TargetInstrInfo.h revision a01b58af85cebd7d7bcf94d48317f8cc8a4bdf57
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/MC/MCInstrInfo.h"
18#include "llvm/CodeGen/MachineFunction.h"
19
20namespace llvm {
21
22class InstrItineraryData;
23class LiveVariables;
24class MCAsmInfo;
25class MachineMemOperand;
26class MachineRegisterInfo;
27class MDNode;
28class MCInst;
29class SDNode;
30class ScheduleHazardRecognizer;
31class SelectionDAG;
32class ScheduleDAG;
33class TargetRegisterClass;
34class TargetRegisterInfo;
35
36template<class T> class SmallVectorImpl;
37
38
39//---------------------------------------------------------------------------
40///
41/// TargetInstrInfo - Interface to description of machine instruction set
42///
43class TargetInstrInfo : public MCInstrInfo {
44  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
45  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
46public:
47  TargetInstrInfo(const MCInstrDesc *desc, unsigned NumOpcodes,
48                  int CallFrameSetupOpcode = -1,
49                  int CallFrameDestroyOpcode = -1);
50  virtual ~TargetInstrInfo();
51
52  /// getRegClass - Givem a machine instruction descriptor, returns the register
53  /// class constraint for OpNum, or NULL.
54  const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
55                                         unsigned OpNum,
56                                         const TargetRegisterInfo *TRI) const;
57
58  /// isTriviallyReMaterializable - Return true if the instruction is trivially
59  /// rematerializable, meaning it has no side effects and requires no operands
60  /// that aren't always available.
61  bool isTriviallyReMaterializable(const MachineInstr *MI,
62                                   AliasAnalysis *AA = 0) const {
63    return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
64           (MI->getDesc().isRematerializable() &&
65            (isReallyTriviallyReMaterializable(MI, AA) ||
66             isReallyTriviallyReMaterializableGeneric(MI, AA)));
67  }
68
69protected:
70  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
71  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
72  /// specify whether the instruction is actually trivially rematerializable,
73  /// taking into consideration its operands. This predicate must return false
74  /// if the instruction has any side effects other than producing a value, or
75  /// if it requres any address registers that are not always available.
76  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
77                                                 AliasAnalysis *AA) const {
78    return false;
79  }
80
81private:
82  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
83  /// for which the M_REMATERIALIZABLE flag is set and the target hook
84  /// isReallyTriviallyReMaterializable returns false, this function does
85  /// target-independent tests to determine if the instruction is really
86  /// trivially rematerializable.
87  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
88                                                AliasAnalysis *AA) const;
89
90public:
91  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
92  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
93  /// targets use pseudo instructions in order to abstract away the difference
94  /// between operating with a frame pointer and operating without, through the
95  /// use of these two instructions.
96  ///
97  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
98  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
99
100  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
101  /// extension instruction. That is, it's like a copy where it's legal for the
102  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
103  /// true, then it's expected the pre-extension value is available as a subreg
104  /// of the result register. This also returns the sub-register index in
105  /// SubIdx.
106  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
107                                     unsigned &SrcReg, unsigned &DstReg,
108                                     unsigned &SubIdx) const {
109    return false;
110  }
111
112  /// isLoadFromStackSlot - If the specified machine instruction is a direct
113  /// load from a stack slot, return the virtual or physical register number of
114  /// the destination along with the FrameIndex of the loaded stack slot.  If
115  /// not, return 0.  This predicate must return 0 if the instruction has
116  /// any side effects other than loading from the stack slot.
117  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
118                                       int &FrameIndex) const {
119    return 0;
120  }
121
122  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
123  /// stack locations as well.  This uses a heuristic so it isn't
124  /// reliable for correctness.
125  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
126                                             int &FrameIndex) const {
127    return 0;
128  }
129
130  /// hasLoadFromStackSlot - If the specified machine instruction has
131  /// a load from a stack slot, return true along with the FrameIndex
132  /// of the loaded stack slot and the machine mem operand containing
133  /// the reference.  If not, return false.  Unlike
134  /// isLoadFromStackSlot, this returns true for any instructions that
135  /// loads from the stack.  This is just a hint, as some cases may be
136  /// missed.
137  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
138                                    const MachineMemOperand *&MMO,
139                                    int &FrameIndex) const {
140    return 0;
141  }
142
143  /// isStoreToStackSlot - If the specified machine instruction is a direct
144  /// store to a stack slot, return the virtual or physical register number of
145  /// the source reg along with the FrameIndex of the loaded stack slot.  If
146  /// not, return 0.  This predicate must return 0 if the instruction has
147  /// any side effects other than storing to the stack slot.
148  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
149                                      int &FrameIndex) const {
150    return 0;
151  }
152
153  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
154  /// stack locations as well.  This uses a heuristic so it isn't
155  /// reliable for correctness.
