TargetInstrInfo.h revision 5fa01b9c7a33ecd0e006427ae2a44170cf60422d
1//===-- llvm/Target/MachineInstrInstrInfo.h - Instruction Infor ---*-C++-*-===//
2//
3// This file describes the target machine instructions to the code generator.
4//
5//===----------------------------------------------------------------------===//
6
7#ifndef LLVM_TARGET_MACHINEINSTRINFO_H
8#define LLVM_TARGET_MACHINEINSTRINFO_H
9
10#include "Support/DataTypes.h"
11#include <vector>
12
13class MachineInstrDescriptor;
14class MachineInstr;
15class TargetMachine;
16class Value;
17class Instruction;
18class Constant;
19class Function;
20class MachineCodeForInstruction;
21
22//---------------------------------------------------------------------------
23// Data types used to define information about a single machine instruction
24//---------------------------------------------------------------------------
25
26typedef int MachineOpCode;
27typedef unsigned InstrSchedClass;
28
29const MachineOpCode INVALID_MACHINE_OPCODE = -1;
30
31
32//---------------------------------------------------------------------------
33// struct MachineInstrDescriptor:
34//	Predefined information about each machine instruction.
35//	Designed to initialized statically.
36//
37// class MachineInstructionInfo
38//	Interface to description of machine instructions
39//
40//---------------------------------------------------------------------------
41
42const unsigned	M_NOP_FLAG		= 1 << 0;
43const unsigned	M_BRANCH_FLAG		= 1 << 1;
44const unsigned	M_CALL_FLAG		= 1 << 2;
45const unsigned	M_RET_FLAG		= 1 << 3;
46const unsigned	M_ARITH_FLAG		= 1 << 4;
47const unsigned	M_CC_FLAG		= 1 << 6;
48const unsigned	M_LOGICAL_FLAG		= 1 << 6;
49const unsigned	M_INT_FLAG		= 1 << 7;
50const unsigned	M_FLOAT_FLAG		= 1 << 8;
51const unsigned	M_CONDL_FLAG		= 1 << 9;
52const unsigned	M_LOAD_FLAG		= 1 << 10;
53const unsigned	M_PREFETCH_FLAG		= 1 << 11;
54const unsigned	M_STORE_FLAG		= 1 << 12;
55const unsigned	M_DUMMY_PHI_FLAG	= 1 << 13;
56const unsigned  M_PSEUDO_FLAG           = 1 << 14;       // Pseudo instruction
57// 3-addr instructions which really work like 2-addr ones, eg. X86 add/sub
58const unsigned  M_2_ADDR_FLAG           = 1 << 15;
59
60struct MachineInstrDescriptor {
61  const char *    Name;          // Assembly language mnemonic for the opcode.
62  int             numOperands;   // Number of args; -1 if variable #args
63  int             resultPos;     // Position of the result; -1 if no result
64  unsigned        maxImmedConst; // Largest +ve constant in IMMMED field or 0.
65  bool	          immedIsSignExtended; // Is IMMED field sign-extended? If so,
66                                 //   smallest -ve value is -(maxImmedConst+1).
67  unsigned        numDelaySlots; // Number of delay slots after instruction
68  unsigned        latency;       // Latency in machine cycles
69  InstrSchedClass schedClass;    // enum  identifying instr sched class
70  unsigned        Flags;         // flags identifying machine instr class
71  unsigned        TSFlags;       // Target Specific Flag values
72  const unsigned *ImplicitUses;  // Registers implicitly read by this instr
73  const unsigned *ImplicitDefs;  // Registers implicitly defined by this instr
74};
75
76
77class MachineInstrInfo {
78  const MachineInstrDescriptor* desc;	// raw array to allow static init'n
79  unsigned descSize;		// number of entries in the desc array
80  unsigned numRealOpCodes;		// number of non-dummy op codes
81
82  MachineInstrInfo(const MachineInstrInfo &); // DO NOT IMPLEMENT
83  void operator=(const MachineInstrInfo &);   // DO NOT IMPLEMENT
84public:
85  MachineInstrInfo(const MachineInstrDescriptor *desc, unsigned descSize,
86		   unsigned numRealOpCodes);
87  virtual ~MachineInstrInfo();
88
89  // Invariant: All instruction sets use opcode #0 as the PHI instruction and
90  // opcode #1 as the noop instruction.
91  enum {
92    PHI = 0, NOOP = 1
93  };
94
95  unsigned getNumRealOpCodes()  const { return numRealOpCodes; }
96  unsigned getNumTotalOpCodes() const { return descSize; }
97
98  /// get - Return the machine instruction descriptor that corresponds to the
99  /// specified instruction opcode.
100  ///
101  const MachineInstrDescriptor& get(MachineOpCode opCode) const {
102    assert(opCode >= 0 && opCode < (int)descSize);
103    return desc[opCode];
104  }
105
106  /// print - Print out the specified machine instruction in the appropriate
107  /// target specific assembly language.  If this method is not overridden, the
108  /// default implementation uses the crummy machine independant printer.
