TargetInstrInfo.h revision 9d0168d2d54008729632f676475ce710448cf8a8
1//===-- llvm/Target/InstrInfo.h - Target Instruction Information --*-C++-*-==//
2//
3// This file describes the target machine instructions to the code generator.
4//
5//===---------------------------------------------------------------------===//
6
7#ifndef LLVM_TARGET_MACHINEINSTRINFO_H
8#define LLVM_TARGET_MACHINEINSTRINFO_H
9
10#include "Support/NonCopyable.h"
11#include "Support/DataTypes.h"
12#include "llvm/Constant.h"
13#include "llvm/DerivedTypes.h"
14#include <string>
15#include <vector>
16
17class MachineInstrDescriptor;
18class TmpInstruction;
19class MachineInstr;
20class TargetMachine;
21class Value;
22class Instruction;
23class Function;
24class MachineCodeForInstruction;
25
26//---------------------------------------------------------------------------
27// Data types used to define information about a single machine instruction
28//---------------------------------------------------------------------------
29
30typedef int MachineOpCode;
31typedef int OpCodeMask;
32typedef int InstrSchedClass;
33
34const MachineOpCode INVALID_MACHINE_OPCODE = -1;
35
36
37// Global variable holding an array of descriptors for machine instructions.
38// The actual object needs to be created separately for each target machine.
39// This variable is initialized and reset by class MachineInstrInfo.
40//
41// FIXME: This should be a property of the target so that more than one target
42// at a time can be active...
43//
44extern const MachineInstrDescriptor *TargetInstrDescriptors;
45
46
47//---------------------------------------------------------------------------
48// struct MachineInstrDescriptor:
49//	Predefined information about each machine instruction.
50//	Designed to initialized statically.
51//
52// class MachineInstructionInfo
53//	Interface to description of machine instructions
54//
55//---------------------------------------------------------------------------
56
57
58const unsigned int	M_NOP_FLAG		= 1;
59const unsigned int	M_BRANCH_FLAG		= 1 << 1;
60const unsigned int	M_CALL_FLAG		= 1 << 2;
61const unsigned int	M_RET_FLAG		= 1 << 3;
62const unsigned int	M_ARITH_FLAG		= 1 << 4;
63const unsigned int	M_CC_FLAG		= 1 << 6;
64const unsigned int	M_LOGICAL_FLAG		= 1 << 6;
65const unsigned int	M_INT_FLAG		= 1 << 7;
66const unsigned int	M_FLOAT_FLAG		= 1 << 8;
67const unsigned int	M_CONDL_FLAG		= 1 << 9;
68const unsigned int	M_LOAD_FLAG		= 1 << 10;
69const unsigned int	M_PREFETCH_FLAG		= 1 << 11;
70const unsigned int	M_STORE_FLAG		= 1 << 12;
71const unsigned int	M_DUMMY_PHI_FLAG	= 1 << 13;
72const unsigned int      M_PSEUDO_FLAG           = 1 << 14;
73
74
75struct MachineInstrDescriptor {
76  std::string     opCodeString;  // Assembly language mnemonic for the opcode.
77  int	          numOperands;   // Number of args; -1 if variable #args
78  int	          resultPos;     // Position of the result; -1 if no result
79  unsigned int	  maxImmedConst; // Largest +ve constant in IMMMED field or 0.
80  bool	          immedIsSignExtended; // Is IMMED field sign-extended? If so,
81				 //   smallest -ve value is -(maxImmedConst+1).
82  unsigned int    numDelaySlots; // Number of delay slots after instruction
83  unsigned int    latency;	 // Latency in machine cycles
84  InstrSchedClass schedClass;	 // enum  identifying instr sched class
85  unsigned int	  iclass;	 // flags identifying machine instr class
86};
87
88
89class MachineInstrInfo : public NonCopyableV {
90public:
91  const TargetMachine& target;
92
93protected:
94  const MachineInstrDescriptor* desc;	// raw array to allow static init'n
95  unsigned int descSize;		// number of entries in the desc array
96  unsigned int numRealOpCodes;		// number of non-dummy op codes
97
98public:
99  MachineInstrInfo(const TargetMachine& tgt,
100                   const MachineInstrDescriptor *desc, unsigned descSize,
101		   unsigned numRealOpCodes);
102  virtual ~MachineInstrInfo();
103
104  unsigned getNumRealOpCodes()  const { return numRealOpCodes; }
105  unsigned getNumTotalOpCodes() const { return descSize; }
106
107  const MachineInstrDescriptor& getDescriptor(MachineOpCode opCode) const {
108    assert(opCode >= 0 && opCode < (int)descSize);
109    return desc[opCode];
110  }
111
112  int getNumOperands(MachineOpCode opCode) const {
113    return getDescriptor(opCode).numOperands;
114  }
115
116  int getResultPos(MachineOpCode opCode) const {
117    return getDescriptor(opCode).resultPos;
118  }
119
120  unsigned getNumDelaySlots(MachineOpCode opCode) const {
121    return getDescriptor(opCode).numDelaySlots;
122  }
123
124  InstrSchedClass getSchedClass(MachineOpCode opCode) const {
125    return getDescriptor(opCode).schedClass;
126  }
127
128  //
129  // Query instruction class flags according to the machine-independent
130  // flags listed above.
