TargetInstrInfo.h revision 44eb65cf58e3ab9b5621ce72256d1621a18aeed7
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/Target/TargetInstrDesc.h"
18#include "llvm/CodeGen/MachineFunction.h"
19
20namespace llvm {
21
22class TargetRegisterClass;
23class LiveVariables;
24class CalleeSavedInfo;
25class SDNode;
26class SelectionDAG;
27
28template<class T> class SmallVectorImpl;
29
30
31//---------------------------------------------------------------------------
32///
33/// TargetInstrInfo - Interface to description of machine instruction set
34///
35class TargetInstrInfo {
36  const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
37  unsigned NumOpcodes;                // Number of entries in the desc array
38
39  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
40  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
41public:
42  TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
43  virtual ~TargetInstrInfo();
44
45  // Invariant opcodes: All instruction sets have these as their low opcodes.
46  enum {
47    PHI = 0,
48    INLINEASM = 1,
49    DBG_LABEL = 2,
50    EH_LABEL = 3,
51    GC_LABEL = 4,
52    DECLARE = 5,
53    EXTRACT_SUBREG = 6,
54    INSERT_SUBREG = 7,
55    IMPLICIT_DEF = 8,
56    SUBREG_TO_REG = 9
57  };
58
59  unsigned getNumOpcodes() const { return NumOpcodes; }
60
61  /// get - Return the machine instruction descriptor that corresponds to the
62  /// specified instruction opcode.
63  ///
64  const TargetInstrDesc &get(unsigned Opcode) const {
65    assert(Opcode < NumOpcodes && "Invalid opcode!");
66    return Descriptors[Opcode];
67  }
68
69  /// isTriviallyReMaterializable - Return true if the instruction is trivially
70  /// rematerializable, meaning it has no side effects and requires no operands
71  /// that aren't always available.
72  bool isTriviallyReMaterializable(const MachineInstr *MI) const {
73    return MI->getDesc().isRematerializable() &&
74           isReallyTriviallyReMaterializable(MI);
75  }
76
77protected:
78  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
79  /// which the M_REMATERIALIZABLE flag is set, this function tests whether the
80  /// instruction itself is actually trivially rematerializable, considering
81  /// its operands.  This is used for targets that have instructions that are
82  /// only trivially rematerializable for specific uses.  This predicate must
83  /// return false if the instruction has any side effects other than
84  /// producing a value, or if it requres any address registers that are not
85  /// always available.
86  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
87    return true;
88  }
89
90public:
91  /// Return true if the instruction is a register to register move
92  /// and leave the source and dest operands in the passed parameters.
93  virtual bool isMoveInstr(const MachineInstr& MI,
94                           unsigned& sourceReg,
95                           unsigned& destReg) const {
96    return false;
97  }
98
99  /// isLoadFromStackSlot - If the specified machine instruction is a direct
100  /// load from a stack slot, return the virtual or physical register number of
101  /// the destination along with the FrameIndex of the loaded stack slot.  If
102  /// not, return 0.  This predicate must return 0 if the instruction has
103  /// any side effects other than loading from the stack slot.
104  virtual unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const{
105    return 0;
106  }
107
108  /// isStoreToStackSlot - If the specified machine instruction is a direct
109  /// store to a stack slot, return the virtual or physical register number of
110  /// the source reg along with the FrameIndex of the loaded stack slot.  If
111  /// not, return 0.  This predicate must return 0 if the instruction has
112  /// any side effects other than storing to the stack slot.
113  virtual unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const {
114    return 0;
115  }
116
117  /// reMaterialize - Re-issue the specified 'original' instruction at the
118  /// specific location targeting a new destination register.
119  virtual void reMaterialize(MachineBasicBlock &MBB,
120                             MachineBasicBlock::iterator MI,
121                             unsigned DestReg,
122                             const MachineInstr *Orig) const = 0;
123
124  /// isInvariantLoad - Return true if the specified instruction (which is
125  /// marked mayLoad) is loading from a location whose value is invariant across
126  /// the function.  For example, loading a value from the constant pool or from
127  /// from the argument area of a function if it does not change.  This should
128  /// only return true of *all* loads the instruction does are invariant (if it
129  /// does multiple loads).
130  virtual bool isInvariantLoad(MachineInstr *MI) const {
131    return false;
132  }
133
134  /// convertToThreeAddress - This method must be implemented by targets that
135  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
136  /// may be able to convert a two-address instruction into one or more true
137  /// three-address instructions on demand.  This allows the X86 target (for
138  /// example) to convert ADD and SHL instructions into LEA instructions if they
139  /// would require register copies due to two-addressness.
140  ///
141  /// This method returns a null pointer if the transformation cannot be
142  /// performed, otherwise it returns the last new instruction.
143  ///
144  virtual MachineInstr *
145  convertToThreeAddress(MachineFunction::iterator &MFI,
146                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
147    return 0;
148  }
149
150  /// commuteInstruction - If a target has any instructions that are commutable,
151  /// but require converting to a different instruction or making non-trivial
152  /// changes to commute them, this method can overloaded to do this.  The
153  /// default implementation of this method simply swaps the first two operands
154  /// of MI and returns it.
