TargetInstrInfo.h revision 4c5fe2d3ed4043c34f3305c081297ba4ca26ddc2
1//===-- llvm/Target/InstrInfo.h - Target Instruction Information --*-C++-*-==//
2//
3// This file describes the target machine instructions to the code generator.
4//
5//===---------------------------------------------------------------------===//
6
7#ifndef LLVM_TARGET_MACHINEINSTRINFO_H
8#define LLVM_TARGET_MACHINEINSTRINFO_H
9
10#include "llvm/Target/TargetMachine.h"
11#include "llvm/Support/DataTypes.h"
12#include <vector>
13
14class MachineInstrDescriptor;
15class TmpInstruction;
16class MachineInstr;
17class Value;
18class Instruction;
19
20
21typedef int InstrSchedClass;
22
23// Global variable holding an array of descriptors for machine instructions.
24// The actual object needs to be created separately for each target machine.
25// This variable is initialized and reset by class MachineInstrInfo.
26//
27// FIXME: This should be a property of the target so that more than one target
28// at a time can be active...
29//
30extern const MachineInstrDescriptor *TargetInstrDescriptors;
31
32
33//---------------------------------------------------------------------------
34// struct MachineInstrDescriptor:
35//	Predefined information about each machine instruction.
36//	Designed to initialized statically.
37//
38// class MachineInstructionInfo
39//	Interface to description of machine instructions
40//
41//---------------------------------------------------------------------------
42
43
44const unsigned int	M_NOP_FLAG		= 1;
45const unsigned int	M_BRANCH_FLAG		= 1 << 1;
46const unsigned int	M_CALL_FLAG		= 1 << 2;
47const unsigned int	M_RET_FLAG		= 1 << 3;
48const unsigned int	M_ARITH_FLAG		= 1 << 4;
49const unsigned int	M_CC_FLAG		= 1 << 6;
50const unsigned int	M_LOGICAL_FLAG		= 1 << 6;
51const unsigned int	M_INT_FLAG		= 1 << 7;
52const unsigned int	M_FLOAT_FLAG		= 1 << 8;
53const unsigned int	M_CONDL_FLAG		= 1 << 9;
54const unsigned int	M_LOAD_FLAG		= 1 << 10;
55const unsigned int	M_PREFETCH_FLAG		= 1 << 11;
56const unsigned int	M_STORE_FLAG		= 1 << 12;
57const unsigned int	M_DUMMY_PHI_FLAG	= 1 << 13;
58const unsigned int      M_PSEUDO_FLAG           = 1 << 14;
59
60
61struct MachineInstrDescriptor {
62  string	  opCodeString;  // Assembly language mnemonic for the opcode.
63  int		  numOperands;   // Number of args; -1 if variable #args
64  int		  resultPos;     // Position of the result; -1 if no result
65  unsigned int	  maxImmedConst; // Largest +ve constant in IMMMED field or 0.
66  bool		  immedIsSignExtended; // Is IMMED field sign-extended? If so,
67				 //   smallest -ve value is -(maxImmedConst+1).
68  unsigned int    numDelaySlots; // Number of delay slots after instruction
69  unsigned int    latency;	 // Latency in machine cycles
70  InstrSchedClass schedClass;	 // enum  identifying instr sched class
71  unsigned int	  iclass;	 // flags identifying machine instr class
72};
73
74
75class MachineInstrInfo : public NonCopyableV {
76public:
77  const TargetMachine& target;
78
79protected:
80  const MachineInstrDescriptor* desc;	// raw array to allow static init'n
81  unsigned int descSize;		// number of entries in the desc array
82  unsigned int numRealOpCodes;		// number of non-dummy op codes
83
84public:
85  MachineInstrInfo(const TargetMachine& tgt,
86                   const MachineInstrDescriptor *desc, unsigned descSize,
87		   unsigned numRealOpCodes);
88  virtual ~MachineInstrInfo();
89
90  unsigned getNumRealOpCodes()  const { return numRealOpCodes; }
91  unsigned getNumTotalOpCodes() const { return descSize; }
92
93  const MachineInstrDescriptor& getDescriptor(MachineOpCode opCode) const {
94    assert(opCode >= 0 && opCode < (int)descSize);
95    return desc[opCode];
96  }
97
98  int getNumOperands(MachineOpCode opCode) const {
99    return getDescriptor(opCode).numOperands;
100  }
101
102  int getResultPos(MachineOpCode opCode) const {
103    return getDescriptor(opCode).resultPos;
104  }
105
106  unsigned getNumDelaySlots(MachineOpCode opCode) const {
107    return getDescriptor(opCode).numDelaySlots;
108  }
109
110  InstrSchedClass getSchedClass(MachineOpCode opCode) const {
111    return getDescriptor(opCode).schedClass;
112  }
113
114  //
115  // Query instruction class flags according to the machine-independent
116  // flags listed above.