131  //
132  unsigned int getIClass(MachineOpCode opCode) const {
133    return getDescriptor(opCode).iclass;
134  }
135  bool isNop(MachineOpCode opCode) const {
136    return getDescriptor(opCode).iclass & M_NOP_FLAG;
137  }
138  bool isBranch(MachineOpCode opCode) const {
139    return getDescriptor(opCode).iclass & M_BRANCH_FLAG;
140  }
141  bool isCall(MachineOpCode opCode) const {
142    return getDescriptor(opCode).iclass & M_CALL_FLAG;
143  }
144  bool isReturn(MachineOpCode opCode) const {
145    return getDescriptor(opCode).iclass & M_RET_FLAG;
146  }
147  bool isControlFlow(MachineOpCode opCode) const {
148    return getDescriptor(opCode).iclass & M_BRANCH_FLAG
149        || getDescriptor(opCode).iclass & M_CALL_FLAG
150        || getDescriptor(opCode).iclass & M_RET_FLAG;
151  }
152  bool isArith(MachineOpCode opCode) const {
153    return getDescriptor(opCode).iclass & M_RET_FLAG;
154  }
155  bool isCCInstr(MachineOpCode opCode) const {
156    return getDescriptor(opCode).iclass & M_CC_FLAG;
157  }
158  bool isLogical(MachineOpCode opCode) const {
159    return getDescriptor(opCode).iclass & M_LOGICAL_FLAG;
160  }
161  bool isIntInstr(MachineOpCode opCode) const {
162    return getDescriptor(opCode).iclass & M_INT_FLAG;
163  }
164  bool isFloatInstr(MachineOpCode opCode) const {
165    return getDescriptor(opCode).iclass & M_FLOAT_FLAG;
166  }
167  bool isConditional(MachineOpCode opCode) const {
168    return getDescriptor(opCode).iclass & M_CONDL_FLAG;
169  }
170  bool isLoad(MachineOpCode opCode) const {
171    return getDescriptor(opCode).iclass & M_LOAD_FLAG;
172  }
173  bool isPrefetch(MachineOpCode opCode) const {
174    return getDescriptor(opCode).iclass & M_PREFETCH_FLAG;
175  }
176  bool isLoadOrPrefetch(MachineOpCode opCode) const {
177    return getDescriptor(opCode).iclass & M_LOAD_FLAG
178        || getDescriptor(opCode).iclass & M_PREFETCH_FLAG;
179  }
180  bool isStore(MachineOpCode opCode) const {
181    return getDescriptor(opCode).iclass & M_STORE_FLAG;
182  }
183  bool isMemoryAccess(MachineOpCode opCode) const {
184    return getDescriptor(opCode).iclass & M_LOAD_FLAG
185        || getDescriptor(opCode).iclass & M_PREFETCH_FLAG
186        || getDescriptor(opCode).iclass & M_STORE_FLAG;
187  }
188  bool isDummyPhiInstr(const MachineOpCode opCode) const {
189    return getDescriptor(opCode).iclass & M_DUMMY_PHI_FLAG;
190  }
191  bool isPseudoInstr(const MachineOpCode opCode) const {
192    return getDescriptor(opCode).iclass & M_PSEUDO_FLAG;
193  }
194
195  // Check if an instruction can be issued before its operands are ready,
196  // or if a subsequent instruction that uses its result can be issued
197  // before the results are ready.
198  // Default to true since most instructions on many architectures allow this.
199  //
200  virtual bool hasOperandInterlock(MachineOpCode opCode) const {
201    return true;
202  }
203
204  virtual bool hasResultInterlock(MachineOpCode opCode) const {
205    return true;
206  }
207
208  //
209  // Latencies for individual instructions and instruction pairs
210  //
211  virtual int minLatency(MachineOpCode opCode) const {
212    return getDescriptor(opCode).latency;
213  }
214
215  virtual int maxLatency(MachineOpCode opCode) const {
216    return getDescriptor(opCode).latency;
217  }
218
219  //
220  // Which operand holds an immediate constant?  Returns -1 if none
221  //
222  virtual int getImmedConstantPos(MachineOpCode opCode) const {
223    return -1; // immediate position is machine specific, so say -1 == "none"
224  }
225
226  // Check if the specified constant fits in the immediate field
227  // of this machine instruction
228  //
229  virtual bool constantFitsInImmedField(MachineOpCode opCode,
230					int64_t intValue) const;
231
232  // Return the largest +ve constant that can be held in the IMMMED field
233  // of this machine instruction.
234  // isSignExtended is set to true if the value is sign-extended before use
235  // (this is true for all immediate fields in SPARC instructions).
236  // Return 0 if the instruction has no IMMED field.
