TargetInstrInfo.h revision 3c417554caedde3a333755916701c8380606342a
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/ADT/SmallSet.h"
18#include "llvm/MC/MCInstrInfo.h"
19#include "llvm/CodeGen/DFAPacketizer.h"
20#include "llvm/CodeGen/MachineFunction.h"
21
22namespace llvm {
23
24class InstrItineraryData;
25class LiveVariables;
26class MCAsmInfo;
27class MachineMemOperand;
28class MachineRegisterInfo;
29class MDNode;
30class MCInst;
31class MCSchedModel;
32class SDNode;
33class ScheduleHazardRecognizer;
34class SelectionDAG;
35class ScheduleDAG;
36class TargetRegisterClass;
37class TargetRegisterInfo;
38class BranchProbability;
39
40template<class T> class SmallVectorImpl;
41
42
43//---------------------------------------------------------------------------
44///
45/// TargetInstrInfo - Interface to description of machine instruction set
46///
47class TargetInstrInfo : public MCInstrInfo {
48  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
49  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
50public:
51  TargetInstrInfo(int CFSetupOpcode = -1, int CFDestroyOpcode = -1)
52    : CallFrameSetupOpcode(CFSetupOpcode),
53      CallFrameDestroyOpcode(CFDestroyOpcode) {
54  }
55
56  virtual ~TargetInstrInfo();
57
58  /// getRegClass - Givem a machine instruction descriptor, returns the register
59  /// class constraint for OpNum, or NULL.
60  const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
61                                         unsigned OpNum,
62                                         const TargetRegisterInfo *TRI,
63                                         const MachineFunction &MF) const;
64
65  /// isTriviallyReMaterializable - Return true if the instruction is trivially
66  /// rematerializable, meaning it has no side effects and requires no operands
67  /// that aren't always available.
68  bool isTriviallyReMaterializable(const MachineInstr *MI,
69                                   AliasAnalysis *AA = 0) const {
70    return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
71           (MI->getDesc().isRematerializable() &&
72            (isReallyTriviallyReMaterializable(MI, AA) ||
73             isReallyTriviallyReMaterializableGeneric(MI, AA)));
74  }
75
76protected:
77  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
78  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
79  /// specify whether the instruction is actually trivially rematerializable,
80  /// taking into consideration its operands. This predicate must return false
81  /// if the instruction has any side effects other than producing a value, or
82  /// if it requres any address registers that are not always available.
83  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
84                                                 AliasAnalysis *AA) const {
85    return false;
86  }
87
88private:
89  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
90  /// for which the M_REMATERIALIZABLE flag is set and the target hook
91  /// isReallyTriviallyReMaterializable returns false, this function does
92  /// target-independent tests to determine if the instruction is really
93  /// trivially rematerializable.
94  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
95                                                AliasAnalysis *AA) const;
96
97public:
98  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
99  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
100  /// targets use pseudo instructions in order to abstract away the difference
101  /// between operating with a frame pointer and operating without, through the
102  /// use of these two instructions.
103  ///
104  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
105  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
106
107  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
108  /// extension instruction. That is, it's like a copy where it's legal for the
109  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
110  /// true, then it's expected the pre-extension value is available as a subreg
111  /// of the result register. This also returns the sub-register index in
112  /// SubIdx.
113  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
114                                     unsigned &SrcReg, unsigned &DstReg,
115                                     unsigned &SubIdx) const {
116    return false;
117  }
118
119  /// isLoadFromStackSlot - If the specified machine instruction is a direct
120  /// load from a stack slot, return the virtual or physical register number of
121  /// the destination along with the FrameIndex of the loaded stack slot.  If
122  /// not, return 0.  This predicate must return 0 if the instruction has
123  /// any side effects other than loading from the stack slot.
124  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
125                                       int &FrameIndex) const {
126    return 0;
127  }
128
129  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
130  /// stack locations as well.  This uses a heuristic so it isn't
131  /// reliable for correctness.
132  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
133                                             int &FrameIndex) const {
134    return 0;
135  }
136
137  /// hasLoadFromStackSlot - If the specified machine instruction has
138  /// a load from a stack slot, return true along with the FrameIndex
139  /// of the loaded stack slot and the machine mem operand containing
140  /// the reference.  If not, return false.  Unlike
141  /// isLoadFromStackSlot, this returns true for any instructions that
142  /// loads from the stack.  This is just a hint, as some cases may be
143  /// missed.
144  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
145                                    const MachineMemOperand *&MMO,
146                                    int &FrameIndex) const {
147    return 0;
148  }
149
150  /// isStoreToStackSlot - If the specified machine instruction is a direct
151  /// store to a stack slot, return the virtual or physical register number of
152  /// the source reg along with the FrameIndex of the loaded stack slot.  If
153  /// not, return 0.  This predicate must return 0 if the instruction has
154  /// any side effects other than storing to the stack slot.
155  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
156                                      int &FrameIndex) const {
157    return 0;
158  }
159
160  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
161  /// stack locations as well.  This uses a heuristic so it isn't
162  /// reliable for correctness.
