TargetInstrInfo.h revision 85de1e5bade2f3755e47ed6fd43c92fcf99ff08b
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/Target/TargetInstrDesc.h"
18#include "llvm/CodeGen/MachineFunction.h"
19
20namespace llvm {
21
22class MCAsmInfo;
23class TargetRegisterClass;
24class TargetRegisterInfo;
25class LiveVariables;
26class CalleeSavedInfo;
27class SDNode;
28class SelectionDAG;
29class MachineMemOperand;
30
31template<class T> class SmallVectorImpl;
32
33
34//---------------------------------------------------------------------------
35///
36/// TargetInstrInfo - Interface to description of machine instruction set
37///
38class TargetInstrInfo {
39  const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
40  unsigned NumOpcodes;                // Number of entries in the desc array
41
42  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
43  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
44public:
45  TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
46  virtual ~TargetInstrInfo();
47
48  // Invariant opcodes: All instruction sets have these as their low opcodes.
49  enum {
50    PHI = 0,
51    INLINEASM = 1,
52    DBG_LABEL = 2,
53    EH_LABEL = 3,
54    GC_LABEL = 4,
55
56    /// KILL - This instruction is a noop that is used only to adjust the liveness
57    /// of registers. This can be useful when dealing with sub-registers.
58    KILL = 5,
59
60    /// EXTRACT_SUBREG - This instruction takes two operands: a register
61    /// that has subregisters, and a subregister index. It returns the
62    /// extracted subregister value. This is commonly used to implement
63    /// truncation operations on target architectures which support it.
64    EXTRACT_SUBREG = 6,
65
66    /// INSERT_SUBREG - This instruction takes three operands: a register
67    /// that has subregisters, a register providing an insert value, and a
68    /// subregister index. It returns the value of the first register with
69    /// the value of the second register inserted. The first register is
70    /// often defined by an IMPLICIT_DEF, as is commonly used to implement
71    /// anyext operations on target architectures which support it.
72    INSERT_SUBREG = 7,
73
74    /// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
75    IMPLICIT_DEF = 8,
76
77    /// SUBREG_TO_REG - This instruction is similar to INSERT_SUBREG except
78    /// that the first operand is an immediate integer constant. This constant
79    /// is often zero, as is commonly used to implement zext operations on
80    /// target architectures which support it, such as with x86-64 (with
81    /// zext from i32 to i64 via implicit zero-extension).
82    SUBREG_TO_REG = 9,
83
84    /// COPY_TO_REGCLASS - This instruction is a placeholder for a plain
85    /// register-to-register copy into a specific register class. This is only
86    /// used between instruction selection and MachineInstr creation, before
87    /// virtual registers have been created for all the instructions, and it's
88    /// only needed in cases where the register classes implied by the
89    /// instructions are insufficient. The actual MachineInstrs to perform
90    /// the copy are emitted with the TargetInstrInfo::copyRegToReg hook.
91    COPY_TO_REGCLASS = 10
92  };
93
94  unsigned getNumOpcodes() const { return NumOpcodes; }
95
96  /// get - Return the machine instruction descriptor that corresponds to the
97  /// specified instruction opcode.
98  ///
99  const TargetInstrDesc &get(unsigned Opcode) const {
100    assert(Opcode < NumOpcodes && "Invalid opcode!");
101    return Descriptors[Opcode];
102  }
103
104  /// isTriviallyReMaterializable - Return true if the instruction is trivially
105  /// rematerializable, meaning it has no side effects and requires no operands
106  /// that aren't always available.
107  bool isTriviallyReMaterializable(const MachineInstr *MI,
108                                   AliasAnalysis *AA = 0) const {
109    return MI->getOpcode() == IMPLICIT_DEF ||
110           (MI->getDesc().isRematerializable() &&
111            (isReallyTriviallyReMaterializable(MI, AA) ||
112             isReallyTriviallyReMaterializableGeneric(MI, AA)));
113  }
114
115protected:
116  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
117  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
118  /// specify whether the instruction is actually trivially rematerializable,
119  /// taking into consideration its operands. This predicate must return false
120  /// if the instruction has any side effects other than producing a value, or
121  /// if it requres any address registers that are not always available.
