TargetInstrInfo.h revision 65e9f3969bec427f14d41f0aaef12ed689ca85b5
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instructions to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/CodeGen/MachineBasicBlock.h"
18#include "llvm/Support/DataTypes.h"
19#include <vector>
20#include <cassert>
21
22namespace llvm {
23
24class MachineInstr;
25class TargetMachine;
26class Value;
27class Type;
28class Instruction;
29class Constant;
30class Function;
31class MachineCodeForInstruction;
32class TargetRegisterClass;
33
34//---------------------------------------------------------------------------
35// Data types used to define information about a single machine instruction
36//---------------------------------------------------------------------------
37
38typedef short MachineOpCode;
39typedef unsigned InstrSchedClass;
40
41//---------------------------------------------------------------------------
42// struct TargetInstrDescriptor:
43//  Predefined information about each machine instruction.
44//  Designed to initialized statically.
45//
46
47const unsigned M_NOP_FLAG              = 1 << 0;
48const unsigned M_BRANCH_FLAG           = 1 << 1;
49const unsigned M_CALL_FLAG             = 1 << 2;
50const unsigned M_RET_FLAG              = 1 << 3;
51const unsigned M_BARRIER_FLAG          = 1 << 4;
52const unsigned M_DELAY_SLOT_FLAG       = 1 << 5;
53const unsigned M_CC_FLAG               = 1 << 6;
54const unsigned M_LOAD_FLAG             = 1 << 7;
55const unsigned M_STORE_FLAG            = 1 << 8;
56
57// M_2_ADDR_FLAG - 3-addr instructions which really work like 2-addr ones.
58const unsigned M_2_ADDR_FLAG           = 1 << 9;
59
60// M_CONVERTIBLE_TO_3_ADDR - This is a M_2_ADDR_FLAG instruction which can be
61// changed into a 3-address instruction if the first two operands cannot be
62// assigned to the same register.  The target must implement the
63// TargetInstrInfo::convertToThreeAddress method for this instruction.
64const unsigned M_CONVERTIBLE_TO_3_ADDR = 1 << 10;
65
66// This M_COMMUTABLE - is a 2- or 3-address instruction (of the form X = op Y,
67// Z), which produces the same result if Y and Z are exchanged.
68const unsigned M_COMMUTABLE            = 1 << 11;
69
70// M_TERMINATOR_FLAG - Is this instruction part of the terminator for a basic
71// block?  Typically this is things like return and branch instructions.
72// Various passes use this to insert code into the bottom of a basic block, but
73// before control flow occurs.
74const unsigned M_TERMINATOR_FLAG       = 1 << 12;
75
76// M_USES_CUSTOM_DAG_SCHED_INSERTION - Set if this instruction requires custom
77// insertion support when the DAG scheduler is inserting it into a machine basic
78// block.
79const unsigned M_USES_CUSTOM_DAG_SCHED_INSERTION = 1 << 13;
80
81/// TargetOperandInfo - This holds information about one operand of a machine
82/// instruction, indicating the register class for register operands, etc.
83///
84class TargetOperandInfo {
85public:
86  /// RegClass - This specifies the register class of the operand if the
87  /// operand is a register.  If not, this contains null.
88  const TargetRegisterClass *RegClass;
89
90  /// Currently no other information.
91};
92
93
94class TargetInstrDescriptor {
95public:
96  const char *    Name;          // Assembly language mnemonic for the opcode.
97  int             numOperands;   // Number of args; -1 if variable #args
98  int             resultPos;     // Position of the result; -1 if no result
99  unsigned        maxImmedConst; // Largest +ve constant in IMMED field or 0.
100  bool            immedIsSignExtended; // Is IMMED field sign-extended? If so,
101                                 //   smallest -ve value is -(maxImmedConst+1).
102  unsigned        numDelaySlots; // Number of delay slots after instruction
103  unsigned        latency;       // Latency in machine cycles
104  InstrSchedClass schedClass;    // enum  identifying instr sched class
105  unsigned        Flags;         // flags identifying machine instr class
106  unsigned        TSFlags;       // Target Specific Flag values
107  const unsigned *ImplicitUses;  // Registers implicitly read by this instr
108  const unsigned *ImplicitDefs;  // Registers implicitly defined by this instr
109  const TargetOperandInfo *OpInfo; // 'numOperands' entries about operands.