155  ///
156  /// If a target wants to make more aggressive changes, they can construct and
157  /// return a new machine instruction.  If an instruction cannot commute, it
158  /// can also return null.
159  ///
160  /// If NewMI is true, then a new machine instruction must be created.
161  ///
162  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
163                                           bool NewMI = false) const = 0;
164
165  /// CommuteChangesDestination - Return true if commuting the specified
166  /// instruction will also changes the destination operand. Also return the
167  /// current operand index of the would be new destination register by
168  /// reference. This can happen when the commutable instruction is also a
169  /// two-address instruction.
170  virtual bool CommuteChangesDestination(MachineInstr *MI,
171                                         unsigned &OpIdx) const = 0;
172
173  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
174  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
175  /// implemented for a target).  Upon success, this returns false and returns
176  /// with the following information in various cases:
177  ///
178  /// 1. If this block ends with no branches (it just falls through to its succ)
179  ///    just return false, leaving TBB/FBB null.
180  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
181  ///    the destination block.
182  /// 3. If this block ends with an conditional branch and it falls through to
183  ///    an successor block, it sets TBB to be the branch destination block and a
184  ///    list of operands that evaluate the condition. These
185  ///    operands can be passed to other TargetInstrInfo methods to create new
186  ///    branches.
187  /// 4. If this block ends with an conditional branch and an unconditional
188  ///    block, it returns the 'true' destination in TBB, the 'false' destination
189  ///    in FBB, and a list of operands that evaluate the condition. These
190  ///    operands can be passed to other TargetInstrInfo methods to create new
191  ///    branches.
192  ///
193  /// Note that RemoveBranch and InsertBranch must be implemented to support
194  /// cases where this method returns success.
195  ///
196  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
197                             MachineBasicBlock *&FBB,
198                             SmallVectorImpl<MachineOperand> &Cond) const {
199    return true;
200  }
201
202  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
203  /// this is only invoked in cases where AnalyzeBranch returns success. It
204  /// returns the number of instructions that were removed.
205  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
206    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
207    return 0;
208  }
209
210  /// InsertBranch - Insert a branch into the end of the specified
211  /// MachineBasicBlock.  This operands to this method are the same as those
212  /// returned by AnalyzeBranch.  This is invoked in cases where AnalyzeBranch
213  /// returns success and when an unconditional branch (TBB is non-null, FBB is
214  /// null, Cond is empty) needs to be inserted. It returns the number of
215  /// instructions inserted.
216  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
217                            MachineBasicBlock *FBB,
218                            const SmallVectorImpl<MachineOperand> &Cond) const {
219    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
220    return 0;
221  }
222
223  /// copyRegToReg - Add a copy between a pair of registers
224  virtual void copyRegToReg(MachineBasicBlock &MBB,
225                            MachineBasicBlock::iterator MI,
226                            unsigned DestReg, unsigned SrcReg,
227                            const TargetRegisterClass *DestRC,
228                            const TargetRegisterClass *SrcRC) const {
229    assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!");
230  }
231
232  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
233                                   MachineBasicBlock::iterator MI,
234                                   unsigned SrcReg, bool isKill, int FrameIndex,
235                                   const TargetRegisterClass *RC) const {
236    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
237  }
238
239  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
240                              SmallVectorImpl<MachineOperand> &Addr,
241                              const TargetRegisterClass *RC,
242                              SmallVectorImpl<MachineInstr*> &NewMIs) const {
243    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToAddr!");
244  }
245
246  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
247                                    MachineBasicBlock::iterator MI,
248                                    unsigned DestReg, int FrameIndex,
249                                    const TargetRegisterClass *RC) const {
250    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
251  }
252
253  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
254                               SmallVectorImpl<MachineOperand> &Addr,
255                               const TargetRegisterClass *RC,
256                               SmallVectorImpl<MachineInstr*> &NewMIs) const {
257    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromAddr!");
258  }
259
260  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
261  /// saved registers and returns true if it isn't possible / profitable to do
262  /// so by issuing a series of store instructions via
263  /// storeRegToStackSlot(). Returns false otherwise.
264  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
265                                         MachineBasicBlock::iterator MI,
266                                const std::vector<CalleeSavedInfo> &CSI) const {
267    return false;
268  }
269
270  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
271  /// saved registers and returns true if it isn't possible / profitable to do
272  /// so by issuing a series of load instructions via loadRegToStackSlot().
273  /// Returns false otherwise.
274  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
275                                           MachineBasicBlock::iterator MI,
276                                const std::vector<CalleeSavedInfo> &CSI) const {
277    return false;
278  }
279
280  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
281  /// slot into the specified machine instruction for the specified operand(s).
282  /// If this is possible, a new instruction is returned with the specified
283  /// operand folded, otherwise NULL is returned. The client is responsible for
284  /// removing the old instruction and adding the new one in the instruction
285  /// stream.