122  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
123                                                 AliasAnalysis *AA) const {
124    return false;
125  }
126
127private:
128  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
129  /// for which the M_REMATERIALIZABLE flag is set and the target hook
130  /// isReallyTriviallyReMaterializable returns false, this function does
131  /// target-independent tests to determine if the instruction is really
132  /// trivially rematerializable.
133  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
134                                                AliasAnalysis *AA) const;
135
136public:
137  /// isMoveInstr - Return true if the instruction is a register to register
138  /// move and return the source and dest operands and their sub-register
139  /// indices by reference.
140  virtual bool isMoveInstr(const MachineInstr& MI,
141                           unsigned& SrcReg, unsigned& DstReg,
142                           unsigned& SrcSubIdx, unsigned& DstSubIdx) const {
143    return false;
144  }
145
146  /// isIdentityCopy - Return true if the instruction is a copy (or
147  /// extract_subreg, insert_subreg, subreg_to_reg) where the source and
148  /// destination registers are the same.
149  bool isIdentityCopy(const MachineInstr &MI) const {
150    unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
151    if (isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
152        SrcReg == DstReg)
153      return true;
154
155    if (MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG &&
156        MI.getOperand(0).getReg() == MI.getOperand(1).getReg())
157    return true;
158
159    if ((MI.getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
160         MI.getOpcode() == TargetInstrInfo::SUBREG_TO_REG) &&
161        MI.getOperand(0).getReg() == MI.getOperand(2).getReg())
162      return true;
163    return false;
164  }
165
166  /// isLoadFromStackSlot - If the specified machine instruction is a direct
167  /// load from a stack slot, return the virtual or physical register number of
168  /// the destination along with the FrameIndex of the loaded stack slot.  If
169  /// not, return 0.  This predicate must return 0 if the instruction has
170  /// any side effects other than loading from the stack slot.
171  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
172                                       int &FrameIndex) const {
173    return 0;
174  }
175
176  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
177  /// stack locations as well.  This uses a heuristic so it isn't
178  /// reliable for correctness.
179  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
180                                             int &FrameIndex) const {
181    return 0;
182  }
183
184  /// hasLoadFromStackSlot - If the specified machine instruction has
185  /// a load from a stack slot, return true along with the FrameIndex
186  /// of the loaded stack slot and the machine mem operand containing
187  /// the reference.  If not, return false.  Unlike
188  /// isLoadFromStackSlot, this returns true for any instructions that
189  /// loads from the stack.  This is just a hint, as some cases may be
190  /// missed.
191  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
192                                    const MachineMemOperand *&MMO,
193                                    int &FrameIndex) const {
194    return 0;
195  }
196
197  /// isStoreToStackSlot - If the specified machine instruction is a direct
198  /// store to a stack slot, return the virtual or physical register number of
199  /// the source reg along with the FrameIndex of the loaded stack slot.  If
200  /// not, return 0.  This predicate must return 0 if the instruction has
201  /// any side effects other than storing to the stack slot.
202  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
203                                      int &FrameIndex) const {
204    return 0;
205  }
206
207  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
208  /// stack locations as well.  This uses a heuristic so it isn't
209  /// reliable for correctness.
210  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
211                                            int &FrameIndex) const {
212    return 0;
213  }
214
215  /// hasStoreToStackSlot - If the specified machine instruction has a
216  /// store to a stack slot, return true along with the FrameIndex of
217  /// the loaded stack slot and the machine mem operand containing the
218  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
219  /// this returns true for any instructions that loads from the
220  /// stack.  This is just a hint, as some cases may be missed.
221  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
222                                   const MachineMemOperand *&MMO,
223                                   int &FrameIndex) const {
224    return 0;
225  }
226
227  /// reMaterialize - Re-issue the specified 'original' instruction at the
228  /// specific location targeting a new destination register.