117  //
118  unsigned int getIClass(MachineOpCode opCode) const {
119    return getDescriptor(opCode).iclass;
120  }
121  bool isNop(MachineOpCode opCode) const {
122    return getDescriptor(opCode).iclass & M_NOP_FLAG;
123  }
124  bool isBranch(MachineOpCode opCode) const {
125    return getDescriptor(opCode).iclass & M_BRANCH_FLAG;
126  }
127  bool isCall(MachineOpCode opCode) const {
128    return getDescriptor(opCode).iclass & M_CALL_FLAG;
129  }
130  bool isReturn(MachineOpCode opCode) const {
131    return getDescriptor(opCode).iclass & M_RET_FLAG;
132  }
133  bool isControlFlow(MachineOpCode opCode) const {
134    return getDescriptor(opCode).iclass & M_BRANCH_FLAG
135        || getDescriptor(opCode).iclass & M_CALL_FLAG
136        || getDescriptor(opCode).iclass & M_RET_FLAG;
137  }
138  bool isArith(MachineOpCode opCode) const {
139    return getDescriptor(opCode).iclass & M_RET_FLAG;
140  }
141  bool isCCInstr(MachineOpCode opCode) const {
142    return getDescriptor(opCode).iclass & M_CC_FLAG;
143  }
144  bool isLogical(MachineOpCode opCode) const {
145    return getDescriptor(opCode).iclass & M_LOGICAL_FLAG;
146  }
147  bool isIntInstr(MachineOpCode opCode) const {
148    return getDescriptor(opCode).iclass & M_INT_FLAG;
149  }
150  bool isFloatInstr(MachineOpCode opCode) const {
151    return getDescriptor(opCode).iclass & M_FLOAT_FLAG;
152  }
153  bool isConditional(MachineOpCode opCode) const {
154    return getDescriptor(opCode).iclass & M_CONDL_FLAG;
155  }
156  bool isLoad(MachineOpCode opCode) const {
157    return getDescriptor(opCode).iclass & M_LOAD_FLAG;
158  }
159  bool isPrefetch(MachineOpCode opCode) const {
160    return getDescriptor(opCode).iclass & M_PREFETCH_FLAG;
161  }
162  bool isLoadOrPrefetch(MachineOpCode opCode) const {
163    return getDescriptor(opCode).iclass & M_LOAD_FLAG
164        || getDescriptor(opCode).iclass & M_PREFETCH_FLAG;
165  }
166  bool isStore(MachineOpCode opCode) const {
167    return getDescriptor(opCode).iclass & M_STORE_FLAG;
168  }
169  bool isMemoryAccess(MachineOpCode opCode) const {
170    return getDescriptor(opCode).iclass & M_LOAD_FLAG
171        || getDescriptor(opCode).iclass & M_PREFETCH_FLAG
172        || getDescriptor(opCode).iclass & M_STORE_FLAG;
173  }
174  bool isDummyPhiInstr(const MachineOpCode opCode) const {
175    return getDescriptor(opCode).iclass & M_DUMMY_PHI_FLAG;
176  }
177
178
179  // delete this later *******
180  bool isPhi(const MachineOpCode opCode) const
181  { return isDummyPhiInstr(opCode); }
182
183  bool isPseudoInstr(const MachineOpCode opCode) const {
184    return getDescriptor(opCode).iclass & M_PSEUDO_FLAG;
185  }
186
187
188
189  // Check if an instruction can be issued before its operands are ready,
190  // or if a subsequent instruction that uses its result can be issued
191  // before the results are ready.
