TargetInstrInfo.h revision 412cd2f81374865dfa708bef6d5b896ca10dece0
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/ADT/SmallSet.h"
18#include "llvm/MC/MCInstrInfo.h"
19#include "llvm/CodeGen/DFAPacketizer.h"
20#include "llvm/CodeGen/MachineFunction.h"
21
22namespace llvm {
23
24class InstrItineraryData;
25class LiveVariables;
26class MCAsmInfo;
27class MachineMemOperand;
28class MachineRegisterInfo;
29class MDNode;
30class MCInst;
31class MCSchedModel;
32class SDNode;
33class ScheduleHazardRecognizer;
34class SelectionDAG;
35class ScheduleDAG;
36class TargetRegisterClass;
37class TargetRegisterInfo;
38class BranchProbability;
39
40template<class T> class SmallVectorImpl;
41
42
43//---------------------------------------------------------------------------
44///
45/// TargetInstrInfo - Interface to description of machine instruction set
46///
47class TargetInstrInfo : public MCInstrInfo {
48  TargetInstrInfo(const TargetInstrInfo &) LLVM_DELETED_FUNCTION;
49  void operator=(const TargetInstrInfo &) LLVM_DELETED_FUNCTION;
50public:
51  TargetInstrInfo(int CFSetupOpcode = -1, int CFDestroyOpcode = -1)
52    : CallFrameSetupOpcode(CFSetupOpcode),
53      CallFrameDestroyOpcode(CFDestroyOpcode) {
54  }
55
56  virtual ~TargetInstrInfo();
57
58  /// getRegClass - Givem a machine instruction descriptor, returns the register
59  /// class constraint for OpNum, or NULL.
60  const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
61                                         unsigned OpNum,
62                                         const TargetRegisterInfo *TRI,
63                                         const MachineFunction &MF) const;
64
65  /// isTriviallyReMaterializable - Return true if the instruction is trivially
66  /// rematerializable, meaning it has no side effects and requires no operands
67  /// that aren't always available.
68  bool isTriviallyReMaterializable(const MachineInstr *MI,
69                                   AliasAnalysis *AA = 0) const {
70    return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
71           (MI->getDesc().isRematerializable() &&
72            (isReallyTriviallyReMaterializable(MI, AA) ||
73             isReallyTriviallyReMaterializableGeneric(MI, AA)));
74  }
75
76protected:
77  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
78  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
79  /// specify whether the instruction is actually trivially rematerializable,
80  /// taking into consideration its operands. This predicate must return false
81  /// if the instruction has any side effects other than producing a value, or
82  /// if it requres any address registers that are not always available.
83  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
84                                                 AliasAnalysis *AA) const {
85    return false;
86  }
87
88private:
89  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
90  /// for which the M_REMATERIALIZABLE flag is set and the target hook
91  /// isReallyTriviallyReMaterializable returns false, this function does
92  /// target-independent tests to determine if the instruction is really
93  /// trivially rematerializable.
94  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
95                                                AliasAnalysis *AA) const;
96
97public:
98  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
99  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
100  /// targets use pseudo instructions in order to abstract away the difference
101  /// between operating with a frame pointer and operating without, through the
102  /// use of these two instructions.
103  ///
104  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
105  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
106
107  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
108  /// extension instruction. That is, it's like a copy where it's legal for the
109  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
110  /// true, then it's expected the pre-extension value is available as a subreg
111  /// of the result register. This also returns the sub-register index in
112  /// SubIdx.
113  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
114                                     unsigned &SrcReg, unsigned &DstReg,
115                                     unsigned &SubIdx) const {
116    return false;
117  }
118
119  /// isLoadFromStackSlot - If the specified machine instruction is a direct
120  /// load from a stack slot, return the virtual or physical register number of
121  /// the destination along with the FrameIndex of the loaded stack slot.  If
122  /// not, return 0.  This predicate must return 0 if the instruction has
123  /// any side effects other than loading from the stack slot.
124  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
125                                       int &FrameIndex) const {
126    return 0;
127  }
128
129  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
130  /// stack locations as well.  This uses a heuristic so it isn't
131  /// reliable for correctness.
132  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
133                                             int &FrameIndex) const {
134    return 0;
135  }
136
137  /// hasLoadFromStackSlot - If the specified machine instruction has
138  /// a load from a stack slot, return true along with the FrameIndex
139  /// of the loaded stack slot and the machine mem operand containing
140  /// the reference.  If not, return false.  Unlike
141  /// isLoadFromStackSlot, this returns true for any instructions that
142  /// loads from the stack.  This is just a hint, as some cases may be
143  /// missed.
144  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
145                                    const MachineMemOperand *&MMO,
146                                    int &FrameIndex) const {
147    return 0;
148  }
149
150  /// isStoreToStackSlot - If the specified machine instruction is a direct
151  /// store to a stack slot, return the virtual or physical register number of
152  /// the source reg along with the FrameIndex of the loaded stack slot.  If
153  /// not, return 0.  This predicate must return 0 if the instruction has
154  /// any side effects other than storing to the stack slot.