229  virtual void reMaterialize(MachineBasicBlock &MBB,
230                             MachineBasicBlock::iterator MI,
231                             unsigned DestReg, unsigned SubIdx,
232                             const MachineInstr *Orig,
233                             const TargetRegisterInfo *TRI) const = 0;
234
235  /// convertToThreeAddress - This method must be implemented by targets that
236  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
237  /// may be able to convert a two-address instruction into one or more true
238  /// three-address instructions on demand.  This allows the X86 target (for
239  /// example) to convert ADD and SHL instructions into LEA instructions if they
240  /// would require register copies due to two-addressness.
241  ///
242  /// This method returns a null pointer if the transformation cannot be
243  /// performed, otherwise it returns the last new instruction.
244  ///
245  virtual MachineInstr *
246  convertToThreeAddress(MachineFunction::iterator &MFI,
247                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
248    return 0;
249  }
250
251  /// commuteInstruction - If a target has any instructions that are commutable,
252  /// but require converting to a different instruction or making non-trivial
253  /// changes to commute them, this method can overloaded to do this.  The
254  /// default implementation of this method simply swaps the first two operands
255  /// of MI and returns it.
256  ///
257  /// If a target wants to make more aggressive changes, they can construct and
258  /// return a new machine instruction.  If an instruction cannot commute, it
259  /// can also return null.
260  ///
261  /// If NewMI is true, then a new machine instruction must be created.
262  ///
263  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
264                                           bool NewMI = false) const = 0;
265
266  /// findCommutedOpIndices - If specified MI is commutable, return the two
267  /// operand indices that would swap value. Return true if the instruction
268  /// is not in a form which this routine understands.
269  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
270                                     unsigned &SrcOpIdx2) const = 0;
271
272  /// isIdentical - Return true if two instructions are identical. This differs
273  /// from MachineInstr::isIdenticalTo() in that it does not require the
274  /// virtual destination registers to be the same. This is used by MachineLICM
275  /// and other MI passes to perform CSE.
276  virtual bool isIdentical(const MachineInstr *MI,
277                           const MachineInstr *Other,
278                           const MachineRegisterInfo *MRI) const = 0;
279
280  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
281  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
282  /// implemented for a target).  Upon success, this returns false and returns
283  /// with the following information in various cases:
284  ///
285  /// 1. If this block ends with no branches (it just falls through to its succ)
286  ///    just return false, leaving TBB/FBB null.
287  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
288  ///    the destination block.
289  /// 3. If this block ends with a conditional branch and it falls through to a
290  ///    successor block, it sets TBB to be the branch destination block and a
291  ///    list of operands that evaluate the condition. These operands can be
292  ///    passed to other TargetInstrInfo methods to create new branches.
293  /// 4. If this block ends with a conditional branch followed by an
294  ///    unconditional branch, it returns the 'true' destination in TBB, the
295  ///    'false' destination in FBB, and a list of operands that evaluate the
296  ///    condition.  These operands can be passed to other TargetInstrInfo
297  ///    methods to create new branches.
298  ///
299  /// Note that RemoveBranch and InsertBranch must be implemented to support
300  /// cases where this method returns success.
301  ///
302  /// If AllowModify is true, then this routine is allowed to modify the basic
303  /// block (e.g. delete instructions after the unconditional branch).
304  ///
305  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
306                             MachineBasicBlock *&FBB,
307                             SmallVectorImpl<MachineOperand> &Cond,
308                             bool AllowModify = false) const {
309    return true;
310  }
311
312  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
313  /// This is only invoked in cases where AnalyzeBranch returns success. It
314  /// returns the number of instructions that were removed.
315  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
316    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
317    return 0;
318  }
319
320  /// InsertBranch - Insert branch code into the end of the specified
321  /// MachineBasicBlock.  The operands to this method are the same as those
322  /// returned by AnalyzeBranch.  This is only invoked in cases where
323  /// AnalyzeBranch returns success. It returns the number of instructions
324  /// inserted.
325  ///
326  /// It is also invoked by tail merging to add unconditional branches in
327  /// cases where AnalyzeBranch doesn't apply because there was no original
328  /// branch to analyze.  At least this much must be implemented, else tail
329  /// merging needs to be disabled.
330  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
331                            MachineBasicBlock *FBB,
332                            const SmallVectorImpl<MachineOperand> &Cond) const {
333    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
334    return 0;
335  }
336
337  /// copyRegToReg - Emit instructions to copy between a pair of registers. It
338  /// returns false if the target does not how to copy between the specified
339  /// registers.