110};
111
112
113//---------------------------------------------------------------------------
114///
115/// TargetInstrInfo - Interface to description of machine instructions
116///
117class TargetInstrInfo {
118  const TargetInstrDescriptor* desc;    // raw array to allow static init'n
119  unsigned NumOpcodes;                  // number of entries in the desc array
120  unsigned numRealOpCodes;              // number of non-dummy op codes
121
122  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
123  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
124public:
125  TargetInstrInfo(const TargetInstrDescriptor *desc, unsigned NumOpcodes);
126  virtual ~TargetInstrInfo();
127
128  // Invariant opcodes: All instruction sets have these as their low opcodes.
129  enum {
130    PHI = 0,
131    INLINEASM = 1
132  };
133
134  unsigned getNumOpcodes() const { return NumOpcodes; }
135
136  /// get - Return the machine instruction descriptor that corresponds to the
137  /// specified instruction opcode.
138  ///
139  const TargetInstrDescriptor& get(MachineOpCode Opcode) const {
140    assert((unsigned)Opcode < NumOpcodes);
141    return desc[Opcode];
142  }
143
144  const char *getName(MachineOpCode Opcode) const {
145    return get(Opcode).Name;
146  }
147
148  int getNumOperands(MachineOpCode Opcode) const {
149    return get(Opcode).numOperands;
150  }
151
152  InstrSchedClass getSchedClass(MachineOpCode Opcode) const {
153    return get(Opcode).schedClass;
154  }
155
156  const unsigned *getImplicitUses(MachineOpCode Opcode) const {
157    return get(Opcode).ImplicitUses;
158  }
159
160  const unsigned *getImplicitDefs(MachineOpCode Opcode) const {
161    return get(Opcode).ImplicitDefs;
162  }
163
164
165  //
166  // Query instruction class flags according to the machine-independent
167  // flags listed above.
168  //
169  bool isReturn(MachineOpCode Opcode) const {
170    return get(Opcode).Flags & M_RET_FLAG;
171  }
172
173  bool isTwoAddrInstr(MachineOpCode Opcode) const {
174    return get(Opcode).Flags & M_2_ADDR_FLAG;
175  }
176  bool isTerminatorInstr(unsigned Opcode) const {
177    return get(Opcode).Flags & M_TERMINATOR_FLAG;
178  }
179
180  bool isBranch(MachineOpCode Opcode) const {
181    return get(Opcode).Flags & M_BRANCH_FLAG;
182  }
183
184  /// isBarrier - Returns true if the specified instruction stops control flow
185  /// from executing the instruction immediately following it.  Examples include
186  /// unconditional branches and return instructions.
187  bool isBarrier(MachineOpCode Opcode) const {
188    return get(Opcode).Flags & M_BARRIER_FLAG;
189  }
190
191  bool isCall(MachineOpCode Opcode) const {
192    return get(Opcode).Flags & M_CALL_FLAG;
193  }
194  bool isLoad(MachineOpCode Opcode) const {
195    return get(Opcode).Flags & M_LOAD_FLAG;
196  }
197  bool isStore(MachineOpCode Opcode) const {
198    return get(Opcode).Flags & M_STORE_FLAG;
199  }
200
201  /// usesCustomDAGSchedInsertionHook - Return true if this instruction requires
202  /// custom insertion support when the DAG scheduler is inserting it into a
203  /// machine basic block.
204  bool usesCustomDAGSchedInsertionHook(unsigned Opcode) const {
205    return get(Opcode).Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION;
206  }
207
208  /// Return true if the instruction is a register to register move
209  /// and leave the source and dest operands in the passed parameters.
210  virtual bool isMoveInstr(const MachineInstr& MI,
211                           unsigned& sourceReg,
212                           unsigned& destReg) const {
213    return false;
214  }
215
216  /// isLoadFromStackSlot - If the specified machine instruction is a direct
217  /// load from a stack slot, return the virtual or physical register number of
218  /// the destination along with the FrameIndex of the loaded stack slot.  If
219  /// not, return 0.  This predicate must return 0 if the instruction has
220  /// any side effects other than loading from the stack slot.
221  virtual unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const{
222    return 0;
223  }
224
225  /// isStoreToStackSlot - If the specified machine instruction is a direct
226  /// store to a stack slot, return the virtual or physical register number of
227  /// the source reg along with the FrameIndex of the loaded stack slot.  If
228  /// not, return 0.  This predicate must return 0 if the instruction has
229  /// any side effects other than storing to the stack slot.