109  ///
110  virtual void print(const MachineInstr *MI, std::ostream &O,
111                     const TargetMachine &TM) const;
112
113  const char *getName(MachineOpCode opCode) const {
114    return get(opCode).Name;
115  }
116
117  int getNumOperands(MachineOpCode opCode) const {
118    return get(opCode).numOperands;
119  }
120
121  int getResultPos(MachineOpCode opCode) const {
122    return get(opCode).resultPos;
123  }
124
125  unsigned getNumDelaySlots(MachineOpCode opCode) const {
126    return get(opCode).numDelaySlots;
127  }
128
129  InstrSchedClass getSchedClass(MachineOpCode opCode) const {
130    return get(opCode).schedClass;
131  }
132
133  //
134  // Query instruction class flags according to the machine-independent
135  // flags listed above.
136  //
137  bool isNop(MachineOpCode opCode) const {
138    return get(opCode).Flags & M_NOP_FLAG;
139  }
140  bool isBranch(MachineOpCode opCode) const {
141    return get(opCode).Flags & M_BRANCH_FLAG;
142  }
143  bool isCall(MachineOpCode opCode) const {
144    return get(opCode).Flags & M_CALL_FLAG;
145  }
146  bool isReturn(MachineOpCode opCode) const {
147    return get(opCode).Flags & M_RET_FLAG;
148  }
149  bool isControlFlow(MachineOpCode opCode) const {
150    return get(opCode).Flags & M_BRANCH_FLAG
151        || get(opCode).Flags & M_CALL_FLAG
152        || get(opCode).Flags & M_RET_FLAG;
153  }
154  bool isArith(MachineOpCode opCode) const {
155    return get(opCode).Flags & M_ARITH_FLAG;
156  }
157  bool isCCInstr(MachineOpCode opCode) const {
158    return get(opCode).Flags & M_CC_FLAG;
159  }
160  bool isLogical(MachineOpCode opCode) const {
161    return get(opCode).Flags & M_LOGICAL_FLAG;
162  }
163  bool isIntInstr(MachineOpCode opCode) const {
164    return get(opCode).Flags & M_INT_FLAG;
165  }
166  bool isFloatInstr(MachineOpCode opCode) const {
167    return get(opCode).Flags & M_FLOAT_FLAG;
168  }
169  bool isConditional(MachineOpCode opCode) const {
170    return get(opCode).Flags & M_CONDL_FLAG;
171  }
172  bool isLoad(MachineOpCode opCode) const {
173    return get(opCode).Flags & M_LOAD_FLAG;
174  }
175  bool isPrefetch(MachineOpCode opCode) const {
176    return get(opCode).Flags & M_PREFETCH_FLAG;
177  }
178  bool isLoadOrPrefetch(MachineOpCode opCode) const {
179    return get(opCode).Flags & M_LOAD_FLAG
180        || get(opCode).Flags & M_PREFETCH_FLAG;
181  }
182  bool isStore(MachineOpCode opCode) const {
183    return get(opCode).Flags & M_STORE_FLAG;
184  }
185  bool isMemoryAccess(MachineOpCode opCode) const {
186    return get(opCode).Flags & M_LOAD_FLAG
187        || get(opCode).Flags & M_PREFETCH_FLAG
188        || get(opCode).Flags & M_STORE_FLAG;
189  }
190  bool isDummyPhiInstr(const MachineOpCode opCode) const {
191    return get(opCode).Flags & M_DUMMY_PHI_FLAG;
192  }
193  bool isPseudoInstr(const MachineOpCode opCode) const {
194    return get(opCode).Flags & M_PSEUDO_FLAG;
195  }
196  bool isTwoAddrInstr(const MachineOpCode opCode) const {
197    return get(opCode).Flags & M_2_ADDR_FLAG;
198  }
199
200  // Check if an instruction can be issued before its operands are ready,
201  // or if a subsequent instruction that uses its result can be issued
202  // before the results are ready.
203  // Default to true since most instructions on many architectures allow this.
204  //
205  virtual bool hasOperandInterlock(MachineOpCode opCode) const {
206    return true;
207  }
208
209  virtual bool hasResultInterlock(MachineOpCode opCode) const {
210    return true;
211  }
212
213  //
214  // Latencies for individual instructions and instruction pairs
215  //
216  virtual int minLatency(MachineOpCode opCode) const {
217    return get(opCode).latency;
218  }
219
220  virtual int maxLatency(MachineOpCode opCode) const {
221    return get(opCode).latency;
222  }
223
224  //
225  // Which operand holds an immediate constant?  Returns -1 if none
226  //
227  virtual int getImmedConstantPos(MachineOpCode opCode) const {
228    return -1; // immediate position is machine specific, so say -1 == "none"
229  }
230
231  // Check if the specified constant fits in the immediate field
232  // of this machine instruction
233  //
234  virtual bool constantFitsInImmedField(MachineOpCode opCode,
235					int64_t intValue) const;
236
237  // Return the largest +ve constant that can be held in the IMMMED field
238  // of this machine instruction.
239  // isSignExtended is set to true if the value is sign-extended before use
240  // (this is true for all immediate fields in SPARC instructions).