163  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
164                                            int &FrameIndex) const {
165    return 0;
166  }
167
168  /// hasStoreToStackSlot - If the specified machine instruction has a
169  /// store to a stack slot, return true along with the FrameIndex of
170  /// the loaded stack slot and the machine mem operand containing the
171  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
172  /// this returns true for any instructions that stores to the
173  /// stack.  This is just a hint, as some cases may be missed.
174  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
175                                   const MachineMemOperand *&MMO,
176                                   int &FrameIndex) const {
177    return 0;
178  }
179
180  /// reMaterialize - Re-issue the specified 'original' instruction at the
181  /// specific location targeting a new destination register.
182  /// The register in Orig->getOperand(0).getReg() will be substituted by
183  /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
184  /// SubIdx.
185  virtual void reMaterialize(MachineBasicBlock &MBB,
186                             MachineBasicBlock::iterator MI,
187                             unsigned DestReg, unsigned SubIdx,
188                             const MachineInstr *Orig,
189                             const TargetRegisterInfo &TRI) const = 0;
190
191  /// scheduleTwoAddrSource - Schedule the copy / re-mat of the source of the
192  /// two-addrss instruction inserted by two-address pass.
193  virtual void scheduleTwoAddrSource(MachineInstr *SrcMI,
194                                     MachineInstr *UseMI,
195                                     const TargetRegisterInfo &TRI) const {
196    // Do nothing.
197  }
198
199  /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
200  /// MachineFunction::CloneMachineInstr(), but the target may update operands
201  /// that are required to be unique.
202  ///
203  /// The instruction must be duplicable as indicated by isNotDuplicable().
204  virtual MachineInstr *duplicate(MachineInstr *Orig,
205                                  MachineFunction &MF) const = 0;
206
207  /// convertToThreeAddress - This method must be implemented by targets that
208  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
209  /// may be able to convert a two-address instruction into one or more true
210  /// three-address instructions on demand.  This allows the X86 target (for
211  /// example) to convert ADD and SHL instructions into LEA instructions if they
212  /// would require register copies due to two-addressness.
213  ///
214  /// This method returns a null pointer if the transformation cannot be
215  /// performed, otherwise it returns the last new instruction.
216  ///
217  virtual MachineInstr *
218  convertToThreeAddress(MachineFunction::iterator &MFI,
219                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
220    return 0;
221  }
222
223  /// commuteInstruction - If a target has any instructions that are
224  /// commutable but require converting to different instructions or making
225  /// non-trivial changes to commute them, this method can overloaded to do
226  /// that.  The default implementation simply swaps the commutable operands.
227  /// If NewMI is false, MI is modified in place and returned; otherwise, a
228  /// new machine instruction is created and returned.  Do not call this
229  /// method for a non-commutable instruction, but there may be some cases
230  /// where this method fails and returns null.
231  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
232                                           bool NewMI = false) const = 0;
233
234  /// findCommutedOpIndices - If specified MI is commutable, return the two
235  /// operand indices that would swap value. Return false if the instruction
236  /// is not in a form which this routine understands.
237  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
238                                     unsigned &SrcOpIdx2) const = 0;
239
240  /// produceSameValue - Return true if two machine instructions would produce
241  /// identical values. By default, this is only true when the two instructions
242  /// are deemed identical except for defs. If this function is called when the
243  /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
244  /// aggressive checks.
245  virtual bool produceSameValue(const MachineInstr *MI0,
246                                const MachineInstr *MI1,
247                                const MachineRegisterInfo *MRI = 0) const = 0;
248
249  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
250  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
251  /// implemented for a target).  Upon success, this returns false and returns
252  /// with the following information in various cases:
253  ///
254  /// 1. If this block ends with no branches (it just falls through to its succ)
255  ///    just return false, leaving TBB/FBB null.
256  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
257  ///    the destination block.
258  /// 3. If this block ends with a conditional branch and it falls through to a
259  ///    successor block, it sets TBB to be the branch destination block and a
260  ///    list of operands that evaluate the condition. These operands can be
261  ///    passed to other TargetInstrInfo methods to create new branches.
262  /// 4. If this block ends with a conditional branch followed by an
263  ///    unconditional branch, it returns the 'true' destination in TBB, the
264  ///    'false' destination in FBB, and a list of operands that evaluate the
265  ///    condition.  These operands can be passed to other TargetInstrInfo
266  ///    methods to create new branches.
267  ///
268  /// Note that RemoveBranch and InsertBranch must be implemented to support
269  /// cases where this method returns success.
270  ///
271  /// If AllowModify is true, then this routine is allowed to modify the basic
272  /// block (e.g. delete instructions after the unconditional branch).
273  ///
274  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
275                             MachineBasicBlock *&FBB,
276                             SmallVectorImpl<MachineOperand> &Cond,
277                             bool AllowModify = false) const {
278    return true;
279  }
280
281  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
282  /// This is only invoked in cases where AnalyzeBranch returns success. It
283  /// returns the number of instructions that were removed.