155  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
156                                      int &FrameIndex) const {
157    return 0;
158  }
159
160  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
161  /// stack locations as well.  This uses a heuristic so it isn't
162  /// reliable for correctness.
163  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
164                                            int &FrameIndex) const {
165    return 0;
166  }
167
168  /// hasStoreToStackSlot - If the specified machine instruction has a
169  /// store to a stack slot, return true along with the FrameIndex of
170  /// the loaded stack slot and the machine mem operand containing the
171  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
172  /// this returns true for any instructions that stores to the
173  /// stack.  This is just a hint, as some cases may be missed.
174  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
175                                   const MachineMemOperand *&MMO,
176                                   int &FrameIndex) const {
177    return 0;
178  }
179
180  /// reMaterialize - Re-issue the specified 'original' instruction at the
181  /// specific location targeting a new destination register.
182  /// The register in Orig->getOperand(0).getReg() will be substituted by
183  /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
184  /// SubIdx.
185  virtual void reMaterialize(MachineBasicBlock &MBB,
186                             MachineBasicBlock::iterator MI,
187                             unsigned DestReg, unsigned SubIdx,
188                             const MachineInstr *Orig,
189                             const TargetRegisterInfo &TRI) const = 0;
190
191  /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
192  /// MachineFunction::CloneMachineInstr(), but the target may update operands
193  /// that are required to be unique.
194  ///
195  /// The instruction must be duplicable as indicated by isNotDuplicable().
196  virtual MachineInstr *duplicate(MachineInstr *Orig,
197                                  MachineFunction &MF) const = 0;
198
199  /// convertToThreeAddress - This method must be implemented by targets that
200  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
201  /// may be able to convert a two-address instruction into one or more true
202  /// three-address instructions on demand.  This allows the X86 target (for
203  /// example) to convert ADD and SHL instructions into LEA instructions if they
204  /// would require register copies due to two-addressness.
205  ///
206  /// This method returns a null pointer if the transformation cannot be
207  /// performed, otherwise it returns the last new instruction.
208  ///
209  virtual MachineInstr *
210  convertToThreeAddress(MachineFunction::iterator &MFI,
211                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
212    return 0;
213  }
214
215  /// commuteInstruction - If a target has any instructions that are
216  /// commutable but require converting to different instructions or making
217  /// non-trivial changes to commute them, this method can overloaded to do
218  /// that.  The default implementation simply swaps the commutable operands.
219  /// If NewMI is false, MI is modified in place and returned; otherwise, a
220  /// new machine instruction is created and returned.  Do not call this
221  /// method for a non-commutable instruction, but there may be some cases
222  /// where this method fails and returns null.
223  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
224                                           bool NewMI = false) const = 0;
225
226  /// findCommutedOpIndices - If specified MI is commutable, return the two
227  /// operand indices that would swap value. Return false if the instruction
228  /// is not in a form which this routine understands.
229  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
230                                     unsigned &SrcOpIdx2) const = 0;
231
232  /// produceSameValue - Return true if two machine instructions would produce
233  /// identical values. By default, this is only true when the two instructions
234  /// are deemed identical except for defs. If this function is called when the
235  /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
236  /// aggressive checks.
237  virtual bool produceSameValue(const MachineInstr *MI0,
238                                const MachineInstr *MI1,
239                                const MachineRegisterInfo *MRI = 0) const = 0;
240
241  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
242  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
243  /// implemented for a target).  Upon success, this returns false and returns
244  /// with the following information in various cases:
245  ///
246  /// 1. If this block ends with no branches (it just falls through to its succ)
247  ///    just return false, leaving TBB/FBB null.
248  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
249  ///    the destination block.
250  /// 3. If this block ends with a conditional branch and it falls through to a
251  ///    successor block, it sets TBB to be the branch destination block and a
252  ///    list of operands that evaluate the condition. These operands can be
253  ///    passed to other TargetInstrInfo methods to create new branches.
254  /// 4. If this block ends with a conditional branch followed by an
255  ///    unconditional branch, it returns the 'true' destination in TBB, the
256  ///    'false' destination in FBB, and a list of operands that evaluate the
257  ///    condition.  These operands can be passed to other TargetInstrInfo
258  ///    methods to create new branches.
259  ///
260  /// Note that RemoveBranch and InsertBranch must be implemented to support
261  /// cases where this method returns success.
262  ///
263  /// If AllowModify is true, then this routine is allowed to modify the basic
264  /// block (e.g. delete instructions after the unconditional branch).
265  ///
266  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
267                             MachineBasicBlock *&FBB,
268                             SmallVectorImpl<MachineOperand> &Cond,
269                             bool AllowModify = false) const {
270    return true;
271  }
272
273  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
274  /// This is only invoked in cases where AnalyzeBranch returns success. It
275  /// returns the number of instructions that were removed.
276  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
277    llvm_unreachable("Target didn't implement TargetInstrInfo::RemoveBranch!");
278  }
279
280  /// InsertBranch - Insert branch code into the end of the specified
281  /// MachineBasicBlock.  The operands to this method are the same as those
282  /// returned by AnalyzeBranch.  This is only invoked in cases where
283  /// AnalyzeBranch returns success. It returns the number of instructions
284  /// inserted.
