TargetInstrInfo.h revision 3cc3816cd4dc92fbb0a2de93bdebb68dfcea31d5
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instructions to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/CodeGen/MachineBasicBlock.h"
18#include "llvm/CodeGen/MachineFunction.h"
19#include "llvm/Support/DataTypes.h"
20#include <vector>
21#include <cassert>
22
23namespace llvm {
24
25class MachineInstr;
26class TargetMachine;
27class Value;
28class Type;
29class Instruction;
30class Constant;
31class Function;
32class MachineCodeForInstruction;
33class TargetRegisterClass;
34class LiveVariables;
35
36//---------------------------------------------------------------------------
37// Data types used to define information about a single machine instruction
38//---------------------------------------------------------------------------
39
40typedef short MachineOpCode;
41typedef unsigned InstrSchedClass;
42
43//---------------------------------------------------------------------------
44// struct TargetInstrDescriptor:
45//  Predefined information about each machine instruction.
46//  Designed to initialized statically.
47//
48
49const unsigned M_BRANCH_FLAG           = 1 << 0;
50const unsigned M_CALL_FLAG             = 1 << 1;
51const unsigned M_RET_FLAG              = 1 << 2;
52const unsigned M_BARRIER_FLAG          = 1 << 3;
53const unsigned M_DELAY_SLOT_FLAG       = 1 << 4;
54const unsigned M_LOAD_FLAG             = 1 << 5;
55const unsigned M_STORE_FLAG            = 1 << 6;
56
57// M_CONVERTIBLE_TO_3_ADDR - This is a 2-address instruction which can be
58// changed into a 3-address instruction if the first two operands cannot be
59// assigned to the same register.  The target must implement the
60// TargetInstrInfo::convertToThreeAddress method for this instruction.
61const unsigned M_CONVERTIBLE_TO_3_ADDR = 1 << 7;
62
63// This M_COMMUTABLE - is a 2- or 3-address instruction (of the form X = op Y,
64// Z), which produces the same result if Y and Z are exchanged.
65const unsigned M_COMMUTABLE            = 1 << 8;
66
67// M_TERMINATOR_FLAG - Is this instruction part of the terminator for a basic
68// block?  Typically this is things like return and branch instructions.
69// Various passes use this to insert code into the bottom of a basic block, but
70// before control flow occurs.
71const unsigned M_TERMINATOR_FLAG       = 1 << 9;
72
73// M_USES_CUSTOM_DAG_SCHED_INSERTION - Set if this instruction requires custom
74// insertion support when the DAG scheduler is inserting it into a machine basic
75// block.
76const unsigned M_USES_CUSTOM_DAG_SCHED_INSERTION = 1 << 10;
77
78// M_VARIABLE_OPS - Set if this instruction can have a variable number of extra
79// operands in addition to the minimum number operands specified.
80const unsigned M_VARIABLE_OPS = 1 << 11;
81
82// M_PREDICATED - Set if this instruction has a predicate that controls its
83// execution.
84const unsigned M_PREDICATED = 1 << 12;
85
86
87// Machine operand flags
88// M_LOOK_UP_PTR_REG_CLASS - Set if this operand is a pointer value and it
89// requires a callback to look up its register class.
90const unsigned M_LOOK_UP_PTR_REG_CLASS = 1 << 0;
91
92/// M_PREDICATE_OPERAND - Set if this is the first operand of a predicate
93/// operand that controls an M_PREDICATED instruction.
94const unsigned M_PREDICATE_OPERAND = 1 << 1;
95
96namespace TOI {
97  // Operand constraints: only "tied_to" for now.
98  enum OperandConstraint {
99    TIED_TO = 0  // Must be allocated the same register as.
100  };
101}
102
103/// TargetOperandInfo - This holds information about one operand of a machine
104/// instruction, indicating the register class for register operands, etc.
105///
106class TargetOperandInfo {
107public:
108  /// RegClass - This specifies the register class enumeration of the operand
109  /// if the operand is a register.  If not, this contains 0.
110  unsigned short RegClass;
111  unsigned short Flags;
112  /// Lower 16 bits are used to specify which constraints are set. The higher 16
113  /// bits are used to specify the value of constraints (4 bits each).
114  unsigned int Constraints;
115  /// Currently no other information.
116};
117
118
119class TargetInstrDescriptor {
120public:
121  MachineOpCode   Opcode;        // The opcode.
122  unsigned short  numOperands;   // Num of args (may be more if variable_ops).
123  const char *    Name;          // Assembly language mnemonic for the opcode.
124  InstrSchedClass schedClass;    // enum  identifying instr sched class
125  unsigned        Flags;         // flags identifying machine instr class
126  unsigned        TSFlags;       // Target Specific Flag values
127  const unsigned *ImplicitUses;  // Registers implicitly read by this instr
128  const unsigned *ImplicitDefs;  // Registers implicitly defined by this instr
129  const TargetOperandInfo *OpInfo; // 'numOperands' entries about operands.
130
131  /// getOperandConstraint - Returns the value of the specific constraint if
132  /// it is set. Returns -1 if it is not set.