284  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
285    llvm_unreachable("Target didn't implement TargetInstrInfo::RemoveBranch!");
286  }
287
288  /// InsertBranch - Insert branch code into the end of the specified
289  /// MachineBasicBlock.  The operands to this method are the same as those
290  /// returned by AnalyzeBranch.  This is only invoked in cases where
291  /// AnalyzeBranch returns success. It returns the number of instructions
292  /// inserted.
293  ///
294  /// It is also invoked by tail merging to add unconditional branches in
295  /// cases where AnalyzeBranch doesn't apply because there was no original
296  /// branch to analyze.  At least this much must be implemented, else tail
297  /// merging needs to be disabled.
298  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
299                                MachineBasicBlock *FBB,
300                                const SmallVectorImpl<MachineOperand> &Cond,
301                                DebugLoc DL) const {
302    llvm_unreachable("Target didn't implement TargetInstrInfo::InsertBranch!");
303  }
304
305  /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
306  /// after it, replacing it with an unconditional branch to NewDest. This is
307  /// used by the tail merging pass.
308  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
309                                       MachineBasicBlock *NewDest) const = 0;
310
311  /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
312  /// block at the specified instruction (i.e. instruction would be the start
313  /// of a new basic block).
314  virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
315                                   MachineBasicBlock::iterator MBBI) const {
316    return true;
317  }
318
319  /// isProfitableToIfCvt - Return true if it's profitable to predicate
320  /// instructions with accumulated instruction latency of "NumCycles"
321  /// of the specified basic block, where the probability of the instructions
322  /// being executed is given by Probability, and Confidence is a measure
323  /// of our confidence that it will be properly predicted.
324  virtual
325  bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
326                           unsigned ExtraPredCycles,
327                           const BranchProbability &Probability) const {
328    return false;
329  }
330
331  /// isProfitableToIfCvt - Second variant of isProfitableToIfCvt, this one
332  /// checks for the case where two basic blocks from true and false path
333  /// of a if-then-else (diamond) are predicated on mutally exclusive
334  /// predicates, where the probability of the true path being taken is given
335  /// by Probability, and Confidence is a measure of our confidence that it
336  /// will be properly predicted.
337  virtual bool
338  isProfitableToIfCvt(MachineBasicBlock &TMBB,
339                      unsigned NumTCycles, unsigned ExtraTCycles,
340                      MachineBasicBlock &FMBB,
341                      unsigned NumFCycles, unsigned ExtraFCycles,
342                      const BranchProbability &Probability) const {
343    return false;
344  }
345
346  /// isProfitableToDupForIfCvt - Return true if it's profitable for
347  /// if-converter to duplicate instructions of specified accumulated
348  /// instruction latencies in the specified MBB to enable if-conversion.
349  /// The probability of the instructions being executed is given by
350  /// Probability, and Confidence is a measure of our confidence that it
351  /// will be properly predicted.
352  virtual bool
353  isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
354                            const BranchProbability &Probability) const {
355    return false;
356  }
357
358  /// isProfitableToUnpredicate - Return true if it's profitable to unpredicate
359  /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
360  /// exclusive predicates.
361  /// e.g.
362  ///   subeq  r0, r1, #1
363  ///   addne  r0, r1, #1
364  /// =>
365  ///   sub    r0, r1, #1
366  ///   addne  r0, r1, #1
367  ///
368  /// This may be profitable is conditional instructions are always executed.
369  virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
370                                         MachineBasicBlock &FMBB) const {
371    return false;
372  }
373
374  /// canInsertSelect - Return true if it is possible to insert a select
375  /// instruction that chooses between TrueReg and FalseReg based on the
376  /// condition code in Cond.
377  ///
378  /// When successful, also return the latency in cycles from TrueReg,
379  /// FalseReg, and Cond to the destination register. The Cond latency should
380  /// compensate for a conditional branch being removed. For example, if a
381  /// conditional branch has a 3 cycle latency from the condition code read,
382  /// and a cmov instruction has a 2 cycle latency from the condition code
383  /// read, CondCycles should be returned as -1.
384  ///
385  /// @param MBB         Block where select instruction would be inserted.
386  /// @param Cond        Condition returned by AnalyzeBranch.
387  /// @param TrueReg     Virtual register to select when Cond is true.
388  /// @param FalseReg    Virtual register to select when Cond is false.
389  /// @param CondCycles  Latency from Cond+Branch to select output.
390  /// @param TrueCycles  Latency from TrueReg to select output.
391  /// @param FalseCycles Latency from FalseReg to select output.
392  virtual bool canInsertSelect(const MachineBasicBlock &MBB,
393                               const SmallVectorImpl<MachineOperand> &Cond,
394                               unsigned TrueReg, unsigned FalseReg,
395                               int &CondCycles,
396                               int &TrueCycles, int &FalseCycles) const {
397    return false;
398  }
399
400  /// insertSelect - Insert a select instruction into MBB before I that will
401  /// copy TrueReg to DstReg when Cond is true, and FalseReg to DstReg when
402  /// Cond is false.