286  virtual MachineInstr* foldMemoryOperand(MachineFunction &MF,
287                                          MachineInstr* MI,
288                                          SmallVectorImpl<unsigned> &Ops,
289                                          int FrameIndex) const {
290    return 0;
291  }
292
293  /// foldMemoryOperand - Same as the previous version except it allows folding
294  /// of any load and store from / to any address, not just from a specific
295  /// stack slot.
296  virtual MachineInstr* foldMemoryOperand(MachineFunction &MF,
297                                          MachineInstr* MI,
298                                          SmallVectorImpl<unsigned> &Ops,
299                                          MachineInstr* LoadMI) const {
300    return 0;
301  }
302
303  /// canFoldMemoryOperand - Returns true if the specified load / store is
304  /// folding is possible.
305  virtual
306  bool canFoldMemoryOperand(MachineInstr *MI,
307                            SmallVectorImpl<unsigned> &Ops) const{
308    return false;
309  }
310
311  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
312  /// a store or a load and a store into two or more instruction. If this is
313  /// possible, returns true as well as the new instructions by reference.
314  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
315                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
316                                  SmallVectorImpl<MachineInstr*> &NewMIs) const{
317    return false;
318  }
319
320  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
321                                   SmallVectorImpl<SDNode*> &NewNodes) const {
322    return false;
323  }
324
325  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
326  /// instruction after load / store are unfolded from an instruction of the
327  /// specified opcode. It returns zero if the specified unfolding is not
328  /// possible.
329  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
330                                      bool UnfoldLoad, bool UnfoldStore) const {
331    return 0;
332  }
333
334  /// BlockHasNoFallThrough - Return true if the specified block does not
335  /// fall-through into its successor block.  This is primarily used when a
336  /// branch is unanalyzable.  It is useful for things like unconditional
337  /// indirect branches (jump tables).
338  virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
339    return false;
340  }
341
342  /// ReverseBranchCondition - Reverses the branch condition of the specified
343  /// condition list, returning false on success and true if it cannot be
344  /// reversed.
345  virtual
346  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
347    return true;
348  }
349
350  /// insertNoop - Insert a noop into the instruction stream at the specified
351  /// point.
352  virtual void insertNoop(MachineBasicBlock &MBB,
353                          MachineBasicBlock::iterator MI) const {
354    assert(0 && "Target didn't implement insertNoop!");
355    abort();
356  }
357
358  /// isPredicated - Returns true if the instruction is already predicated.
359  ///
360  virtual bool isPredicated(const MachineInstr *MI) const {
361    return false;
362  }
363
364  /// isUnpredicatedTerminator - Returns true if the instruction is a
365  /// terminator instruction that has not been predicated.
366  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
367
368  /// PredicateInstruction - Convert the instruction into a predicated
369  /// instruction. It returns true if the operation was successful.
370  virtual
371  bool PredicateInstruction(MachineInstr *MI,
372                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
373
374  /// SubsumesPredicate - Returns true if the first specified predicate
375  /// subsumes the second, e.g. GE subsumes GT.
376  virtual
377  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
378                         const SmallVectorImpl<MachineOperand> &Pred2) const {
379    return false;
380  }
381
382  /// DefinesPredicate - If the specified instruction defines any predicate
383  /// or condition code register(s) used for predication, returns true as well
384  /// as the definition predicate(s) by reference.
385  virtual bool DefinesPredicate(MachineInstr *MI,
386                                std::vector<MachineOperand> &Pred) const {
387    return false;
388  }
389
390  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
391  /// values.
392  virtual const TargetRegisterClass *getPointerRegClass() const {
393    assert(0 && "Target didn't implement getPointerRegClass!");
394    abort();
395    return 0; // Must return a value in order to compile with VS 2005
396  }
397
398  /// GetInstSize - Returns the size of the specified Instruction.
399  ///
400  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const {
401    assert(0 && "Target didn't implement TargetInstrInfo::GetInstSize!");
402    return 0;
403  }
404
405  /// GetFunctionSizeInBytes - Returns the size of the specified MachineFunction.
406  ///
407  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const = 0;
408
409};
410
411/// TargetInstrInfoImpl - This is the default implementation of
412/// TargetInstrInfo, which just provides a couple of default implementations
413/// for various methods.  This separated out because it is implemented in
414/// libcodegen, not in libtarget.
415class TargetInstrInfoImpl : public TargetInstrInfo {
416protected:
417  TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
418  : TargetInstrInfo(desc, NumOpcodes) {}
419public:
420  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
421                                           bool NewMI = false) const;
422  virtual bool CommuteChangesDestination(MachineInstr *MI,
423                                         unsigned &OpIdx) const;
424  virtual bool PredicateInstruction(MachineInstr *MI,
425                            const SmallVectorImpl<MachineOperand> &Pred) const;
426  virtual void reMaterialize(MachineBasicBlock &MBB,
427                             MachineBasicBlock::iterator MI,
428                             unsigned DestReg,
429                             const MachineInstr *Orig) const;
430  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const;
431};
432
433} // End llvm namespace
434
435#endif
436