285  ///
286  /// It is also invoked by tail merging to add unconditional branches in
287  /// cases where AnalyzeBranch doesn't apply because there was no original
288  /// branch to analyze.  At least this much must be implemented, else tail
289  /// merging needs to be disabled.
290  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
291                                MachineBasicBlock *FBB,
292                                const SmallVectorImpl<MachineOperand> &Cond,
293                                DebugLoc DL) const {
294    llvm_unreachable("Target didn't implement TargetInstrInfo::InsertBranch!");
295  }
296
297  /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
298  /// after it, replacing it with an unconditional branch to NewDest. This is
299  /// used by the tail merging pass.
300  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
301                                       MachineBasicBlock *NewDest) const = 0;
302
303  /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
304  /// block at the specified instruction (i.e. instruction would be the start
305  /// of a new basic block).
306  virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
307                                   MachineBasicBlock::iterator MBBI) const {
308    return true;
309  }
310
311  /// isProfitableToIfCvt - Return true if it's profitable to predicate
312  /// instructions with accumulated instruction latency of "NumCycles"
313  /// of the specified basic block, where the probability of the instructions
314  /// being executed is given by Probability, and Confidence is a measure
315  /// of our confidence that it will be properly predicted.
316  virtual
317  bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
318                           unsigned ExtraPredCycles,
319                           const BranchProbability &Probability) const {
320    return false;
321  }
322
323  /// isProfitableToIfCvt - Second variant of isProfitableToIfCvt, this one
324  /// checks for the case where two basic blocks from true and false path
325  /// of a if-then-else (diamond) are predicated on mutally exclusive
326  /// predicates, where the probability of the true path being taken is given
327  /// by Probability, and Confidence is a measure of our confidence that it
328  /// will be properly predicted.
329  virtual bool
330  isProfitableToIfCvt(MachineBasicBlock &TMBB,
331                      unsigned NumTCycles, unsigned ExtraTCycles,
332                      MachineBasicBlock &FMBB,
333                      unsigned NumFCycles, unsigned ExtraFCycles,
334                      const BranchProbability &Probability) const {
335    return false;
336  }
337
338  /// isProfitableToDupForIfCvt - Return true if it's profitable for
339  /// if-converter to duplicate instructions of specified accumulated
340  /// instruction latencies in the specified MBB to enable if-conversion.
341  /// The probability of the instructions being executed is given by
342  /// Probability, and Confidence is a measure of our confidence that it
343  /// will be properly predicted.
344  virtual bool
345  isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
346                            const BranchProbability &Probability) const {
347    return false;
348  }
349
350  /// isProfitableToUnpredicate - Return true if it's profitable to unpredicate
351  /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
352  /// exclusive predicates.
353  /// e.g.
354  ///   subeq  r0, r1, #1
355  ///   addne  r0, r1, #1
356  /// =>
357  ///   sub    r0, r1, #1
358  ///   addne  r0, r1, #1
359  ///
360  /// This may be profitable is conditional instructions are always executed.
361  virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
362                                         MachineBasicBlock &FMBB) const {
363    return false;
364  }
365
366  /// canInsertSelect - Return true if it is possible to insert a select
367  /// instruction that chooses between TrueReg and FalseReg based on the
368  /// condition code in Cond.
369  ///
370  /// When successful, also return the latency in cycles from TrueReg,
371  /// FalseReg, and Cond to the destination register. The Cond latency should
372  /// compensate for a conditional branch being removed. For example, if a
373  /// conditional branch has a 3 cycle latency from the condition code read,
374  /// and a cmov instruction has a 2 cycle latency from the condition code
375  /// read, CondCycles should be returned as -1.
376  ///
377  /// @param MBB         Block where select instruction would be inserted.
378  /// @param Cond        Condition returned by AnalyzeBranch.
379  /// @param TrueReg     Virtual register to select when Cond is true.
380  /// @param FalseReg    Virtual register to select when Cond is false.
381  /// @param CondCycles  Latency from Cond+Branch to select output.
382  /// @param TrueCycles  Latency from TrueReg to select output.
383  /// @param FalseCycles Latency from FalseReg to select output.
384  virtual bool canInsertSelect(const MachineBasicBlock &MBB,
385                               const SmallVectorImpl<MachineOperand> &Cond,
386                               unsigned TrueReg, unsigned FalseReg,
387                               int &CondCycles,
388                               int &TrueCycles, int &FalseCycles) const {
389    return false;
390  }
391
392  /// insertSelect - Insert a select instruction into MBB before I that will
393  /// copy TrueReg to DstReg when Cond is true, and FalseReg to DstReg when
394  /// Cond is false.
395  ///
396  /// This function can only be called after canInsertSelect() returned true.
397  /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
398  /// that the same flags or registers required by Cond are available at the
399  /// insertion point.
400  ///
401  /// @param MBB      Block where select instruction should be inserted.
402  /// @param I        Insertion point.
403  /// @param DL       Source location for debugging.
404  /// @param DstReg   Virtual register to be defined by select instruction.