133  int getOperandConstraint(unsigned OpNum,
134                           TOI::OperandConstraint Constraint) const {
135    assert(OpNum < numOperands && "Invalid operand # of TargetInstrInfo");
136    if (OpInfo[OpNum].Constraints & (1 << Constraint)) {
137      unsigned Pos = 16 + Constraint * 4;
138      return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
139    }
140    return -1;
141  }
142};
143
144
145//---------------------------------------------------------------------------
146///
147/// TargetInstrInfo - Interface to description of machine instructions
148///
149class TargetInstrInfo {
150  const TargetInstrDescriptor* desc;    // raw array to allow static init'n
151  unsigned NumOpcodes;                  // number of entries in the desc array
152  unsigned numRealOpCodes;              // number of non-dummy op codes
153
154  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
155  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
156public:
157  TargetInstrInfo(const TargetInstrDescriptor *desc, unsigned NumOpcodes);
158  virtual ~TargetInstrInfo();
159
160  // Invariant opcodes: All instruction sets have these as their low opcodes.
161  enum {
162    PHI = 0,
163    INLINEASM = 1
164  };
165
166  unsigned getNumOpcodes() const { return NumOpcodes; }
167
168  /// get - Return the machine instruction descriptor that corresponds to the
169  /// specified instruction opcode.
170  ///
171  const TargetInstrDescriptor& get(MachineOpCode Opcode) const {
172    assert((unsigned)Opcode < NumOpcodes);
173    return desc[Opcode];
174  }
175
176  const char *getName(MachineOpCode Opcode) const {
177    return get(Opcode).Name;
178  }
179
180  int getNumOperands(MachineOpCode Opcode) const {
181    return get(Opcode).numOperands;
182  }
183
184  InstrSchedClass getSchedClass(MachineOpCode Opcode) const {
185    return get(Opcode).schedClass;
186  }
187
188  const unsigned *getImplicitUses(MachineOpCode Opcode) const {
189    return get(Opcode).ImplicitUses;
190  }
191
192  const unsigned *getImplicitDefs(MachineOpCode Opcode) const {
193    return get(Opcode).ImplicitDefs;
194  }
195
196
197  //
198  // Query instruction class flags according to the machine-independent
199  // flags listed above.
200  //
201  bool isReturn(MachineOpCode Opcode) const {
202    return get(Opcode).Flags & M_RET_FLAG;
203  }
204
205  bool isPredicated(MachineOpCode Opcode) const {
206    return get(Opcode).Flags & M_PREDICATED;
207  }
208  bool isCommutableInstr(MachineOpCode Opcode) const {
209    return get(Opcode).Flags & M_COMMUTABLE;
210  }
211  bool isTerminatorInstr(unsigned Opcode) const {
212    return get(Opcode).Flags & M_TERMINATOR_FLAG;
213  }
214
215  bool isBranch(MachineOpCode Opcode) const {
216    return get(Opcode).Flags & M_BRANCH_FLAG;
217  }
218
219  /// isBarrier - Returns true if the specified instruction stops control flow
220  /// from executing the instruction immediately following it.  Examples include
221  /// unconditional branches and return instructions.
222  bool isBarrier(MachineOpCode Opcode) const {
223    return get(Opcode).Flags & M_BARRIER_FLAG;
224  }
225
226  bool isCall(MachineOpCode Opcode) const {
227    return get(Opcode).Flags & M_CALL_FLAG;
228  }
229  bool isLoad(MachineOpCode Opcode) const {
230    return get(Opcode).Flags & M_LOAD_FLAG;
231  }
232  bool isStore(MachineOpCode Opcode) const {
233    return get(Opcode).Flags & M_STORE_FLAG;
234  }
235
236  /// hasDelaySlot - Returns true if the specified instruction has a delay slot
237  /// which must be filled by the code generator.
238  bool hasDelaySlot(unsigned Opcode) const {
239    return get(Opcode).Flags & M_DELAY_SLOT_FLAG;
240  }
241
242  /// usesCustomDAGSchedInsertionHook - Return true if this instruction requires
243  /// custom insertion support when the DAG scheduler is inserting it into a
244  /// machine basic block.
245  bool usesCustomDAGSchedInsertionHook(unsigned Opcode) const {
246    return get(Opcode).Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION;
247  }
248
249  bool hasVariableOperands(MachineOpCode Opcode) const {
250    return get(Opcode).Flags & M_VARIABLE_OPS;
251  }
252
253  /// getOperandConstraint - Returns the value of the specific constraint if
254  /// it is set. Returns -1 if it is not set.
255  int getOperandConstraint(MachineOpCode Opcode, unsigned OpNum,
256                           TOI::OperandConstraint Constraint) const {
257    return get(Opcode).getOperandConstraint(OpNum, Constraint);
258  }
259
260  /// findTiedToSrcOperand - Returns the operand that is tied to the specified
261  /// dest operand. Returns -1 if there isn't one.