340  virtual bool copyRegToReg(MachineBasicBlock &MBB,
341                            MachineBasicBlock::iterator MI,
342                            unsigned DestReg, unsigned SrcReg,
343                            const TargetRegisterClass *DestRC,
344                            const TargetRegisterClass *SrcRC) const {
345    assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!");
346    return false;
347  }
348
349  /// storeRegToStackSlot - Store the specified register of the given register
350  /// class to the specified stack frame index. The store instruction is to be
351  /// added to the given machine basic block before the specified machine
352  /// instruction. If isKill is true, the register operand is the last use and
353  /// must be marked kill.
354  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
355                                   MachineBasicBlock::iterator MI,
356                                   unsigned SrcReg, bool isKill, int FrameIndex,
357                                   const TargetRegisterClass *RC) const {
358    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
359  }
360
361  /// loadRegFromStackSlot - Load the specified register of the given register
362  /// class from the specified stack frame index. The load instruction is to be
363  /// added to the given machine basic block before the specified machine
364  /// instruction.
365  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
366                                    MachineBasicBlock::iterator MI,
367                                    unsigned DestReg, int FrameIndex,
368                                    const TargetRegisterClass *RC) const {
369    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
370  }
371
372  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
373  /// saved registers and returns true if it isn't possible / profitable to do
374  /// so by issuing a series of store instructions via
375  /// storeRegToStackSlot(). Returns false otherwise.
376  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
377                                         MachineBasicBlock::iterator MI,
378                                const std::vector<CalleeSavedInfo> &CSI) const {
379    return false;
380  }
381
382  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
383  /// saved registers and returns true if it isn't possible / profitable to do
384  /// so by issuing a series of load instructions via loadRegToStackSlot().
385  /// Returns false otherwise.
386  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
387                                           MachineBasicBlock::iterator MI,
388                                const std::vector<CalleeSavedInfo> &CSI) const {
389    return false;
390  }
391
392  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
393  /// slot into the specified machine instruction for the specified operand(s).
394  /// If this is possible, a new instruction is returned with the specified
395  /// operand folded, otherwise NULL is returned. The client is responsible for
396  /// removing the old instruction and adding the new one in the instruction
397  /// stream.
398  MachineInstr* foldMemoryOperand(MachineFunction &MF,
399                                  MachineInstr* MI,
400                                  const SmallVectorImpl<unsigned> &Ops,
401                                  int FrameIndex) const;
402
403  /// foldMemoryOperand - Same as the previous version except it allows folding
404  /// of any load and store from / to any address, not just from a specific
405  /// stack slot.
406  MachineInstr* foldMemoryOperand(MachineFunction &MF,
407                                  MachineInstr* MI,
408                                  const SmallVectorImpl<unsigned> &Ops,
409                                  MachineInstr* LoadMI) const;
410
411protected:
412  /// foldMemoryOperandImpl - Target-dependent implementation for
413  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
414  /// take care of adding a MachineMemOperand to the newly created instruction.
415  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
416                                          MachineInstr* MI,
417                                          const SmallVectorImpl<unsigned> &Ops,
418                                          int FrameIndex) const {
419    return 0;
420  }
421
422  /// foldMemoryOperandImpl - Target-dependent implementation for
423  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
424  /// take care of adding a MachineMemOperand to the newly created instruction.
425  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
426                                              MachineInstr* MI,
427                                              const SmallVectorImpl<unsigned> &Ops,
428                                              MachineInstr* LoadMI) const {
429    return 0;
430  }
431
432public:
433  /// canFoldMemoryOperand - Returns true for the specified load / store if
434  /// folding is possible.
435  virtual
436  bool canFoldMemoryOperand(const MachineInstr *MI,
437                            const SmallVectorImpl<unsigned> &Ops) const {
438    return false;
439  }
440
441  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
442  /// a store or a load and a store into two or more instruction. If this is
443  /// possible, returns true as well as the new instructions by reference.