405  /// @param Cond     Condition as computed by AnalyzeBranch.
406  /// @param TrueReg  Virtual register to copy when Cond is true.
407  /// @param FalseReg Virtual register to copy when Cons is false.
408  virtual void insertSelect(MachineBasicBlock &MBB,
409                            MachineBasicBlock::iterator I, DebugLoc DL,
410                            unsigned DstReg,
411                            const SmallVectorImpl<MachineOperand> &Cond,
412                            unsigned TrueReg, unsigned FalseReg) const {
413    llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
414  }
415
416  /// analyzeSelect - Analyze the given select instruction, returning true if
417  /// it cannot be understood. It is assumed that MI->isSelect() is true.
418  ///
419  /// When successful, return the controlling condition and the operands that
420  /// determine the true and false result values.
421  ///
422  ///   Result = SELECT Cond, TrueOp, FalseOp
423  ///
424  /// Some targets can optimize select instructions, for example by predicating
425  /// the instruction defining one of the operands. Such targets should set
426  /// Optimizable.
427  ///
428  /// @param         MI Select instruction to analyze.
429  /// @param Cond    Condition controlling the select.
430  /// @param TrueOp  Operand number of the value selected when Cond is true.
431  /// @param FalseOp Operand number of the value selected when Cond is false.
432  /// @param Optimizable Returned as true if MI is optimizable.
433  /// @returns False on success.
434  virtual bool analyzeSelect(const MachineInstr *MI,
435                             SmallVectorImpl<MachineOperand> &Cond,
436                             unsigned &TrueOp, unsigned &FalseOp,
437                             bool &Optimizable) const {
438    assert(MI && MI->isSelect() && "MI must be a select instruction");
439    return true;
440  }
441
442  /// optimizeSelect - Given a select instruction that was understood by
443  /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
444  /// merging it with one of its operands. Returns NULL on failure.
445  ///
446  /// When successful, returns the new select instruction. The client is
447  /// responsible for deleting MI.
448  ///
449  /// If both sides of the select can be optimized, PreferFalse is used to pick
450  /// a side.
451  ///
452  /// @param MI          Optimizable select instruction.
453  /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
454  /// @returns Optimized instruction or NULL.
455  virtual MachineInstr *optimizeSelect(MachineInstr *MI,
456                                       bool PreferFalse = false) const {
457    // This function must be implemented if Optimizable is ever set.
458    llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
459  }
460
461  /// copyPhysReg - Emit instructions to copy a pair of physical registers.
462  ///
463  /// This function should support copies within any legal register class as
464  /// well as any cross-class copies created during instruction selection.
465  ///
466  /// The source and destination registers may overlap, which may require a
467  /// careful implementation when multiple copy instructions are required for
468  /// large registers. See for example the ARM target.
469  virtual void copyPhysReg(MachineBasicBlock &MBB,
470                           MachineBasicBlock::iterator MI, DebugLoc DL,
471                           unsigned DestReg, unsigned SrcReg,
472                           bool KillSrc) const {
473    llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
474  }
475
476  /// storeRegToStackSlot - Store the specified register of the given register
477  /// class to the specified stack frame index. The store instruction is to be
478  /// added to the given machine basic block before the specified machine
479  /// instruction. If isKill is true, the register operand is the last use and
480  /// must be marked kill.
481  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
482                                   MachineBasicBlock::iterator MI,
483                                   unsigned SrcReg, bool isKill, int FrameIndex,
484                                   const TargetRegisterClass *RC,
485                                   const TargetRegisterInfo *TRI) const {
486    llvm_unreachable("Target didn't implement "
487                     "TargetInstrInfo::storeRegToStackSlot!");
488  }
489
490  /// loadRegFromStackSlot - Load the specified register of the given register
491  /// class from the specified stack frame index. The load instruction is to be
492  /// added to the given machine basic block before the specified machine
493  /// instruction.
494  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
495                                    MachineBasicBlock::iterator MI,
496                                    unsigned DestReg, int FrameIndex,
497                                    const TargetRegisterClass *RC,
498                                    const TargetRegisterInfo *TRI) const {
499    llvm_unreachable("Target didn't implement "
500                     "TargetInstrInfo::loadRegFromStackSlot!");
501  }
502
503  /// expandPostRAPseudo - This function is called for all pseudo instructions
504  /// that remain after register allocation. Many pseudo instructions are
505  /// created to help register allocation. This is the place to convert them
506  /// into real instructions. The target can edit MI in place, or it can insert
507  /// new instructions and erase MI. The function should return true if
508  /// anything was changed.
509  virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
510    return false;
511  }
512
513  /// emitFrameIndexDebugValue - Emit a target-dependent form of
514  /// DBG_VALUE encoding the address of a frame index.  Addresses would
515  /// normally be lowered the same way as other addresses on the target,
516  /// e.g. in load instructions.  For targets that do not support this
517  /// the debug info is simply lost.
518  /// If you add this for a target you should handle this DBG_VALUE in the
519  /// target-specific AsmPrinter code as well; you will probably get invalid
520  /// assembly output if you don't.