192  // Default to true since most instructions on many architectures allow this.
193  //
194  virtual bool hasOperandInterlock(MachineOpCode opCode) const {
195    return true;
196  }
197
198  virtual bool hasResultInterlock(MachineOpCode opCode) const {
199    return true;
200  }
201
202  //
203  // Latencies for individual instructions and instruction pairs
204  //
205  virtual int minLatency(MachineOpCode opCode) const {
206    return getDescriptor(opCode).latency;
207  }
208
209  virtual int maxLatency(MachineOpCode opCode) const {
210    return getDescriptor(opCode).latency;
211  }
212
213  //
214  // Which operand holds an immediate constant?  Returns -1 if none
215  //
216  virtual int getImmmedConstantPos(MachineOpCode opCode) const {
217    return -1; // immediate position is machine specific, so say -1 == "none"
218  }
219
220  // Check if the specified constant fits in the immediate field
221  // of this machine instruction
222  //
223  virtual bool constantFitsInImmedField(MachineOpCode opCode,
224					int64_t intValue) const;
225
226  // Return the largest +ve constant that can be held in the IMMMED field
227  // of this machine instruction.
228  // isSignExtended is set to true if the value is sign-extended before use
229  // (this is true for all immediate fields in SPARC instructions).
230  // Return 0 if the instruction has no IMMED field.
231  //
232  virtual uint64_t maxImmedConstant(MachineOpCode opCode,
233				    bool &isSignExtended) const {
234    isSignExtended = getDescriptor(opCode).immedIsSignExtended;
235    return getDescriptor(opCode).maxImmedConst;
236  }
237
238  //-------------------------------------------------------------------------
239  // Code generation support for creating individual machine instructions
240  //-------------------------------------------------------------------------
241
242  // Create an instruction sequence to put the constant `val' into
243  // the virtual register `dest'.  `val' may be a ConstPoolVal or a
244  // GlobalValue, viz., the constant address of a global variable or function.
245  // The generated instructions are returned in `minstrVec'.
246  // Any temp. registers (TmpInstruction) created are returned in `tempVec'.
247  //
248  virtual void  CreateCodeToLoadConst(Value* val,
249                                      Instruction* dest,
250                                      vector<MachineInstr*>& minstrVec,
251                                      vector<TmpInstruction*>& temps) const =0;
252
253  // Create an instruction sequence to copy an integer value `val'
254  // to a floating point value `dest' by copying to memory and back.
255  // val must be an integral type.  dest must be a Float or Double.
256  // The generated instructions are returned in `minstrVec'.
257  // Any temp. registers (TmpInstruction) created are returned in `tempVec'.
258  //
259  virtual void  CreateCodeToCopyIntToFloat(Method* method,
260                                           Value* val,
261                                           Instruction* dest,
262                                           vector<MachineInstr*>& minstrVec,
263                                           vector<TmpInstruction*>& tempVec,
264                                           TargetMachine& target) const = 0;
265
266  // Similarly, create an instruction sequence to copy an FP value
267  // `val' to an integer value `dest' by copying to memory and back.
268  // See the previous function for information about return values.
269  //
270  virtual void  CreateCodeToCopyFloatToInt(Method* method,
271                                           Value* val,
272                                           Instruction* dest,
273                                           vector<MachineInstr*>& minstrVec,
274                                           vector<TmpInstruction*>& tempVec,
275                                           TargetMachine& target) const = 0;
276
277
278  // create copy instruction(s)
279  virtual void
280  CreateCopyInstructionsByType(const TargetMachine& target,
281			       Value* src,
282			       Instruction* dest,
283			       vector<MachineInstr*>& minstrVec) const = 0;
284
285
286
287};
288
289#endif
290