444  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
445                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
446                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
447    return false;
448  }
449
450  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
451                                   SmallVectorImpl<SDNode*> &NewNodes) const {
452    return false;
453  }
454
455  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
456  /// instruction after load / store are unfolded from an instruction of the
457  /// specified opcode. It returns zero if the specified unfolding is not
458  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
459  /// index of the operand which will hold the register holding the loaded
460  /// value.
461  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
462                                      bool UnfoldLoad, bool UnfoldStore,
463                                      unsigned *LoadRegIndex = 0) const {
464    return 0;
465  }
466
467  /// ReverseBranchCondition - Reverses the branch condition of the specified
468  /// condition list, returning false on success and true if it cannot be
469  /// reversed.
470  virtual
471  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
472    return true;
473  }
474
475  /// insertNoop - Insert a noop into the instruction stream at the specified
476  /// point.
477  virtual void insertNoop(MachineBasicBlock &MBB,
478                          MachineBasicBlock::iterator MI) const;
479
480  /// isPredicated - Returns true if the instruction is already predicated.
481  ///
482  virtual bool isPredicated(const MachineInstr *MI) const {
483    return false;
484  }
485
486  /// isUnpredicatedTerminator - Returns true if the instruction is a
487  /// terminator instruction that has not been predicated.
488  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
489
490  /// PredicateInstruction - Convert the instruction into a predicated
491  /// instruction. It returns true if the operation was successful.
492  virtual
493  bool PredicateInstruction(MachineInstr *MI,
494                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
495
496  /// SubsumesPredicate - Returns true if the first specified predicate
497  /// subsumes the second, e.g. GE subsumes GT.
498  virtual
499  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
500                         const SmallVectorImpl<MachineOperand> &Pred2) const {
501    return false;
502  }
503
504  /// DefinesPredicate - If the specified instruction defines any predicate
505  /// or condition code register(s) used for predication, returns true as well
506  /// as the definition predicate(s) by reference.
507  virtual bool DefinesPredicate(MachineInstr *MI,
508                                std::vector<MachineOperand> &Pred) const {
509    return false;
510  }
511
512  /// isPredicable - Return true if the specified instruction can be predicated.
513  /// By default, this returns true for every instruction with a
514  /// PredicateOperand.
515  virtual bool isPredicable(MachineInstr *MI) const {
516    return MI->getDesc().isPredicable();
517  }
518
519  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
520  /// instruction that defines the specified register class.
521  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
522    return true;
523  }
524
525  /// GetInstSize - Returns the size of the specified Instruction.
526  ///
527  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const {
528    assert(0 && "Target didn't implement TargetInstrInfo::GetInstSize!");
529    return 0;
530  }
531
532  /// GetFunctionSizeInBytes - Returns the size of the specified
533  /// MachineFunction.
534  ///
535  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const = 0;
536
537  /// Measure the specified inline asm to determine an approximation of its
538  /// length.
539  virtual unsigned getInlineAsmLength(const char *Str,
540                                      const MCAsmInfo &MAI) const;
541};
542
543/// TargetInstrInfoImpl - This is the default implementation of
544/// TargetInstrInfo, which just provides a couple of default implementations
545/// for various methods.  This separated out because it is implemented in
546/// libcodegen, not in libtarget.
547class TargetInstrInfoImpl : public TargetInstrInfo {
548protected:
549  TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
550  : TargetInstrInfo(desc, NumOpcodes) {}
551public:
552  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
553                                           bool NewMI = false) const;
554  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
555                                     unsigned &SrcOpIdx2) const;
556  virtual bool PredicateInstruction(MachineInstr *MI,
557                            const SmallVectorImpl<MachineOperand> &Pred) const;
558  virtual void reMaterialize(MachineBasicBlock &MBB,
559                             MachineBasicBlock::iterator MI,
560                             unsigned DestReg, unsigned SubReg,
561                             const MachineInstr *Orig,
562                             const TargetRegisterInfo *TRI) const;
563  virtual bool isIdentical(const MachineInstr *MI,
564                           const MachineInstr *Other,
565                           const MachineRegisterInfo *MRI) const;
566
567  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const;
568};
569
570} // End llvm namespace
571
572#endif
573