TargetInstrInfo.h revision 8d3af5e7d082dbd029c3987ceadbdcf9e49af6d7
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instructions to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/CodeGen/MachineBasicBlock.h"
18#include "llvm/Support/DataTypes.h"
19#include <vector>
20#include <cassert>
21
22namespace llvm {
23
24class MachineInstr;
25class TargetMachine;
26class Value;
27class Type;
28class Instruction;
29class Constant;
30class Function;
31class MachineCodeForInstruction;
32class TargetRegisterClass;
33
34//---------------------------------------------------------------------------
35// Data types used to define information about a single machine instruction
36//---------------------------------------------------------------------------
37
38typedef short MachineOpCode;
39typedef unsigned InstrSchedClass;
40
41//---------------------------------------------------------------------------
42// struct TargetInstrDescriptor:
43//  Predefined information about each machine instruction.
44//  Designed to initialized statically.
45//
46
47const unsigned M_BRANCH_FLAG           = 1 << 0;
48const unsigned M_CALL_FLAG             = 1 << 1;
49const unsigned M_RET_FLAG              = 1 << 2;
50const unsigned M_BARRIER_FLAG          = 1 << 3;
51const unsigned M_DELAY_SLOT_FLAG       = 1 << 4;
52const unsigned M_LOAD_FLAG             = 1 << 5;
53const unsigned M_STORE_FLAG            = 1 << 6;
54
55// M_2_ADDR_FLAG - 3-addr instructions which really work like 2-addr ones.
56const unsigned M_2_ADDR_FLAG           = 1 << 7;
57
58// M_CONVERTIBLE_TO_3_ADDR - This is a M_2_ADDR_FLAG instruction which can be
59// changed into a 3-address instruction if the first two operands cannot be
60// assigned to the same register.  The target must implement the
61// TargetInstrInfo::convertToThreeAddress method for this instruction.
62const unsigned M_CONVERTIBLE_TO_3_ADDR = 1 << 8;
63
64// This M_COMMUTABLE - is a 2- or 3-address instruction (of the form X = op Y,
65// Z), which produces the same result if Y and Z are exchanged.
66const unsigned M_COMMUTABLE            = 1 << 9;
67
68// M_TERMINATOR_FLAG - Is this instruction part of the terminator for a basic
69// block?  Typically this is things like return and branch instructions.
70// Various passes use this to insert code into the bottom of a basic block, but
71// before control flow occurs.
72const unsigned M_TERMINATOR_FLAG       = 1 << 10;
73
74// M_USES_CUSTOM_DAG_SCHED_INSERTION - Set if this instruction requires custom
75// insertion support when the DAG scheduler is inserting it into a machine basic
76// block.
77const unsigned M_USES_CUSTOM_DAG_SCHED_INSERTION = 1 << 11;
78
79// M_VARIABLE_OPS - Set if this instruction can have a variable number of extra
80// operands in addition to the minimum number operands specified.
81const unsigned M_VARIABLE_OPS = 1 << 12;
82
83// Machine operand flags
84// M_LOOK_UP_PTR_REG_CLASS - Set if this operand is a pointer value and it
85// requires a callback to look up its register class.
86const unsigned M_LOOK_UP_PTR_REG_CLASS = 1 << 0;
87
88/// TargetOperandInfo - This holds information about one operand of a machine
89/// instruction, indicating the register class for register operands, etc.
90///
91class TargetOperandInfo {
92public:
93  /// RegClass - This specifies the register class of the operand if the
94  /// operand is a register.  If not, this contains null.
95  const TargetRegisterClass *RegClass;
96  unsigned Flags;
97  /// Currently no other information.
98};
99
100
101class TargetInstrDescriptor {
102public:
103  const char *    Name;          // Assembly language mnemonic for the opcode.
104  unsigned        numOperands;   // Num of args (may be more if variable_ops).
105  InstrSchedClass schedClass;    // enum  identifying instr sched class
106  unsigned        Flags;         // flags identifying machine instr class
107  unsigned        TSFlags;       // Target Specific Flag values
108  const unsigned *ImplicitUses;  // Registers implicitly read by this instr
109  const unsigned *ImplicitDefs;  // Registers implicitly defined by this instr
110  const TargetOperandInfo *OpInfo; // 'numOperands' entries about operands.
