TargetInstrInfo.h revision 5fd79d0560570fed977788a86fa038b898564dfa
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instructions to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/Target/TargetInstrDesc.h"
18#include "llvm/CodeGen/MachineFunction.h"
19
20namespace llvm {
21
22class TargetRegisterClass;
23class LiveVariables;
24class CalleeSavedInfo;
25class SDNode;
26class SelectionDAG;
27
28template<class T> class SmallVectorImpl;
29
30
31//---------------------------------------------------------------------------
32///
33/// TargetInstrInfo - Interface to description of machine instructions
34///
35class TargetInstrInfo {
36  const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
37  unsigned NumOpcodes;                // Number of entries in the desc array
38
39  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
40  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
41public:
42  TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
43  virtual ~TargetInstrInfo();
44
45  // Invariant opcodes: All instruction sets have these as their low opcodes.
46  enum {
47    PHI = 0,
48    INLINEASM = 1,
49    LABEL = 2,
50    DECLARE = 3,
51    EXTRACT_SUBREG = 4,
52    INSERT_SUBREG = 5
53  };
54
55  unsigned getNumOpcodes() const { return NumOpcodes; }
56
57  /// get - Return the machine instruction descriptor that corresponds to the
58  /// specified instruction opcode.
59  ///
60  const TargetInstrDesc &get(unsigned Opcode) const {
61    assert(Opcode < NumOpcodes && "Invalid opcode!");
62    return Descriptors[Opcode];
63  }
64
65  /// isTriviallyReMaterializable - Return true if the instruction is trivially
66  /// rematerializable, meaning it has no side effects and requires no operands
67  /// that aren't always available.
68  bool isTriviallyReMaterializable(MachineInstr *MI) const {
69    return MI->getDesc().isRematerializable() &&
70           isReallyTriviallyReMaterializable(MI);
71  }
72
73protected:
74  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
75  /// which the M_REMATERIALIZABLE flag is set, this function tests whether the
76  /// instruction itself is actually trivially rematerializable, considering
77  /// its operands.  This is used for targets that have instructions that are
78  /// only trivially rematerializable for specific uses.  This predicate must
79  /// return false if the instruction has any side effects other than
80  /// producing a value, or if it requres any address registers that are not
81  /// always available.
82  virtual bool isReallyTriviallyReMaterializable(MachineInstr *MI) const {
83    return true;
84  }
85
86public:
87  /// Return true if the instruction is a register to register move
88  /// and leave the source and dest operands in the passed parameters.
89  virtual bool isMoveInstr(const MachineInstr& MI,
90                           unsigned& sourceReg,
91                           unsigned& destReg) const {
92    return false;
93  }
94
95  /// isLoadFromStackSlot - If the specified machine instruction is a direct
96  /// load from a stack slot, return the virtual or physical register number of
97  /// the destination along with the FrameIndex of the loaded stack slot.  If
98  /// not, return 0.  This predicate must return 0 if the instruction has
99  /// any side effects other than loading from the stack slot.
100  virtual unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const{
101    return 0;
102  }
103
104  /// isStoreToStackSlot - If the specified machine instruction is a direct
105  /// store to a stack slot, return the virtual or physical register number of
106  /// the source reg along with the FrameIndex of the loaded stack slot.  If
107  /// not, return 0.  This predicate must return 0 if the instruction has
108  /// any side effects other than storing to the stack slot.
109  virtual unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const {
110    return 0;
111  }
112
113  /// isInvariantLoad - Return true if the specified instruction (which is
114  /// marked mayLoad) is loading from a location whose value is invariant across
115  /// the function.  For example, loading a value from the constant pool or from
116  /// from the argument area of a function if it does not change.  This should
117  /// only return true of *all* loads the instruction does are invariant (if it
118  /// does multiple loads).
119  virtual bool isInvariantLoad(MachineInstr *MI) const {
120    return false;
121  }
122
123
124  /// convertToThreeAddress - This method must be implemented by targets that
125  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
126  /// may be able to convert a two-address instruction into one or more true
127  /// three-address instructions on demand.  This allows the X86 target (for
128  /// example) to convert ADD and SHL instructions into LEA instructions if they
129  /// would require register copies due to two-addressness.
130  ///
131  /// This method returns a null pointer if the transformation cannot be
132  /// performed, otherwise it returns the last new instruction.
