MachineOpCode Opcode) const {
213    return get(Opcode).Flags & M_STORE_FLAG;
214  }
215
216  /// hasDelaySlot - Returns true if the specified instruction has a delay slot
217  /// which must be filled by the code generator.
218  bool hasDelaySlot(unsigned Opcode) const {
219    return get(Opcode).Flags & M_DELAY_SLOT_FLAG;
220  }
221
222  /// usesCustomDAGSchedInsertionHook - Return true if this instruction requires
223  /// custom insertion support when the DAG scheduler is inserting it into a
224  /// machine basic block.
225  bool usesCustomDAGSchedInsertionHook(unsigned Opcode) const {
226    return get(Opcode).Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION;
227  }
228
229  bool hasVariableOperands(MachineOpCode Opcode) const {
230    return get(Opcode).Flags & M_VARIABLE_OPS;
231  }
232
233  // Operand constraints: only "tied_to" for now.
234  enum OperandConstraint {
235    TIED_TO = 0  // Must be allocated the same register as.
236  };
237
238  /// getOperandConstraint - Returns the value of the specific constraint if
239  /// it is set. Returns -1 if it is not set.
240  int getOperandConstraint(MachineOpCode Opcode, unsigned OpNum,
241                           OperandConstraint Constraint) const {
242    assert(OpNum < get(Opcode).numOperands &&
243           "Invalid operand # of TargetInstrInfo");
244    if (get(Opcode).OpInfo[OpNum].Constraints & (1 << Constraint)) {
245      unsigned Pos = 16 + Constraint * 4;
246      return (int)(get(Opcode).OpInfo[OpNum].Constraints >> Pos) & 0xf;
247    }
248    return -1;
249  }
250
251  /// findTiedToSrcOperand - Returns the operand that is tied to the specified
252  /// dest operand. Returns -1 if there isn't one.
253  int findTiedToSrcOperand(MachineOpCode Opcode, unsigned OpNum) const;
254
255  /// getDWARF_LABELOpcode - Return the opcode of the target's DWARF_LABEL
256  /// instruction if it has one.  This is used by codegen passes that update
257  /// DWARF line number info as they modify the code.
258  virtual unsigned getDWARF_LABELOpcode() const {
259    return 0;
260  }
261
262  /// Return true if the instruction is a register to register move
263  /// and leave the source and dest operands in the passed parameters.
264  virtual bool isMoveInstr(const MachineInstr& MI,
265                           unsigned& sourceReg,
266                           unsigned& destReg) const {
267    return false;
268  }
269
270  /// isLoadFromStackSlot - If the specified machine instruction is a direct
271  /// load from a stack slot, return the virtual or physical register number of
272  /// the destination along with the FrameIndex of the loaded stack slot.  If
273  /// not, return 0.  This predicate must return 0 if the instruction has
274  /// any side effects other than loading from the stack slot.
275  virtual unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const{
276    return 0;
277  }
278
279  /// isStoreToStackSlot - If the specified machine instruction is a direct
280  /// store to a stack slot, return the virtual or physical register number of
281  /// the source reg along with the FrameIndex of the loaded stack slot.  If
282  /// not, return 0.  This predicate must return 0 if the instruction has
283  /// any side effects other than storing to the stack slot.
284  virtual unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const {
285    return 0;
286  }
287
288  /// convertToThreeAddress - This method must be implemented by targets that
289  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
290  /// may be able to convert a two-address instruction into a true
291  /// three-address instruction on demand.  This allows the X86 target (for
292  /// example) to convert ADD and SHL instructions into LEA instructions if they
293  /// would require register copies due to two-addressness.
294  ///
295  /// This method returns a null pointer if the transformation cannot be
296  /// performed, otherwise it returns the new instruction.
297  ///
298  virtual MachineInstr *convertToThreeAddress(MachineInstr *TA) const {
299    return 0;
300  }
301
302  /// commuteInstruction - If a target has any instructions that are commutable,
303  /// but require converting to a different instruction or making non-trivial
304  /// changes to commute them, this method can overloaded to do this.  The
305  /// default implementation of this method simply swaps the first two operands
306  /// of MI and returns it.
307  ///
308  /// If a target wants to make more aggressive changes, they can construct and
309  /// return a new machine instruction.  If an instruction cannot commute, it
310  /// can also return null.
311  ///
312  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
313
314  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
315  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
316  /// implemented for a target).  Upon success, this returns false and returns
317  /// with the following information in various cases:
318  ///
319  /// 1. If this block ends with no branches (it just falls through to its succ)
320  ///    just return false, leaving TBB/FBB null.
321  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
322  ///    the destination block.
323  /// 3. If this block ends with an conditional branch, it returns the 'true'
324  ///    destination in TBB, the 'false' destination in FBB, and a list of
325  ///    operands that evaluate the condition.  These operands can be passed to
326  ///    other TargetInstrInfo methods to create new branches.
327  ///
328  /// Note that RemoveBranch and InsertBranch must be implemented to support
329  /// cases where this method returns success.
330  ///
331  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
332                             MachineBasicBlock *&FBB,
333                             std::vector<MachineOperand> &Cond) const {
334    return true;
335  }
336
337  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
338  /// this is only invoked in cases where AnalyzeBranch returns success.
339  virtual void RemoveBranch(MachineBasicBlock &MBB) const {
340    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
341  }
342
343  /// InsertBranch - Insert a branch into the end of the specified
344  /// MachineBasicBlock.  This operands to this method are the same as those
345  /// returned by AnalyzeBranch.  This is invoked in cases where AnalyzeBranch
346  /// returns success and when an unconditional branch (TBB is non-null, FBB is
347  /// null, Cond is empty) needs to be inserted.
348  virtual void InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
349                            MachineBasicBlock *FBB,
350                            const std::vector<MachineOperand> &Cond) const {
351    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
352  }
353
354  /// BlockHasNoFallThrough - Return true if the specified block does not
355  /// fall-through into its successor block.  This is primarily used when a
356  /// branch is unanalyzable.  It is useful for things like unconditional
357  /// indirect branches (jump tables).
358  virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
359    return false;
360  }
361
362  /// ReverseBranchCondition - Reverses the branch condition of the specified
363  /// condition list, returning false on success and true if it cannot be
364  /// reversed.
365  virtual bool ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
366    return true;
367  }
368
369  /// insertNoop - Insert a noop into the instruction stream at the specified
370  /// point.
371  virtual void insertNoop(MachineBasicBlock &MBB,
372                          MachineBasicBlock::iterator MI) const {
373    assert(0 && "Target didn't implement insertNoop!");
374    abort();
375  }
376
377  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
378  /// values.
379  virtual const TargetRegisterClass *getPointerRegClass() const {
380    assert(0 && "Target didn't implement getPointerRegClass!");
381    abort();
382  }
383};
384
385} // End llvm namespace
386
387#endif
388