403  ///
404  /// This function can only be called after canInsertSelect() returned true.
405  /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
406  /// that the same flags or registers required by Cond are available at the
407  /// insertion point.
408  ///
409  /// @param MBB      Block where select instruction should be inserted.
410  /// @param I        Insertion point.
411  /// @param DL       Source location for debugging.
412  /// @param DstReg   Virtual register to be defined by select instruction.
413  /// @param Cond     Condition as computed by AnalyzeBranch.
414  /// @param TrueReg  Virtual register to copy when Cond is true.
415  /// @param FalseReg Virtual register to copy when Cons is false.
416  virtual void insertSelect(MachineBasicBlock &MBB,
417                            MachineBasicBlock::iterator I, DebugLoc DL,
418                            unsigned DstReg,
419                            const SmallVectorImpl<MachineOperand> &Cond,
420                            unsigned TrueReg, unsigned FalseReg) const {
421    llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
422  }
423
424  /// copyPhysReg - Emit instructions to copy a pair of physical registers.
425  virtual void copyPhysReg(MachineBasicBlock &MBB,
426                           MachineBasicBlock::iterator MI, DebugLoc DL,
427                           unsigned DestReg, unsigned SrcReg,
428                           bool KillSrc) const {
429    llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
430  }
431
432  /// storeRegToStackSlot - Store the specified register of the given register
433  /// class to the specified stack frame index. The store instruction is to be
434  /// added to the given machine basic block before the specified machine
435  /// instruction. If isKill is true, the register operand is the last use and
436  /// must be marked kill.
437  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
438                                   MachineBasicBlock::iterator MI,
439                                   unsigned SrcReg, bool isKill, int FrameIndex,
440                                   const TargetRegisterClass *RC,
441                                   const TargetRegisterInfo *TRI) const {
442    llvm_unreachable("Target didn't implement "
443                     "TargetInstrInfo::storeRegToStackSlot!");
444  }
445
446  /// loadRegFromStackSlot - Load the specified register of the given register
447  /// class from the specified stack frame index. The load instruction is to be
448  /// added to the given machine basic block before the specified machine
449  /// instruction.
450  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
451                                    MachineBasicBlock::iterator MI,
452                                    unsigned DestReg, int FrameIndex,
453                                    const TargetRegisterClass *RC,
454                                    const TargetRegisterInfo *TRI) const {
455    llvm_unreachable("Target didn't implement "
456                     "TargetInstrInfo::loadRegFromStackSlot!");
457  }
458
459  /// expandPostRAPseudo - This function is called for all pseudo instructions
460  /// that remain after register allocation. Many pseudo instructions are
461  /// created to help register allocation. This is the place to convert them
462  /// into real instructions. The target can edit MI in place, or it can insert
463  /// new instructions and erase MI. The function should return true if
464  /// anything was changed.
465  virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
466    return false;
467  }
468
469  /// emitFrameIndexDebugValue - Emit a target-dependent form of
470  /// DBG_VALUE encoding the address of a frame index.  Addresses would
471  /// normally be lowered the same way as other addresses on the target,
472  /// e.g. in load instructions.  For targets that do not support this
473  /// the debug info is simply lost.
474  /// If you add this for a target you should handle this DBG_VALUE in the
475  /// target-specific AsmPrinter code as well; you will probably get invalid
476  /// assembly output if you don't.
477  virtual MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
478                                                 int FrameIx,
479                                                 uint64_t Offset,
480                                                 const MDNode *MDPtr,
481                                                 DebugLoc dl) const {
482    return 0;
483  }
484
485  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
486  /// slot into the specified machine instruction for the specified operand(s).
487  /// If this is possible, a new instruction is returned with the specified
488  /// operand folded, otherwise NULL is returned.
489  /// The new instruction is inserted before MI, and the client is responsible
490  /// for removing the old instruction.
491  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
492                                  const SmallVectorImpl<unsigned> &Ops,
493                                  int FrameIndex) const;
494
495  /// foldMemoryOperand - Same as the previous version except it allows folding
496  /// of any load and store from / to any address, not just from a specific
497  /// stack slot.
498  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
499                                  const SmallVectorImpl<unsigned> &Ops,
500                                  MachineInstr* LoadMI) const;
501
502protected:
503  /// foldMemoryOperandImpl - Target-dependent implementation for
504  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
505  /// take care of adding a MachineMemOperand to the newly created instruction.
506  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
507                                          MachineInstr* MI,
508                                          const SmallVectorImpl<unsigned> &Ops,
509                                          int FrameIndex) const {
510    return 0;
511  }
512
513  /// foldMemoryOperandImpl - Target-dependent implementation for
514  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
515  /// take care of adding a MachineMemOperand to the newly created instruction.