111};
112
113
114//---------------------------------------------------------------------------
115///
116/// TargetInstrInfo - Interface to description of machine instructions
117///
118class TargetInstrInfo {
119  const TargetInstrDescriptor* desc;    // raw array to allow static init'n
120  unsigned NumOpcodes;                  // number of entries in the desc array
121  unsigned numRealOpCodes;              // number of non-dummy op codes
122
123  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
124  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
125public:
126  TargetInstrInfo(const TargetInstrDescriptor *desc, unsigned NumOpcodes);
127  virtual ~TargetInstrInfo();
128
129  // Invariant opcodes: All instruction sets have these as their low opcodes.
130  enum {
131    PHI = 0,
132    INLINEASM = 1
133  };
134
135  unsigned getNumOpcodes() const { return NumOpcodes; }
136
137  /// get - Return the machine instruction descriptor that corresponds to the
138  /// specified instruction opcode.
139  ///
140  const TargetInstrDescriptor& get(MachineOpCode Opcode) const {
141    assert((unsigned)Opcode < NumOpcodes);
142    return desc[Opcode];
143  }
144
145  const char *getName(MachineOpCode Opcode) const {
146    return get(Opcode).Name;
147  }
148
149  const TargetRegisterClass
150  *getInstrOperandRegClass(const TargetInstrDescriptor *II, unsigned Op) const {
151    if (Op >= II->numOperands) {
152      if (II->Flags & M_VARIABLE_OPS)
153        return NULL;
154      assert(false && "Invalid operand # of instruction");
155    }
156    const TargetOperandInfo &toi = II->OpInfo[Op];
157    return (toi.Flags & M_LOOK_UP_PTR_REG_CLASS)
158           ? getPointerRegClass() : toi.RegClass;
159  }
160
161  int getNumOperands(MachineOpCode Opcode) const {
162    return get(Opcode).numOperands;
163  }
164
165  InstrSchedClass getSchedClass(MachineOpCode Opcode) const {
166    return get(Opcode).schedClass;
167  }
168
169  const unsigned *getImplicitUses(MachineOpCode Opcode) const {
170    return get(Opcode).ImplicitUses;
171  }
172
173  const unsigned *getImplicitDefs(MachineOpCode Opcode) const {
174    return get(Opcode).ImplicitDefs;
175  }
176
177
178  //
179  // Query instruction class flags according to the machine-independent
180  // flags listed above.
181  //
182  bool isReturn(MachineOpCode Opcode) const {
183    return get(Opcode).Flags & M_RET_FLAG;
184  }
185
186  bool isTwoAddrInstr(MachineOpCode Opcode) const {
187    return get(Opcode).Flags & M_2_ADDR_FLAG;
188  }
189  bool isCommutableInstr(MachineOpCode Opcode) const {
190    return get(Opcode).Flags & M_COMMUTABLE;
191  }
192  bool isTerminatorInstr(unsigned Opcode) const {
193    return get(Opcode).Flags & M_TERMINATOR_FLAG;
194  }
195
196  bool isBranch(MachineOpCode Opcode) const {
197    return get(Opcode).Flags & M_BRANCH_FLAG;
198  }
199
200  /// isBarrier - Returns true if the specified instruction stops control flow
201  /// from executing the instruction immediately following it.  Examples include
202  /// unconditional branches and return instructions.
203  bool isBarrier(MachineOpCode Opcode) const {
204    return get(Opcode).Flags & M_BARRIER_FLAG;
205  }
206
207  bool isCall(MachineOpCode Opcode) const {
208    return get(Opcode).Flags & M_CALL_FLAG;
209  }
210  bool isLoad(MachineOpCode Opcode) const {
211    return get(Opcode).Flags & M_LOAD_FLAG;
212  }
213  bool isStore(MachineOpCode Opcode) const {
214    return get(Opcode).Flags & M_STORE_FLAG;
215  }
216
217  /// usesCustomDAGSchedInsertionHook - Return true if this instruction requires
218  /// custom insertion support when the DAG scheduler is inserting it into a
219  /// machine basic block.