521  virtual MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
522                                                 int FrameIx,
523                                                 uint64_t Offset,
524                                                 const MDNode *MDPtr,
525                                                 DebugLoc dl) const {
526    return 0;
527  }
528
529  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
530  /// slot into the specified machine instruction for the specified operand(s).
531  /// If this is possible, a new instruction is returned with the specified
532  /// operand folded, otherwise NULL is returned.
533  /// The new instruction is inserted before MI, and the client is responsible
534  /// for removing the old instruction.
535  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
536                                  const SmallVectorImpl<unsigned> &Ops,
537                                  int FrameIndex) const;
538
539  /// foldMemoryOperand - Same as the previous version except it allows folding
540  /// of any load and store from / to any address, not just from a specific
541  /// stack slot.
542  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
543                                  const SmallVectorImpl<unsigned> &Ops,
544                                  MachineInstr* LoadMI) const;
545
546protected:
547  /// foldMemoryOperandImpl - Target-dependent implementation for
548  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
549  /// take care of adding a MachineMemOperand to the newly created instruction.
550  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
551                                          MachineInstr* MI,
552                                          const SmallVectorImpl<unsigned> &Ops,
553                                          int FrameIndex) const {
554    return 0;
555  }
556
557  /// foldMemoryOperandImpl - Target-dependent implementation for
558  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
559  /// take care of adding a MachineMemOperand to the newly created instruction.
560  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
561                                              MachineInstr* MI,
562                                          const SmallVectorImpl<unsigned> &Ops,
563                                              MachineInstr* LoadMI) const {
564    return 0;
565  }
566
567public:
568  /// canFoldMemoryOperand - Returns true for the specified load / store if
569  /// folding is possible.
570  virtual
571  bool canFoldMemoryOperand(const MachineInstr *MI,
572                            const SmallVectorImpl<unsigned> &Ops) const =0;
573
574  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
575  /// a store or a load and a store into two or more instruction. If this is
576  /// possible, returns true as well as the new instructions by reference.
577  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
578                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
579                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
580    return false;
581  }
582
583  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
584                                   SmallVectorImpl<SDNode*> &NewNodes) const {
585    return false;
586  }
587
588  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
589  /// instruction after load / store are unfolded from an instruction of the
590  /// specified opcode. It returns zero if the specified unfolding is not
591  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
592  /// index of the operand which will hold the register holding the loaded
593  /// value.
594  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
595                                      bool UnfoldLoad, bool UnfoldStore,
596                                      unsigned *LoadRegIndex = 0) const {
597    return 0;
598  }
599
600  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
601  /// to determine if two loads are loading from the same base address. It
602  /// should only return true if the base pointers are the same and the
603  /// only differences between the two addresses are the offset. It also returns
604  /// the offsets by reference.
605  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
606                                    int64_t &Offset1, int64_t &Offset2) const {
607    return false;
608  }
609
610  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
611  /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
612  /// be scheduled togther. On some targets if two loads are loading from
613  /// addresses in the same cache line, it's better if they are scheduled
614  /// together. This function takes two integers that represent the load offsets
615  /// from the common base address. It returns true if it decides it's desirable
616  /// to schedule the two loads together. "NumLoads" is the number of loads that
617  /// have already been scheduled after Load1.
618  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
619                                       int64_t Offset1, int64_t Offset2,
620                                       unsigned NumLoads) const {
621    return false;
622  }
623
624  /// ReverseBranchCondition - Reverses the branch condition of the specified
625  /// condition list, returning false on success and true if it cannot be
626  /// reversed.
627  virtual
628  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
629    return true;
630  }
631
632  /// insertNoop - Insert a noop into the instruction stream at the specified
633  /// point.
634  virtual void insertNoop(MachineBasicBlock &MBB,
635                          MachineBasicBlock::iterator MI) const;
636
637
638  /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
639  virtual void getNoopForMachoTarget(MCInst &NopInst) const {
640    // Default to just using 'nop' string.
641  }
642
643
644  /// isPredicated - Returns true if the instruction is already predicated.
645  ///
646  virtual bool isPredicated(const MachineInstr *MI) const {
647    return false;
648  }
649
650  /// isUnpredicatedTerminator - Returns true if the instruction is a
651  /// terminator instruction that has not been predicated.
652  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const = 0;
653
654  /// PredicateInstruction - Convert the instruction into a predicated
655  /// instruction. It returns true if the operation was successful.
656  virtual
657  bool PredicateInstruction(MachineInstr *MI,
658                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
659
660  /// SubsumesPredicate - Returns true if the first specified predicate
661  /// subsumes the second, e.g. GE subsumes GT.
662  virtual
663  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
664                         const SmallVectorImpl<MachineOperand> &Pred2) const {
665    return false;
666  }
667
668  /// DefinesPredicate - If the specified instruction defines any predicate
669  /// or condition code register(s) used for predication, returns true as well
670  /// as the definition predicate(s) by reference.
671  virtual bool DefinesPredicate(MachineInstr *MI,
672                                std::vector<MachineOperand> &Pred) const {
673    return false;
674  }
675
676  /// isPredicable - Return true if the specified instruction can be predicated.