516  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
517                                              MachineInstr* MI,
518                                          const SmallVectorImpl<unsigned> &Ops,
519                                              MachineInstr* LoadMI) const {
520    return 0;
521  }
522
523public:
524  /// canFoldMemoryOperand - Returns true for the specified load / store if
525  /// folding is possible.
526  virtual
527  bool canFoldMemoryOperand(const MachineInstr *MI,
528                            const SmallVectorImpl<unsigned> &Ops) const =0;
529
530  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
531  /// a store or a load and a store into two or more instruction. If this is
532  /// possible, returns true as well as the new instructions by reference.
533  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
534                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
535                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
536    return false;
537  }
538
539  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
540                                   SmallVectorImpl<SDNode*> &NewNodes) const {
541    return false;
542  }
543
544  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
545  /// instruction after load / store are unfolded from an instruction of the
546  /// specified opcode. It returns zero if the specified unfolding is not
547  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
548  /// index of the operand which will hold the register holding the loaded
549  /// value.
550  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
551                                      bool UnfoldLoad, bool UnfoldStore,
552                                      unsigned *LoadRegIndex = 0) const {
553    return 0;
554  }
555
556  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
557  /// to determine if two loads are loading from the same base address. It
558  /// should only return true if the base pointers are the same and the
559  /// only differences between the two addresses are the offset. It also returns
560  /// the offsets by reference.
561  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
562                                    int64_t &Offset1, int64_t &Offset2) const {
563    return false;
564  }
565
566  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
567  /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
568  /// be scheduled togther. On some targets if two loads are loading from
569  /// addresses in the same cache line, it's better if they are scheduled
570  /// together. This function takes two integers that represent the load offsets
571  /// from the common base address. It returns true if it decides it's desirable
572  /// to schedule the two loads together. "NumLoads" is the number of loads that
573  /// have already been scheduled after Load1.
574  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
575                                       int64_t Offset1, int64_t Offset2,
576                                       unsigned NumLoads) const {
577    return false;
578  }
579
580  /// ReverseBranchCondition - Reverses the branch condition of the specified
581  /// condition list, returning false on success and true if it cannot be
582  /// reversed.
583  virtual
584  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
585    return true;
586  }
587
588  /// insertNoop - Insert a noop into the instruction stream at the specified
589  /// point.
590  virtual void insertNoop(MachineBasicBlock &MBB,
591                          MachineBasicBlock::iterator MI) const;
592
593
594  /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
595  virtual void getNoopForMachoTarget(MCInst &NopInst) const {
596    // Default to just using 'nop' string.
597  }
598
599
600  /// isPredicated - Returns true if the instruction is already predicated.
601  ///
602  virtual bool isPredicated(const MachineInstr *MI) const {
603    return false;
604  }
605
606  /// isUnpredicatedTerminator - Returns true if the instruction is a
607  /// terminator instruction that has not been predicated.
608  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const = 0;
609
610  /// PredicateInstruction - Convert the instruction into a predicated
611  /// instruction. It returns true if the operation was successful.
612  virtual
613  bool PredicateInstruction(MachineInstr *MI,
614                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
615
616  /// SubsumesPredicate - Returns true if the first specified predicate
617  /// subsumes the second, e.g. GE subsumes GT.
618  virtual
619  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
620                         const SmallVectorImpl<MachineOperand> &Pred2) const {
621    return false;
622  }
623
624  /// DefinesPredicate - If the specified instruction defines any predicate
625  /// or condition code register(s) used for predication, returns true as well
626  /// as the definition predicate(s) by reference.
627  virtual bool DefinesPredicate(MachineInstr *MI,
628                                std::vector<MachineOperand> &Pred) const {
629    return false;
630  }
631
632  /// isPredicable - Return true if the specified instruction can be predicated.
633  /// By default, this returns true for every instruction with a
634  /// PredicateOperand.
635  virtual bool isPredicable(MachineInstr *MI) const {
636    return MI->getDesc().isPredicable();
637  }
638
639  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
640  /// instruction that defines the specified register class.
641  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
642    return true;
643  }
644
645  /// isSchedulingBoundary - Test if the given instruction should be
646  /// considered a scheduling boundary. This primarily includes labels and
647  /// terminators.
648  virtual bool isSchedulingBoundary(const MachineInstr *MI,
649                                    const MachineBasicBlock *MBB,
650                                    const MachineFunction &MF) const = 0;
651
652  /// Measure the specified inline asm to determine an approximation of its
653  /// length.
654  virtual unsigned getInlineAsmLength(const char *Str,
655                                      const MCAsmInfo &MAI) const;
656
657  /// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer to
658  /// use for this target when scheduling the machine instructions before
659  /// register allocation.
660  virtual ScheduleHazardRecognizer*
661  CreateTargetHazardRecognizer(const TargetMachine *TM,
662                               const ScheduleDAG *DAG) const = 0;
663
664  /// CreateTargetMIHazardRecognizer - Allocate and return a hazard recognizer
665  /// to use for this target when scheduling the machine instructions before
666  /// register allocation.