133  ///
134  virtual MachineInstr *
135  convertToThreeAddress(MachineFunction::iterator &MFI,
136                   MachineBasicBlock::iterator &MBBI, LiveVariables &LV) const {
137    return 0;
138  }
139
140  /// commuteInstruction - If a target has any instructions that are commutable,
141  /// but require converting to a different instruction or making non-trivial
142  /// changes to commute them, this method can overloaded to do this.  The
143  /// default implementation of this method simply swaps the first two operands
144  /// of MI and returns it.
145  ///
146  /// If a target wants to make more aggressive changes, they can construct and
147  /// return a new machine instruction.  If an instruction cannot commute, it
148  /// can also return null.
149  ///
150  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const = 0;
151
152  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
153  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
154  /// implemented for a target).  Upon success, this returns false and returns
155  /// with the following information in various cases:
156  ///
157  /// 1. If this block ends with no branches (it just falls through to its succ)
158  ///    just return false, leaving TBB/FBB null.
159  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
160  ///    the destination block.
161  /// 3. If this block ends with an conditional branch and it falls through to
162  ///    an successor block, it sets TBB to be the branch destination block and a
163  ///    list of operands that evaluate the condition. These
164  ///    operands can be passed to other TargetInstrInfo methods to create new
165  ///    branches.
166  /// 4. If this block ends with an conditional branch and an unconditional
167  ///    block, it returns the 'true' destination in TBB, the 'false' destination
168  ///    in FBB, and a list of operands that evaluate the condition. These
169  ///    operands can be passed to other TargetInstrInfo methods to create new
170  ///    branches.
171  ///
172  /// Note that RemoveBranch and InsertBranch must be implemented to support
173  /// cases where this method returns success.
174  ///
175  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
176                             MachineBasicBlock *&FBB,
177                             std::vector<MachineOperand> &Cond) const {
178    return true;
179  }
180
181  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
182  /// this is only invoked in cases where AnalyzeBranch returns success. It
183  /// returns the number of instructions that were removed.
184  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
185    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
186    return 0;
187  }
188
189  /// InsertBranch - Insert a branch into the end of the specified
190  /// MachineBasicBlock.  This operands to this method are the same as those
191  /// returned by AnalyzeBranch.  This is invoked in cases where AnalyzeBranch
192  /// returns success and when an unconditional branch (TBB is non-null, FBB is
193  /// null, Cond is empty) needs to be inserted. It returns the number of
194  /// instructions inserted.
195  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
196                            MachineBasicBlock *FBB,
197                            const std::vector<MachineOperand> &Cond) const {
198    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
199    return 0;
200  }
201
202  /// copyRegToReg - Add a copy between a pair of registers
203  virtual void copyRegToReg(MachineBasicBlock &MBB,
204                            MachineBasicBlock::iterator MI,
205                            unsigned DestReg, unsigned SrcReg,
206                            const TargetRegisterClass *DestRC,
207                            const TargetRegisterClass *SrcRC) const {
208    assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!");
209  }
210
211  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
212                                   MachineBasicBlock::iterator MI,
213                                   unsigned SrcReg, bool isKill, int FrameIndex,
214                                   const TargetRegisterClass *RC) const {
215    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
216  }
217
218  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
219                              SmallVectorImpl<MachineOperand> &Addr,
220                              const TargetRegisterClass *RC,
221                              SmallVectorImpl<MachineInstr*> &NewMIs) const {
222    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToAddr!");
223  }
224
225  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
226                                    MachineBasicBlock::iterator MI,
227                                    unsigned DestReg, int FrameIndex,
228                                    const TargetRegisterClass *RC) const {
229    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
230  }
231
232  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
233                               SmallVectorImpl<MachineOperand> &Addr,
234                               const TargetRegisterClass *RC,
235                               SmallVectorImpl<MachineInstr*> &NewMIs) const {
236    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromAddr!");
237  }
238
239  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
240  /// saved registers and returns true if it isn't possible / profitable to do
241  /// so by issuing a series of store instructions via
242  /// storeRegToStackSlot(). Returns false otherwise.
243  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
244                                         MachineBasicBlock::iterator MI,
245                                const std::vector<CalleeSavedInfo> &CSI) const {
246    return false;
247  }
248
249  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
250  /// saved registers and returns true if it isn't possible / profitable to do
251  /// so by issuing a series of load instructions via loadRegToStackSlot().
252  /// Returns false otherwise.
253  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
254                                           MachineBasicBlock::iterator MI,
255                                const std::vector<CalleeSavedInfo> &CSI) const {
256    return false;
257  }
258
259  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
260  /// slot into the specified machine instruction for the specified operand(s).
261  /// If this is possible, a new instruction is returned with the specified
262  /// operand folded, otherwise NULL is returned. The client is responsible for
263  /// removing the old instruction and adding the new one in the instruction
264  /// stream.