677  /// By default, this returns true for every instruction with a
678  /// PredicateOperand.
679  virtual bool isPredicable(MachineInstr *MI) const {
680    return MI->getDesc().isPredicable();
681  }
682
683  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
684  /// instruction that defines the specified register class.
685  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
686    return true;
687  }
688
689  /// isSchedulingBoundary - Test if the given instruction should be
690  /// considered a scheduling boundary. This primarily includes labels and
691  /// terminators.
692  virtual bool isSchedulingBoundary(const MachineInstr *MI,
693                                    const MachineBasicBlock *MBB,
694                                    const MachineFunction &MF) const = 0;
695
696  /// Measure the specified inline asm to determine an approximation of its
697  /// length.
698  virtual unsigned getInlineAsmLength(const char *Str,
699                                      const MCAsmInfo &MAI) const;
700
701  /// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer to
702  /// use for this target when scheduling the machine instructions before
703  /// register allocation.
704  virtual ScheduleHazardRecognizer*
705  CreateTargetHazardRecognizer(const TargetMachine *TM,
706                               const ScheduleDAG *DAG) const = 0;
707
708  /// CreateTargetMIHazardRecognizer - Allocate and return a hazard recognizer
709  /// to use for this target when scheduling the machine instructions before
710  /// register allocation.
711  virtual ScheduleHazardRecognizer*
712  CreateTargetMIHazardRecognizer(const InstrItineraryData*,
713                                 const ScheduleDAG *DAG) const = 0;
714
715  /// CreateTargetPostRAHazardRecognizer - Allocate and return a hazard
716  /// recognizer to use for this target when scheduling the machine instructions
717  /// after register allocation.
718  virtual ScheduleHazardRecognizer*
719  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
720                                     const ScheduleDAG *DAG) const = 0;
721
722  /// analyzeCompare - For a comparison instruction, return the source registers
723  /// in SrcReg and SrcReg2 if having two register operands, and the value it
724  /// compares against in CmpValue. Return true if the comparison instruction
725  /// can be analyzed.
726  virtual bool analyzeCompare(const MachineInstr *MI,
727                              unsigned &SrcReg, unsigned &SrcReg2,
728                              int &Mask, int &Value) const {
729    return false;
730  }
731
732  /// optimizeCompareInstr - See if the comparison instruction can be converted
733  /// into something more efficient. E.g., on ARM most instructions can set the
734  /// flags register, obviating the need for a separate CMP.
735  virtual bool optimizeCompareInstr(MachineInstr *CmpInstr,
736                                    unsigned SrcReg, unsigned SrcReg2,
737                                    int Mask, int Value,
738                                    const MachineRegisterInfo *MRI) const {
739    return false;
740  }
741
742  /// optimizeLoadInstr - Try to remove the load by folding it to a register
743  /// operand at the use. We fold the load instructions if and only if the
744  /// def and use are in the same BB. We only look at one load and see
745  /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
746  /// defined by the load we are trying to fold. DefMI returns the machine
747  /// instruction that defines FoldAsLoadDefReg, and the function returns
748  /// the machine instruction generated due to folding.
749  virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI,
750                        const MachineRegisterInfo *MRI,
751                        unsigned &FoldAsLoadDefReg,
752                        MachineInstr *&DefMI) const {
753    return 0;
754  }
755
756  /// FoldImmediate - 'Reg' is known to be defined by a move immediate
757  /// instruction, try to fold the immediate into the use instruction.
758  virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
759                             unsigned Reg, MachineRegisterInfo *MRI) const {
760    return false;
761  }
762
763  /// getNumMicroOps - Return the number of u-operations the given machine
764  /// instruction will be decoded to on the target cpu. The itinerary's
765  /// IssueWidth is the number of microops that can be dispatched each
766  /// cycle. An instruction with zero microops takes no dispatch resources.
767  virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
768                                  const MachineInstr *MI) const = 0;
769
770  /// isZeroCost - Return true for pseudo instructions that don't consume any
771  /// machine resources in their current form. These are common cases that the
772  /// scheduler should consider free, rather than conservatively handling them
773  /// as instructions with no itinerary.
774  bool isZeroCost(unsigned Opcode) const {
775    return Opcode <= TargetOpcode::COPY;
776  }
777
778  virtual int getOperandLatency(const InstrItineraryData *ItinData,
779                                SDNode *DefNode, unsigned DefIdx,
780                                SDNode *UseNode, unsigned UseIdx) const = 0;
781
782  /// getOperandLatency - Compute and return the use operand latency of a given
783  /// pair of def and use.
784  /// In most cases, the static scheduling itinerary was enough to determine the
785  /// operand latency. But it may not be possible for instructions with variable
786  /// number of defs / uses.
787  ///
788  /// This is a raw interface to the itinerary that may be directly overriden by
789  /// a target. Use computeOperandLatency to get the best estimate of latency.
790  virtual int getOperandLatency(const InstrItineraryData *ItinData,
791                                const MachineInstr *DefMI, unsigned DefIdx,
792                                const MachineInstr *UseMI,
793                                unsigned UseIdx) const = 0;
794
795  /// computeOperandLatency - Compute and return the latency of the given data
796  /// dependent def and use when the operand indices are already known.