667  virtual ScheduleHazardRecognizer*
668  CreateTargetMIHazardRecognizer(const InstrItineraryData*,
669                                 const ScheduleDAG *DAG) const = 0;
670
671  /// CreateTargetPostRAHazardRecognizer - Allocate and return a hazard
672  /// recognizer to use for this target when scheduling the machine instructions
673  /// after register allocation.
674  virtual ScheduleHazardRecognizer*
675  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
676                                     const ScheduleDAG *DAG) const = 0;
677
678  /// analyzeCompare - For a comparison instruction, return the source registers
679  /// in SrcReg and SrcReg2 if having two register operands, and the value it
680  /// compares against in CmpValue. Return true if the comparison instruction
681  /// can be analyzed.
682  virtual bool analyzeCompare(const MachineInstr *MI,
683                              unsigned &SrcReg, unsigned &SrcReg2,
684                              int &Mask, int &Value) const {
685    return false;
686  }
687
688  /// optimizeCompareInstr - See if the comparison instruction can be converted
689  /// into something more efficient. E.g., on ARM most instructions can set the
690  /// flags register, obviating the need for a separate CMP.
691  virtual bool optimizeCompareInstr(MachineInstr *CmpInstr,
692                                    unsigned SrcReg, unsigned SrcReg2,
693                                    int Mask, int Value,
694                                    const MachineRegisterInfo *MRI) const {
695    return false;
696  }
697
698  /// optimizeLoadInstr - Try to remove the load by folding it to a register
699  /// operand at the use. We fold the load instructions if and only if the
700  /// def and use are in the same BB. We only look at one load and see
701  /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
702  /// defined by the load we are trying to fold. DefMI returns the machine
703  /// instruction that defines FoldAsLoadDefReg, and the function returns
704  /// the machine instruction generated due to folding.
705  virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI,
706                        const MachineRegisterInfo *MRI,
707                        unsigned &FoldAsLoadDefReg,
708                        MachineInstr *&DefMI) const {
709    return 0;
710  }
711
712  /// FoldImmediate - 'Reg' is known to be defined by a move immediate
713  /// instruction, try to fold the immediate into the use instruction.
714  virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
715                             unsigned Reg, MachineRegisterInfo *MRI) const {
716    return false;
717  }
718
719  /// getNumMicroOps - Return the number of u-operations the given machine
720  /// instruction will be decoded to on the target cpu. The itinerary's
721  /// IssueWidth is the number of microops that can be dispatched each
722  /// cycle. An instruction with zero microops takes no dispatch resources.
723  virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
724                                  const MachineInstr *MI) const = 0;
725
726  /// isZeroCost - Return true for pseudo instructions that don't consume any
727  /// machine resources in their current form. These are common cases that the
728  /// scheduler should consider free, rather than conservatively handling them
729  /// as instructions with no itinerary.
730  bool isZeroCost(unsigned Opcode) const {
731    return Opcode <= TargetOpcode::COPY;
732  }
733
734  virtual int getOperandLatency(const InstrItineraryData *ItinData,
735                                SDNode *DefNode, unsigned DefIdx,
736                                SDNode *UseNode, unsigned UseIdx) const = 0;
737
738  /// getOperandLatency - Compute and return the use operand latency of a given
739  /// pair of def and use.
740  /// In most cases, the static scheduling itinerary was enough to determine the
741  /// operand latency. But it may not be possible for instructions with variable
742  /// number of defs / uses.
743  ///
744  /// This is a raw interface to the itinerary that may be directly overriden by
745  /// a target. Use computeOperandLatency to get the best estimate of latency.
746  virtual int getOperandLatency(const InstrItineraryData *ItinData,
747                                const MachineInstr *DefMI, unsigned DefIdx,
748                                const MachineInstr *UseMI,
749                                unsigned UseIdx) const = 0;
750
751  /// computeOperandLatency - Compute and return the latency of the given data
752  /// dependent def and use when the operand indices are already known.
753  ///
754  /// FindMin may be set to get the minimum vs. expected latency.
755  unsigned computeOperandLatency(const InstrItineraryData *ItinData,
756                                 const MachineInstr *DefMI, unsigned DefIdx,
757                                 const MachineInstr *UseMI, unsigned UseIdx,
758                                 bool FindMin = false) const;
759
760  /// computeOperandLatency - Compute and return the latency of the given data
761  /// dependent def and use. DefMI must be a valid def. UseMI may be NULL for
762  /// an unknown use. If the subtarget allows, this may or may not need to call
763  /// getOperandLatency().
764  ///
765  /// FindMin may be set to get the minimum vs. expected latency. Minimum
766  /// latency is used for scheduling groups, while expected latency is for
767  /// instruction cost and critical path.
768  unsigned computeOperandLatency(const InstrItineraryData *ItinData,
769                                 const TargetRegisterInfo *TRI,
770                                 const MachineInstr *DefMI,
771                                 const MachineInstr *UseMI,
772                                 unsigned Reg, bool FindMin) const;
773
774  /// getOutputLatency - Compute and return the output dependency latency of a
775  /// a given pair of defs which both target the same register. This is usually
776  /// one.