265  virtual MachineInstr* foldMemoryOperand(MachineFunction &MF,
266                                          MachineInstr* MI,
267                                          SmallVectorImpl<unsigned> &Ops,
268                                          int FrameIndex) const {
269    return 0;
270  }
271
272  /// foldMemoryOperand - Same as the previous version except it allows folding
273  /// of any load and store from / to any address, not just from a specific
274  /// stack slot.
275  virtual MachineInstr* foldMemoryOperand(MachineFunction &MF,
276                                          MachineInstr* MI,
277                                          SmallVectorImpl<unsigned> &Ops,
278                                          MachineInstr* LoadMI) const {
279    return 0;
280  }
281
282  /// canFoldMemoryOperand - Returns true if the specified load / store is
283  /// folding is possible.
284  virtual
285  bool canFoldMemoryOperand(MachineInstr *MI,
286                            SmallVectorImpl<unsigned> &Ops) const{
287    return false;
288  }
289
290  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
291  /// a store or a load and a store into two or more instruction. If this is
292  /// possible, returns true as well as the new instructions by reference.
293  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
294                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
295                                  SmallVectorImpl<MachineInstr*> &NewMIs) const{
296    return false;
297  }
298
299  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
300                                   SmallVectorImpl<SDNode*> &NewNodes) const {
301    return false;
302  }
303
304  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
305  /// instruction after load / store are unfolded from an instruction of the
306  /// specified opcode. It returns zero if the specified unfolding is not
307  /// possible.
308  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
309                                      bool UnfoldLoad, bool UnfoldStore) const {
310    return 0;
311  }
312
313  /// BlockHasNoFallThrough - Return true if the specified block does not
314  /// fall-through into its successor block.  This is primarily used when a
315  /// branch is unanalyzable.  It is useful for things like unconditional
316  /// indirect branches (jump tables).
317  virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
318    return false;
319  }
320
321  /// ReverseBranchCondition - Reverses the branch condition of the specified
322  /// condition list, returning false on success and true if it cannot be
323  /// reversed.
324  virtual bool ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
325    return true;
326  }
327
328  /// insertNoop - Insert a noop into the instruction stream at the specified
329  /// point.
330  virtual void insertNoop(MachineBasicBlock &MBB,
331                          MachineBasicBlock::iterator MI) const {
332    assert(0 && "Target didn't implement insertNoop!");
333    abort();
334  }
335
336  /// isPredicated - Returns true if the instruction is already predicated.
337  ///
338  virtual bool isPredicated(const MachineInstr *MI) const {
339    return false;
340  }
341
342  /// isUnpredicatedTerminator - Returns true if the instruction is a
343  /// terminator instruction that has not been predicated.
344  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
345
346  /// PredicateInstruction - Convert the instruction into a predicated
347  /// instruction. It returns true if the operation was successful.
348  virtual
349  bool PredicateInstruction(MachineInstr *MI,
350                            const std::vector<MachineOperand> &Pred) const = 0;
351
352  /// SubsumesPredicate - Returns true if the first specified predicate
353  /// subsumes the second, e.g. GE subsumes GT.
354  virtual
355  bool SubsumesPredicate(const std::vector<MachineOperand> &Pred1,
356                         const std::vector<MachineOperand> &Pred2) const {
357    return false;
358  }
359
360  /// DefinesPredicate - If the specified instruction defines any predicate
361  /// or condition code register(s) used for predication, returns true as well
362  /// as the definition predicate(s) by reference.
363  virtual bool DefinesPredicate(MachineInstr *MI,
364                                std::vector<MachineOperand> &Pred) const {
365    return false;
366  }
367
368  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
369  /// values.
370  virtual const TargetRegisterClass *getPointerRegClass() const {
371    assert(0 && "Target didn't implement getPointerRegClass!");
372    abort();
373    return 0; // Must return a value in order to compile with VS 2005
374  }
375};
376
377/// TargetInstrInfoImpl - This is the default implementation of
378/// TargetInstrInfo, which just provides a couple of default implementations
379/// for various methods.  This separated out because it is implemented in
380/// libcodegen, not in libtarget.
381class TargetInstrInfoImpl : public TargetInstrInfo {
382protected:
383  TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
384  : TargetInstrInfo(desc, NumOpcodes) {}
385public:
386  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
387  virtual bool PredicateInstruction(MachineInstr *MI,
388                              const std::vector<MachineOperand> &Pred) const;
389
390};
391
392} // End llvm namespace
393
394#endif
395