237  //
238  virtual uint64_t maxImmedConstant(MachineOpCode opCode,
239				    bool &isSignExtended) const {
240    isSignExtended = getDescriptor(opCode).immedIsSignExtended;
241    return getDescriptor(opCode).maxImmedConst;
242  }
243
244  //-------------------------------------------------------------------------
245  // Queries about representation of LLVM quantities (e.g., constants)
246  //-------------------------------------------------------------------------
247
248  // Test if this type of constant must be loaded from memory into
249  // a register, i.e., cannot be set bitwise in register and cannot
250  // use immediate fields of instructions.  Note that this only makes
251  // sense for primitive types.
252  virtual bool ConstantTypeMustBeLoaded(const Constant* CV) const {
253    assert(CV->getType()->isPrimitiveType() || isa<PointerType>(CV->getType()));
254    return !(CV->getType()->isIntegral() || isa<PointerType>(CV->getType()));
255  }
256
257  // Test if this constant may not fit in the immediate field of the
258  // machine instructions (probably) generated for this instruction.
259  //
260  virtual bool ConstantMayNotFitInImmedField(const Constant* CV,
261                                             const Instruction* I) const {
262    return true;                        // safe but very conservative
263  }
264
265  //-------------------------------------------------------------------------
266  // Code generation support for creating individual machine instructions
267  //-------------------------------------------------------------------------
268
269  // Get certain common op codes for the current target.  this and all the
270  // Create* methods below should be moved to a machine code generation class
271  //
272  virtual MachineOpCode getNOPOpCode() const = 0;
273
274  // Create an instruction sequence to put the constant `val' into
275  // the virtual register `dest'.  `val' may be a Constant or a
276  // GlobalValue, viz., the constant address of a global variable or function.
277  // The generated instructions are returned in `mvec'.
278  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
279  // Symbolic constants or constants that must be accessed from memory
280  // are added to the constant pool via MachineCodeForMethod::get(F).
281  //
282  virtual void  CreateCodeToLoadConst(const TargetMachine& target,
283                                      Function* F,
284                                      Value* val,
285                                      Instruction* dest,
286                                      std::vector<MachineInstr*>& mvec,
287                                      MachineCodeForInstruction& mcfi) const=0;
288
289  // Create an instruction sequence to copy an integer value `val'
290  // to a floating point value `dest' by copying to memory and back.
291  // val must be an integral type.  dest must be a Float or Double.
292  // The generated instructions are returned in `mvec'.
293  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
294  // Any stack space required is allocated via mcff.
295  //
296  virtual void  CreateCodeToCopyIntToFloat(const TargetMachine& target,
297                                       Function* F,
298                                       Value* val,
299                                       Instruction* dest,
300                                       std::vector<MachineInstr*>& mvec,
301                                       MachineCodeForInstruction& mcfi)const=0;
302
303  // Similarly, create an instruction sequence to copy an FP value
304  // `val' to an integer value `dest' by copying to memory and back.
305  // The generated instructions are returned in `mvec'.
306  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
307  // Any stack space required is allocated via mcff.
308  //
309  virtual void  CreateCodeToCopyFloatToInt(const TargetMachine& target,
310                                       Function* F,
311                                       Value* val,
312                                       Instruction* dest,
313                                       std::vector<MachineInstr*>& mvec,
314                                       MachineCodeForInstruction& mcfi)const=0;
315
316  // Create instruction(s) to copy src to dest, for arbitrary types
317  // The generated instructions are returned in `mvec'.
318  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
319  // Any stack space required is allocated via mcff.
320  //
321  virtual void CreateCopyInstructionsByType(const TargetMachine& target,
322                                       Function* F,
323                                       Value* src,
324                                       Instruction* dest,
325                                       std::vector<MachineInstr*>& mvec,
326                                       MachineCodeForInstruction& mcfi)const=0;
327
328  // Create instruction sequence to produce a sign-extended register value
329  // from an arbitrary sized value (sized in bits, not bytes).
330  // The generated instructions are appended to `mvec'.
331  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
332  // Any stack space required is allocated via mcff.
333  //
334  virtual void CreateSignExtensionInstructions(const TargetMachine& target,
335                                       Function* F,
336                                       Value* srcVal,
337                                       Value* destVal,
338                                       unsigned int numLowBits,
339                                       std::vector<MachineInstr*>& mvec,
340                                       MachineCodeForInstruction& mcfi) const=0;
341
342  // Create instruction sequence to produce a zero-extended register value
343  // from an arbitrary sized value (sized in bits, not bytes).
344  // The generated instructions are appended to `mvec'.
345  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
346  // Any stack space required is allocated via mcff.
347  //
348  virtual void CreateZeroExtensionInstructions(const TargetMachine& target,
349                                       Function* F,
350                                       Value* srcVal,
351                                       Value* destVal,
352                                       unsigned int srcSizeInBits,
353                                       std::vector<MachineInstr*>& mvec,
354                                       MachineCodeForInstruction& mcfi) const=0;
355};
356
357#endif
358