262  int findTiedToSrcOperand(const TargetInstrDescriptor *TID,
263                           unsigned OpNum) const;
264
265  /// getDWARF_LABELOpcode - Return the opcode of the target's DWARF_LABEL
266  /// instruction if it has one.  This is used by codegen passes that update
267  /// DWARF line number info as they modify the code.
268  virtual unsigned getDWARF_LABELOpcode() const {
269    return 0;
270  }
271
272  /// Return true if the instruction is a register to register move
273  /// and leave the source and dest operands in the passed parameters.
274  virtual bool isMoveInstr(const MachineInstr& MI,
275                           unsigned& sourceReg,
276                           unsigned& destReg) const {
277    return false;
278  }
279
280  /// isLoadFromStackSlot - If the specified machine instruction is a direct
281  /// load from a stack slot, return the virtual or physical register number of
282  /// the destination along with the FrameIndex of the loaded stack slot.  If
283  /// not, return 0.  This predicate must return 0 if the instruction has
284  /// any side effects other than loading from the stack slot.
285  virtual unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const{
286    return 0;
287  }
288
289  /// isStoreToStackSlot - If the specified machine instruction is a direct
290  /// store to a stack slot, return the virtual or physical register number of
291  /// the source reg along with the FrameIndex of the loaded stack slot.  If
292  /// not, return 0.  This predicate must return 0 if the instruction has
293  /// any side effects other than storing to the stack slot.
294  virtual unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const {
295    return 0;
296  }
297
298  /// convertToThreeAddress - This method must be implemented by targets that
299  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
300  /// may be able to convert a two-address instruction into one or moretrue
301  /// three-address instructions on demand.  This allows the X86 target (for
302  /// example) to convert ADD and SHL instructions into LEA instructions if they
303  /// would require register copies due to two-addressness.
304  ///
305  /// This method returns a null pointer if the transformation cannot be
306  /// performed, otherwise it returns the last new instruction.
307  ///
308  virtual MachineInstr *
309  convertToThreeAddress(MachineFunction::iterator &MFI,
310                   MachineBasicBlock::iterator &MBBI, LiveVariables &LV) const {
311    return 0;
312  }
313
314  /// commuteInstruction - If a target has any instructions that are commutable,
315  /// but require converting to a different instruction or making non-trivial
316  /// changes to commute them, this method can overloaded to do this.  The
317  /// default implementation of this method simply swaps the first two operands
318  /// of MI and returns it.
319  ///
320  /// If a target wants to make more aggressive changes, they can construct and
321  /// return a new machine instruction.  If an instruction cannot commute, it
322  /// can also return null.
323  ///
324  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
325
326  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
327  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
328  /// implemented for a target).  Upon success, this returns false and returns
329  /// with the following information in various cases:
330  ///
331  /// 1. If this block ends with no branches (it just falls through to its succ)
332  ///    just return false, leaving TBB/FBB null.
333  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
334  ///    the destination block.
335  /// 3. If this block ends with an conditional branch, it returns the 'true'
336  ///    destination in TBB, the 'false' destination in FBB, and a list of
337  ///    operands that evaluate the condition.  These operands can be passed to
338  ///    other TargetInstrInfo methods to create new branches.
339  ///
340  /// Note that RemoveBranch and InsertBranch must be implemented to support
341  /// cases where this method returns success.
342  ///
343  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
344                             MachineBasicBlock *&FBB,
345                             std::vector<MachineOperand> &Cond) const {
346    return true;
347  }
348
349  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
350  /// this is only invoked in cases where AnalyzeBranch returns success.
351  virtual void RemoveBranch(MachineBasicBlock &MBB) const {
352    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
353  }
354
355  /// InsertBranch - Insert a branch into the end of the specified
356  /// MachineBasicBlock.  This operands to this method are the same as those
357  /// returned by AnalyzeBranch.  This is invoked in cases where AnalyzeBranch
358  /// returns success and when an unconditional branch (TBB is non-null, FBB is
359  /// null, Cond is empty) needs to be inserted.
360  virtual void InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
361                            MachineBasicBlock *FBB,
362                            const std::vector<MachineOperand> &Cond) const {
363    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
364  }
365
366  /// BlockHasNoFallThrough - Return true if the specified block does not
367  /// fall-through into its successor block.  This is primarily used when a
368  /// branch is unanalyzable.  It is useful for things like unconditional
369  /// indirect branches (jump tables).
370  virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
371    return false;
372  }
373
374  /// ReverseBranchCondition - Reverses the branch condition of the specified
375  /// condition list, returning false on success and true if it cannot be
376  /// reversed.
377  virtual bool ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
378    return true;
379  }
380
381  /// insertNoop - Insert a noop into the instruction stream at the specified
382  /// point.
383  virtual void insertNoop(MachineBasicBlock &MBB,
384                          MachineBasicBlock::iterator MI) const {
385    assert(0 && "Target didn't implement insertNoop!");
386    abort();
387  }
388
389  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
390  /// values.
391  virtual const TargetRegisterClass *getPointerRegClass() const {
392    assert(0 && "Target didn't implement getPointerRegClass!");
393    abort();
394  }
395};
396
397} // End llvm namespace
398
399#endif
400