797  ///
798  /// FindMin may be set to get the minimum vs. expected latency.
799  unsigned computeOperandLatency(const InstrItineraryData *ItinData,
800                                 const MachineInstr *DefMI, unsigned DefIdx,
801                                 const MachineInstr *UseMI, unsigned UseIdx,
802                                 bool FindMin = false) const;
803
804  /// getInstrLatency - Compute the instruction latency of a given instruction.
805  /// If the instruction has higher cost when predicated, it's returned via
806  /// PredCost.
807  virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
808                                   const MachineInstr *MI,
809                                   unsigned *PredCost = 0) const = 0;
810
811  virtual int getInstrLatency(const InstrItineraryData *ItinData,
812                              SDNode *Node) const = 0;
813
814  /// Return the default expected latency for a def based on it's opcode.
815  unsigned defaultDefLatency(const MCSchedModel *SchedModel,
816                             const MachineInstr *DefMI) const;
817
818  int computeDefOperandLatency(const InstrItineraryData *ItinData,
819                               const MachineInstr *DefMI, bool FindMin) const;
820
821  /// isHighLatencyDef - Return true if this opcode has high latency to its
822  /// result.
823  virtual bool isHighLatencyDef(int opc) const { return false; }
824
825  /// hasHighOperandLatency - Compute operand latency between a def of 'Reg'
826  /// and an use in the current loop, return true if the target considered
827  /// it 'high'. This is used by optimization passes such as machine LICM to
828  /// determine whether it makes sense to hoist an instruction out even in
829  /// high register pressure situation.
830  virtual
831  bool hasHighOperandLatency(const InstrItineraryData *ItinData,
832                             const MachineRegisterInfo *MRI,
833                             const MachineInstr *DefMI, unsigned DefIdx,
834                             const MachineInstr *UseMI, unsigned UseIdx) const {
835    return false;
836  }
837
838  /// hasLowDefLatency - Compute operand latency of a def of 'Reg', return true
839  /// if the target considered it 'low'.
840  virtual
841  bool hasLowDefLatency(const InstrItineraryData *ItinData,
842                        const MachineInstr *DefMI, unsigned DefIdx) const = 0;
843
844  /// verifyInstruction - Perform target specific instruction verification.
845  virtual
846  bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const {
847    return true;
848  }
849
850  /// getExecutionDomain - Return the current execution domain and bit mask of
851  /// possible domains for instruction.
852  ///
853  /// Some micro-architectures have multiple execution domains, and multiple
854  /// opcodes that perform the same operation in different domains.  For
855  /// example, the x86 architecture provides the por, orps, and orpd
856  /// instructions that all do the same thing.  There is a latency penalty if a
857  /// register is written in one domain and read in another.
858  ///
859  /// This function returns a pair (domain, mask) containing the execution
860  /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
861  /// function can be used to change the opcode to one of the domains in the
862  /// bit mask.  Instructions whose execution domain can't be changed should
863  /// return a 0 mask.
864  ///
865  /// The execution domain numbers don't have any special meaning except domain
866  /// 0 is used for instructions that are not associated with any interesting
867  /// execution domain.
868  ///
869  virtual std::pair<uint16_t, uint16_t>
870  getExecutionDomain(const MachineInstr *MI) const {
871    return std::make_pair(0, 0);
872  }
873
874  /// setExecutionDomain - Change the opcode of MI to execute in Domain.
875  ///
876  /// The bit (1 << Domain) must be set in the mask returned from
877  /// getExecutionDomain(MI).
878  ///
879  virtual void setExecutionDomain(MachineInstr *MI, unsigned Domain) const {}
880
881
882  /// getPartialRegUpdateClearance - Returns the preferred minimum clearance
883  /// before an instruction with an unwanted partial register update.
884  ///
885  /// Some instructions only write part of a register, and implicitly need to
886  /// read the other parts of the register.  This may cause unwanted stalls
887  /// preventing otherwise unrelated instructions from executing in parallel in
888  /// an out-of-order CPU.
889  ///
890  /// For example, the x86 instruction cvtsi2ss writes its result to bits
891  /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
892  /// the instruction needs to wait for the old value of the register to become
893  /// available:
894  ///
895  ///   addps %xmm1, %xmm0
896  ///   movaps %xmm0, (%rax)
897  ///   cvtsi2ss %rbx, %xmm0
898  ///
899  /// In the code above, the cvtsi2ss instruction needs to wait for the addps
900  /// instruction before it can issue, even though the high bits of %xmm0
901  /// probably aren't needed.
902  ///
903  /// This hook returns the preferred clearance before MI, measured in
904  /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
905  /// instructions before MI.  It should only return a positive value for
906  /// unwanted dependencies.  If the old bits of the defined register have
907  /// useful values, or if MI is determined to otherwise read the dependency,
908  /// the hook should return 0.
909  ///
910  /// The unwanted dependency may be handled by:
911  ///
912  /// 1. Allocating the same register for an MI def and use.  That makes the
913  ///    unwanted dependency identical to a required dependency.