777  virtual unsigned getOutputLatency(const InstrItineraryData *ItinData,
778                                    const MachineInstr *DefMI, unsigned DefIdx,
779                                    const MachineInstr *DepMI) const {
780    return 1;
781  }
782
783  /// getInstrLatency - Compute the instruction latency of a given instruction.
784  /// If the instruction has higher cost when predicated, it's returned via
785  /// PredCost.
786  virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
787                                   const MachineInstr *MI,
788                                   unsigned *PredCost = 0) const = 0;
789
790  virtual int getInstrLatency(const InstrItineraryData *ItinData,
791                              SDNode *Node) const = 0;
792
793  /// Return the default expected latency for a def based on it's opcode.
794  unsigned defaultDefLatency(const MCSchedModel *SchedModel,
795                             const MachineInstr *DefMI) const;
796
797  /// isHighLatencyDef - Return true if this opcode has high latency to its
798  /// result.
799  virtual bool isHighLatencyDef(int opc) const { return false; }
800
801  /// hasHighOperandLatency - Compute operand latency between a def of 'Reg'
802  /// and an use in the current loop, return true if the target considered
803  /// it 'high'. This is used by optimization passes such as machine LICM to
804  /// determine whether it makes sense to hoist an instruction out even in
805  /// high register pressure situation.
806  virtual
807  bool hasHighOperandLatency(const InstrItineraryData *ItinData,
808                             const MachineRegisterInfo *MRI,
809                             const MachineInstr *DefMI, unsigned DefIdx,
810                             const MachineInstr *UseMI, unsigned UseIdx) const {
811    return false;
812  }
813
814  /// hasLowDefLatency - Compute operand latency of a def of 'Reg', return true
815  /// if the target considered it 'low'.
816  virtual
817  bool hasLowDefLatency(const InstrItineraryData *ItinData,
818                        const MachineInstr *DefMI, unsigned DefIdx) const = 0;
819
820  /// verifyInstruction - Perform target specific instruction verification.
821  virtual
822  bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const {
823    return true;
824  }
825
826  /// getExecutionDomain - Return the current execution domain and bit mask of
827  /// possible domains for instruction.
828  ///
829  /// Some micro-architectures have multiple execution domains, and multiple
830  /// opcodes that perform the same operation in different domains.  For
831  /// example, the x86 architecture provides the por, orps, and orpd
832  /// instructions that all do the same thing.  There is a latency penalty if a
833  /// register is written in one domain and read in another.
834  ///
835  /// This function returns a pair (domain, mask) containing the execution
836  /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
837  /// function can be used to change the opcode to one of the domains in the
838  /// bit mask.  Instructions whose execution domain can't be changed should
839  /// return a 0 mask.
840  ///
841  /// The execution domain numbers don't have any special meaning except domain
842  /// 0 is used for instructions that are not associated with any interesting
843  /// execution domain.
844  ///
845  virtual std::pair<uint16_t, uint16_t>
846  getExecutionDomain(const MachineInstr *MI) const {
847    return std::make_pair(0, 0);
848  }
849
850  /// setExecutionDomain - Change the opcode of MI to execute in Domain.
851  ///
852  /// The bit (1 << Domain) must be set in the mask returned from
853  /// getExecutionDomain(MI).
854  ///
855  virtual void setExecutionDomain(MachineInstr *MI, unsigned Domain) const {}
856
857
858  /// getPartialRegUpdateClearance - Returns the preferred minimum clearance
859  /// before an instruction with an unwanted partial register update.
860  ///
861  /// Some instructions only write part of a register, and implicitly need to
862  /// read the other parts of the register.  This may cause unwanted stalls
863  /// preventing otherwise unrelated instructions from executing in parallel in
864  /// an out-of-order CPU.
865  ///
866  /// For example, the x86 instruction cvtsi2ss writes its result to bits
867  /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
868  /// the instruction needs to wait for the old value of the register to become
869  /// available:
870  ///
871  ///   addps %xmm1, %xmm0
872  ///   movaps %xmm0, (%rax)
873  ///   cvtsi2ss %rbx, %xmm0
874  ///
875  /// In the code above, the cvtsi2ss instruction needs to wait for the addps
876  /// instruction before it can issue, even though the high bits of %xmm0
877  /// probably aren't needed.
878  ///
879  /// This hook returns the preferred clearance before MI, measured in
880  /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
881  /// instructions before MI.  It should only return a positive value for
882  /// unwanted dependencies.  If the old bits of the defined register have
883  /// useful values, or if MI is determined to otherwise read the dependency,
884  /// the hook should return 0.
885  ///
886  /// The unwanted dependency may be handled by:
887  ///
888  /// 1. Allocating the same register for an MI def and use.  That makes the
889  ///    unwanted dependency identical to a required dependency.
890  ///
891  /// 2. Allocating a register for the def that has no defs in the previous N
892  ///    instructions.