241  // Return 0 if the instruction has no IMMED field.
242  //
243  virtual uint64_t maxImmedConstant(MachineOpCode opCode,
244				    bool &isSignExtended) const {
245    isSignExtended = get(opCode).immedIsSignExtended;
246    return get(opCode).maxImmedConst;
247  }
248
249  //-------------------------------------------------------------------------
250  // Queries about representation of LLVM quantities (e.g., constants)
251  //-------------------------------------------------------------------------
252
253  /// ConstantTypeMustBeLoaded - Test if this type of constant must be loaded
254  /// from memory into a register, i.e., cannot be set bitwise in register and
255  /// cannot use immediate fields of instructions.  Note that this only makes
256  /// sense for primitive types.
257  ///
258  virtual bool ConstantTypeMustBeLoaded(const Constant* CV) const;
259
260  // Test if this constant may not fit in the immediate field of the
261  // machine instructions (probably) generated for this instruction.
262  //
263  virtual bool ConstantMayNotFitInImmedField(const Constant* CV,
264                                             const Instruction* I) const {
265    return true;                        // safe but very conservative
266  }
267
268  //-------------------------------------------------------------------------
269  // Code generation support for creating individual machine instructions
270  //
271  // WARNING: These methods are Sparc specific
272  //
273  //-------------------------------------------------------------------------
274
275  // Get certain common op codes for the current target.  this and all the
276  // Create* methods below should be moved to a machine code generation class
277  //
278  virtual MachineOpCode getNOPOpCode() const { abort(); }
279
280  // Create an instruction sequence to put the constant `val' into
281  // the virtual register `dest'.  `val' may be a Constant or a
282  // GlobalValue, viz., the constant address of a global variable or function.
283  // The generated instructions are returned in `mvec'.
284  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
285  // Symbolic constants or constants that must be accessed from memory
286  // are added to the constant pool via MachineFunction::get(F).
287  //
288  virtual void  CreateCodeToLoadConst(const TargetMachine& target,
289                                      Function* F,
290                                      Value* val,
291                                      Instruction* dest,
292                                      std::vector<MachineInstr*>& mvec,
293                                      MachineCodeForInstruction& mcfi) const {
294    abort();
295  }
296
297  // Create an instruction sequence to copy an integer value `val'
298  // to a floating point value `dest' by copying to memory and back.
299  // val must be an integral type.  dest must be a Float or Double.
300  // The generated instructions are returned in `mvec'.
301  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
302  // Any stack space required is allocated via mcff.
303  //
304  virtual void CreateCodeToCopyIntToFloat(const TargetMachine& target,
305					  Function* F,
306					  Value* val,
307					  Instruction* dest,
308					  std::vector<MachineInstr*>& mvec,
309					  MachineCodeForInstruction& MI) const {
310    abort();
311  }
312
313  // Similarly, create an instruction sequence to copy an FP value
314  // `val' to an integer value `dest' by copying to memory and back.
315  // The generated instructions are returned in `mvec'.
316  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
317  // Any stack space required is allocated via mcff.
318  //
319  virtual void CreateCodeToCopyFloatToInt(const TargetMachine& target,
320					  Function* F,
321					  Value* val,
322					  Instruction* dest,
323					  std::vector<MachineInstr*>& mvec,
324					  MachineCodeForInstruction& MI) const {
325    abort();
326  }
327
328  // Create instruction(s) to copy src to dest, for arbitrary types
329  // The generated instructions are returned in `mvec'.
330  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
331  // Any stack space required is allocated via mcff.
332  //
333  virtual void CreateCopyInstructionsByType(const TargetMachine& target,
334					    Function* F,
335					    Value* src,
336					    Instruction* dest,
337					    std::vector<MachineInstr*>& mvec,
338                                          MachineCodeForInstruction& MI) const {
339    abort();
340  }
341
342  // Create instruction sequence to produce a sign-extended register value
343  // from an arbitrary sized value (sized in bits, not bytes).
344  // The generated instructions are appended to `mvec'.
345  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
346  // Any stack space required is allocated via mcff.
347  //
348  virtual void CreateSignExtensionInstructions(const TargetMachine& target,
349                                       Function* F,
350                                       Value* srcVal,
351                                       Value* destVal,
352                                       unsigned numLowBits,
353                                       std::vector<MachineInstr*>& mvec,
354				       MachineCodeForInstruction& MI) const {
355    abort();
356  }
357
358  // Create instruction sequence to produce a zero-extended register value
359  // from an arbitrary sized value (sized in bits, not bytes).
360  // The generated instructions are appended to `mvec'.
361  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
362  // Any stack space required is allocated via mcff.
363  //
364  virtual void CreateZeroExtensionInstructions(const TargetMachine& target,
365                                       Function* F,
366                                       Value* srcVal,
367                                       Value* destVal,
368                                       unsigned srcSizeInBits,
369                                       std::vector<MachineInstr*>& mvec,
370                                       MachineCodeForInstruction& mcfi) const {
371    abort();
372  }
373};
374
375#endif
376