220  bool usesCustomDAGSchedInsertionHook(unsigned Opcode) const {
221    return get(Opcode).Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION;
222  }
223
224  bool hasVariableOperands(MachineOpCode Opcode) const {
225    return get(Opcode).Flags & M_VARIABLE_OPS;
226  }
227
228  /// Return true if the instruction is a register to register move
229  /// and leave the source and dest operands in the passed parameters.
230  virtual bool isMoveInstr(const MachineInstr& MI,
231                           unsigned& sourceReg,
232                           unsigned& destReg) const {
233    return false;
234  }
235
236  /// isLoadFromStackSlot - If the specified machine instruction is a direct
237  /// load from a stack slot, return the virtual or physical register number of
238  /// the destination along with the FrameIndex of the loaded stack slot.  If
239  /// not, return 0.  This predicate must return 0 if the instruction has
240  /// any side effects other than loading from the stack slot.
241  virtual unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const{
242    return 0;
243  }
244
245  /// isStoreToStackSlot - If the specified machine instruction is a direct
246  /// store to a stack slot, return the virtual or physical register number of
247  /// the source reg along with the FrameIndex of the loaded stack slot.  If
248  /// not, return 0.  This predicate must return 0 if the instruction has
249  /// any side effects other than storing to the stack slot.
250  virtual unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const {
251    return 0;
252  }
253
254  /// convertToThreeAddress - This method must be implemented by targets that
255  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
256  /// may be able to convert a two-address instruction into a true
257  /// three-address instruction on demand.  This allows the X86 target (for
258  /// example) to convert ADD and SHL instructions into LEA instructions if they
259  /// would require register copies due to two-addressness.
260  ///
261  /// This method returns a null pointer if the transformation cannot be
262  /// performed, otherwise it returns the new instruction.
263  ///
264  virtual MachineInstr *convertToThreeAddress(MachineInstr *TA) const {
265    return 0;
266  }
267
268  /// commuteInstruction - If a target has any instructions that are commutable,
269  /// but require converting to a different instruction or making non-trivial
270  /// changes to commute them, this method can overloaded to do this.  The
271  /// default implementation of this method simply swaps the first two operands
272  /// of MI and returns it.
273  ///
274  /// If a target wants to make more aggressive changes, they can construct and
275  /// return a new machine instruction.  If an instruction cannot commute, it
276  /// can also return null.
277  ///
278  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
279
280  /// Insert a goto (unconditional branch) sequence to TMBB, at the
281  /// end of MBB
282  virtual void insertGoto(MachineBasicBlock& MBB,
283                          MachineBasicBlock& TMBB) const {
284    assert(0 && "Target didn't implement insertGoto!");
285  }
286
287  /// Reverses the branch condition of the MachineInstr pointed by
288  /// MI. The instruction is replaced and the new MI is returned.
289  virtual MachineBasicBlock::iterator
290  reverseBranchCondition(MachineBasicBlock::iterator MI) const {
291    assert(0 && "Target didn't implement reverseBranchCondition!");
292    abort();
293    return MI;
294  }
295
296  /// insertNoop - Insert a noop into the instruction stream at the specified
297  /// point.
298  virtual void insertNoop(MachineBasicBlock &MBB,
299                          MachineBasicBlock::iterator MI) const {
300    assert(0 && "Target didn't implement insertNoop!");
301    abort();
302  }
303
304  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
305  /// values.
306  virtual const TargetRegisterClass *getPointerRegClass() const {
307    assert(0 && "Target didn't implement getPointerRegClass!");
308    abort();
309  }
310
311  /// hasDelaySlot - Returns true if the specified instruction has a delay slot
312  /// which must be filled by the code generator.
313  bool hasDelaySlot(unsigned Opcode) const {
314    return get(Opcode).Flags & M_DELAY_SLOT_FLAG;
315  }
316};
317
318} // End llvm namespace
319
320#endif
321