893  ///
894  /// 3. Calling breakPartialRegDependency() with the same arguments.  This
895  ///    allows the target to insert a dependency breaking instruction.
896  ///
897  virtual unsigned
898  getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
899                               const TargetRegisterInfo *TRI) const {
900    // The default implementation returns 0 for no partial register dependency.
901    return 0;
902  }
903
904  /// breakPartialRegDependency - Insert a dependency-breaking instruction
905  /// before MI to eliminate an unwanted dependency on OpNum.
906  ///
907  /// If it wasn't possible to avoid a def in the last N instructions before MI
908  /// (see getPartialRegUpdateClearance), this hook will be called to break the
909  /// unwanted dependency.
910  ///
911  /// On x86, an xorps instruction can be used as a dependency breaker:
912  ///
913  ///   addps %xmm1, %xmm0
914  ///   movaps %xmm0, (%rax)
915  ///   xorps %xmm0, %xmm0
916  ///   cvtsi2ss %rbx, %xmm0
917  ///
918  /// An <imp-kill> operand should be added to MI if an instruction was
919  /// inserted.  This ties the instructions together in the post-ra scheduler.
920  ///
921  virtual void
922  breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
923                            const TargetRegisterInfo *TRI) const {}
924
925  /// Create machine specific model for scheduling.
926  virtual DFAPacketizer*
927    CreateTargetScheduleState(const TargetMachine*, const ScheduleDAG*) const {
928    return NULL;
929  }
930
931private:
932  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
933};
934
935/// TargetInstrInfoImpl - This is the default implementation of
936/// TargetInstrInfo, which just provides a couple of default implementations
937/// for various methods.  This separated out because it is implemented in
938/// libcodegen, not in libtarget.
939class TargetInstrInfoImpl : public TargetInstrInfo {
940protected:
941  TargetInstrInfoImpl(int CallFrameSetupOpcode = -1,
942                      int CallFrameDestroyOpcode = -1)
943    : TargetInstrInfo(CallFrameSetupOpcode, CallFrameDestroyOpcode) {}
944public:
945  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
946                                       MachineBasicBlock *NewDest) const;
947  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
948                                           bool NewMI = false) const;
949  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
950                                     unsigned &SrcOpIdx2) const;
951  virtual bool canFoldMemoryOperand(const MachineInstr *MI,
952                                    const SmallVectorImpl<unsigned> &Ops) const;
953  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
954                                    const MachineMemOperand *&MMO,
955                                    int &FrameIndex) const;
956  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
957                                   const MachineMemOperand *&MMO,
958                                   int &FrameIndex) const;
959  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
960  virtual bool PredicateInstruction(MachineInstr *MI,
961                            const SmallVectorImpl<MachineOperand> &Pred) const;
962  virtual void reMaterialize(MachineBasicBlock &MBB,
963                             MachineBasicBlock::iterator MI,
964                             unsigned DestReg, unsigned SubReg,
965                             const MachineInstr *Orig,
966                             const TargetRegisterInfo &TRI) const;
967  virtual MachineInstr *duplicate(MachineInstr *Orig,
968                                  MachineFunction &MF) const;
969  virtual bool produceSameValue(const MachineInstr *MI0,
970                                const MachineInstr *MI1,
971                                const MachineRegisterInfo *MRI) const;
972  virtual bool isSchedulingBoundary(const MachineInstr *MI,
973                                    const MachineBasicBlock *MBB,
974                                    const MachineFunction &MF) const;
975
976  virtual int getOperandLatency(const InstrItineraryData *ItinData,
977                                SDNode *DefNode, unsigned DefIdx,
978                                SDNode *UseNode, unsigned UseIdx) const;
979
980  virtual int getInstrLatency(const InstrItineraryData *ItinData,
981                              SDNode *Node) const;
982
983  virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
984                                  const MachineInstr *MI) const;
985
986  virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
987                                   const MachineInstr *MI,
988                                   unsigned *PredCost = 0) const;
989
990  virtual
991  bool hasLowDefLatency(const InstrItineraryData *ItinData,
992                        const MachineInstr *DefMI, unsigned DefIdx) const;
993
994  virtual int getOperandLatency(const InstrItineraryData *ItinData,
995                                const MachineInstr *DefMI, unsigned DefIdx,
996                                const MachineInstr *UseMI,
997                                unsigned UseIdx) const;
998
999  bool usePreRAHazardRecognizer() const;
1000
1001  virtual ScheduleHazardRecognizer *
1002  CreateTargetHazardRecognizer(const TargetMachine*, const ScheduleDAG*) const;
1003
1004  virtual ScheduleHazardRecognizer *
1005  CreateTargetMIHazardRecognizer(const InstrItineraryData*,
1006                                 const ScheduleDAG*) const;
1007
1008  virtual ScheduleHazardRecognizer *
1009  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
1010                                     const ScheduleDAG*) const;
1011};
1012
1013} // End llvm namespace
1014
1015#endif
1016