914  ///
915  /// 2. Allocating a register for the def that has no defs in the previous N
916  ///    instructions.
917  ///
918  /// 3. Calling breakPartialRegDependency() with the same arguments.  This
919  ///    allows the target to insert a dependency breaking instruction.
920  ///
921  virtual unsigned
922  getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
923                               const TargetRegisterInfo *TRI) const {
924    // The default implementation returns 0 for no partial register dependency.
925    return 0;
926  }
927
928  /// breakPartialRegDependency - Insert a dependency-breaking instruction
929  /// before MI to eliminate an unwanted dependency on OpNum.
930  ///
931  /// If it wasn't possible to avoid a def in the last N instructions before MI
932  /// (see getPartialRegUpdateClearance), this hook will be called to break the
933  /// unwanted dependency.
934  ///
935  /// On x86, an xorps instruction can be used as a dependency breaker:
936  ///
937  ///   addps %xmm1, %xmm0
938  ///   movaps %xmm0, (%rax)
939  ///   xorps %xmm0, %xmm0
940  ///   cvtsi2ss %rbx, %xmm0
941  ///
942  /// An <imp-kill> operand should be added to MI if an instruction was
943  /// inserted.  This ties the instructions together in the post-ra scheduler.
944  ///
945  virtual void
946  breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
947                            const TargetRegisterInfo *TRI) const {}
948
949  /// Create machine specific model for scheduling.
950  virtual DFAPacketizer*
951    CreateTargetScheduleState(const TargetMachine*, const ScheduleDAG*) const {
952    return NULL;
953  }
954
955private:
956  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
957};
958
959/// TargetInstrInfoImpl - This is the default implementation of
960/// TargetInstrInfo, which just provides a couple of default implementations
961/// for various methods.  This separated out because it is implemented in
962/// libcodegen, not in libtarget.
963class TargetInstrInfoImpl : public TargetInstrInfo {
964protected:
965  TargetInstrInfoImpl(int CallFrameSetupOpcode = -1,
966                      int CallFrameDestroyOpcode = -1)
967    : TargetInstrInfo(CallFrameSetupOpcode, CallFrameDestroyOpcode) {}
968public:
969  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
970                                       MachineBasicBlock *NewDest) const;
971  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
972                                           bool NewMI = false) const;
973  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
974                                     unsigned &SrcOpIdx2) const;
975  virtual bool canFoldMemoryOperand(const MachineInstr *MI,
976                                    const SmallVectorImpl<unsigned> &Ops) const;
977  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
978                                    const MachineMemOperand *&MMO,
979                                    int &FrameIndex) const;
980  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
981                                   const MachineMemOperand *&MMO,
982                                   int &FrameIndex) const;
983  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
984  virtual bool PredicateInstruction(MachineInstr *MI,
985                            const SmallVectorImpl<MachineOperand> &Pred) const;
986  virtual void reMaterialize(MachineBasicBlock &MBB,
987                             MachineBasicBlock::iterator MI,
988                             unsigned DestReg, unsigned SubReg,
989                             const MachineInstr *Orig,
990                             const TargetRegisterInfo &TRI) const;
991  virtual MachineInstr *duplicate(MachineInstr *Orig,
992                                  MachineFunction &MF) const;
993  virtual bool produceSameValue(const MachineInstr *MI0,
994                                const MachineInstr *MI1,
995                                const MachineRegisterInfo *MRI) const;
996  virtual bool isSchedulingBoundary(const MachineInstr *MI,
997                                    const MachineBasicBlock *MBB,
998                                    const MachineFunction &MF) const;
999
1000  virtual int getOperandLatency(const InstrItineraryData *ItinData,
1001                                SDNode *DefNode, unsigned DefIdx,
1002                                SDNode *UseNode, unsigned UseIdx) const;
1003
1004  virtual int getInstrLatency(const InstrItineraryData *ItinData,
1005                              SDNode *Node) const;
1006
1007  virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
1008                                  const MachineInstr *MI) const;
1009
1010  virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1011                                   const MachineInstr *MI,
1012                                   unsigned *PredCost = 0) const;
1013
1014  virtual
1015  bool hasLowDefLatency(const InstrItineraryData *ItinData,
1016                        const MachineInstr *DefMI, unsigned DefIdx) const;
1017
1018  virtual int getOperandLatency(const InstrItineraryData *ItinData,
1019                                const MachineInstr *DefMI, unsigned DefIdx,
1020                                const MachineInstr *UseMI,
1021                                unsigned UseIdx) const;
1022
1023  bool usePreRAHazardRecognizer() const;
1024
1025  virtual ScheduleHazardRecognizer *
1026  CreateTargetHazardRecognizer(const TargetMachine*, const ScheduleDAG*) const;
1027
1028  virtual ScheduleHazardRecognizer *
1029  CreateTargetMIHazardRecognizer(const InstrItineraryData*,
1030                                 const ScheduleDAG*) const;
1031
1032  virtual ScheduleHazardRecognizer *
1033  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
1034                                     const ScheduleDAG*) const;
1035};
1036
1037} // End llvm namespace
1038
1039#endif
1040