230  virtual unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const {
231    return 0;
232  }
233
234  /// convertToThreeAddress - This method must be implemented by targets that
235  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
236  /// may be able to convert a two-address instruction into a true
237  /// three-address instruction on demand.  This allows the X86 target (for
238  /// example) to convert ADD and SHL instructions into LEA instructions if they
239  /// would require register copies due to two-addressness.
240  ///
241  /// This method returns a null pointer if the transformation cannot be
242  /// performed, otherwise it returns the new instruction.
243  ///
244  virtual MachineInstr *convertToThreeAddress(MachineInstr *TA) const {
245    return 0;
246  }
247
248  /// commuteInstruction - If a target has any instructions that are commutable,
249  /// but require converting to a different instruction or making non-trivial
250  /// changes to commute them, this method can overloaded to do this.  The
251  /// default implementation of this method simply swaps the first two operands
252  /// of MI and returns it.
253  ///
254  /// If a target wants to make more aggressive changes, they can construct and
255  /// return a new machine instruction.  If an instruction cannot commute, it
256  /// can also return null.
257  ///
258  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
259
260  /// Insert a goto (unconditional branch) sequence to TMBB, at the
261  /// end of MBB
262  virtual void insertGoto(MachineBasicBlock& MBB,
263                          MachineBasicBlock& TMBB) const {
264    assert(0 && "Target didn't implement insertGoto!");
265  }
266
267  /// Reverses the branch condition of the MachineInstr pointed by
268  /// MI. The instruction is replaced and the new MI is returned.
269  virtual MachineBasicBlock::iterator
270  reverseBranchCondition(MachineBasicBlock::iterator MI) const {
271    assert(0 && "Target didn't implement reverseBranchCondition!");
272    abort();
273    return MI;
274  }
275
276  /// insertNoop - Insert a noop into the instruction stream at the specified
277  /// point.
278  virtual void insertNoop(MachineBasicBlock &MBB,
279                          MachineBasicBlock::iterator MI) const {
280    assert(0 && "Target didn't implement insertNoop!");
281    abort();
282  }
283
284  //-------------------------------------------------------------------------
285  // Code generation support for creating individual machine instructions
286  //
287  // WARNING: These methods are Sparc specific
288  //
289  // DO NOT USE ANY OF THESE METHODS THEY ARE DEPRECATED!
290  //
291  //-------------------------------------------------------------------------
292
293  unsigned getNumDelaySlots(MachineOpCode Opcode) const {
294    return get(Opcode).numDelaySlots;
295  }
296  bool isCCInstr(MachineOpCode Opcode) const {
297    return get(Opcode).Flags & M_CC_FLAG;
298  }
299  bool isNop(MachineOpCode Opcode) const {
300    return get(Opcode).Flags & M_NOP_FLAG;
301  }
302
303  /// hasDelaySlot - Returns true if the specified instruction has a delay slot
304  /// which must be filled by the code generator.
305  bool hasDelaySlot(unsigned Opcode) const {
306    return get(Opcode).Flags & M_DELAY_SLOT_FLAG;
307  }
308
309  virtual bool hasResultInterlock(MachineOpCode Opcode) const {
310    return true;
311  }
312
313  //
314  // Latencies for individual instructions and instruction pairs
315  //
316  virtual int minLatency(MachineOpCode Opcode) const {
317    return get(Opcode).latency;
318  }
319
320  virtual int maxLatency(MachineOpCode Opcode) const {
321    return get(Opcode).latency;
322  }
323
324  //
325  // Which operand holds an immediate constant?  Returns -1 if none
326  //
327  virtual int getImmedConstantPos(MachineOpCode Opcode) const {
328    return -1; // immediate position is machine specific, so say -1 == "none"
329  }
330
331  // Check if the specified constant fits in the immediate field
332  // of this machine instruction
333  //
334  virtual bool constantFitsInImmedField(MachineOpCode Opcode,
335                                        int64_t intValue) const;
336
337  // Return the largest positive constant that can be held in the IMMED field
338  // of this machine instruction.
339  // isSignExtended is set to true if the value is sign-extended before use
340  // (this is true for all immediate fields in SPARC instructions).
341  // Return 0 if the instruction has no IMMED field.
342  //
343  virtual uint64_t maxImmedConstant(MachineOpCode Opcode,
344                                    bool &isSignExtended) const {
345    isSignExtended = get(Opcode).immedIsSignExtended;
346    return get(Opcode).maxImmedConst;
347  }
348};
349
350} // End llvm namespace
351
352#endif
353