156  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
157                                            int &FrameIndex) const {
158    return 0;
159  }
160
161  /// hasStoreToStackSlot - If the specified machine instruction has a
162  /// store to a stack slot, return true along with the FrameIndex of
163  /// the loaded stack slot and the machine mem operand containing the
164  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
165  /// this returns true for any instructions that stores to the
166  /// stack.  This is just a hint, as some cases may be missed.
167  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
168                                   const MachineMemOperand *&MMO,
169                                   int &FrameIndex) const {
170    return 0;
171  }
172
173  /// reMaterialize - Re-issue the specified 'original' instruction at the
174  /// specific location targeting a new destination register.
175  /// The register in Orig->getOperand(0).getReg() will be substituted by
176  /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
177  /// SubIdx.
178  virtual void reMaterialize(MachineBasicBlock &MBB,
179                             MachineBasicBlock::iterator MI,
180                             unsigned DestReg, unsigned SubIdx,
181                             const MachineInstr *Orig,
182                             const TargetRegisterInfo &TRI) const = 0;
183
184  /// scheduleTwoAddrSource - Schedule the copy / re-mat of the source of the
185  /// two-addrss instruction inserted by two-address pass.
186  virtual void scheduleTwoAddrSource(MachineInstr *SrcMI,
187                                     MachineInstr *UseMI,
188                                     const TargetRegisterInfo &TRI) const {
189    // Do nothing.
190  }
191
192  /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
193  /// MachineFunction::CloneMachineInstr(), but the target may update operands
194  /// that are required to be unique.
195  ///
196  /// The instruction must be duplicable as indicated by isNotDuplicable().
197  virtual MachineInstr *duplicate(MachineInstr *Orig,
198                                  MachineFunction &MF) const = 0;
199
200  /// convertToThreeAddress - This method must be implemented by targets that
201  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
202  /// may be able to convert a two-address instruction into one or more true
203  /// three-address instructions on demand.  This allows the X86 target (for
204  /// example) to convert ADD and SHL instructions into LEA instructions if they
205  /// would require register copies due to two-addressness.
206  ///
207  /// This method returns a null pointer if the transformation cannot be
208  /// performed, otherwise it returns the last new instruction.
209  ///
210  virtual MachineInstr *
211  convertToThreeAddress(MachineFunction::iterator &MFI,
212                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
213    return 0;
214  }
215
216  /// commuteInstruction - If a target has any instructions that are
217  /// commutable but require converting to different instructions or making
218  /// non-trivial changes to commute them, this method can overloaded to do
219  /// that.  The default implementation simply swaps the commutable operands.
220  /// If NewMI is false, MI is modified in place and returned; otherwise, a
221  /// new machine instruction is created and returned.  Do not call this
222  /// method for a non-commutable instruction, but there may be some cases
223  /// where this method fails and returns null.
224  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
225                                           bool NewMI = false) const = 0;
226
227  /// findCommutedOpIndices - If specified MI is commutable, return the two
228  /// operand indices that would swap value. Return false if the instruction
229  /// is not in a form which this routine understands.
230  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
231                                     unsigned &SrcOpIdx2) const = 0;
232
233  /// produceSameValue - Return true if two machine instructions would produce
234  /// identical values. By default, this is only true when the two instructions
235  /// are deemed identical except for defs. If this function is called when the
236  /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
237  /// aggressive checks.
238  virtual bool produceSameValue(const MachineInstr *MI0,
239                                const MachineInstr *MI1,
240                                const MachineRegisterInfo *MRI = 0) const = 0;
241
242  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
243  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
244  /// implemented for a target).  Upon success, this returns false and returns
245  /// with the following information in various cases:
246  ///
247  /// 1. If this block ends with no branches (it just falls through to its succ)
248  ///    just return false, leaving TBB/FBB null.
249  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
250  ///    the destination block.
251  /// 3. If this block ends with a conditional branch and it falls through to a
252  ///    successor block, it sets TBB to be the branch destination block and a
253  ///    list of operands that evaluate the condition. These operands can be
254  ///    passed to other TargetInstrInfo methods to create new branches.
255  /// 4. If this block ends with a conditional branch followed by an
256  ///    unconditional branch, it returns the 'true' destination in TBB, the
257  ///    'false' destination in FBB, and a list of operands that evaluate the
258  ///    condition.  These operands can be passed to other TargetInstrInfo
259  ///    methods to create new branches.
260  ///
261  /// Note that RemoveBranch and InsertBranch must be implemented to support
262  /// cases where this method returns success.
263  ///
264  /// If AllowModify is true, then this routine is allowed to modify the basic
265  /// block (e.g. delete instructions after the unconditional branch).
266  ///
267  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
268                             MachineBasicBlock *&FBB,
269                             SmallVectorImpl<MachineOperand> &Cond,
270                             bool AllowModify = false) const {
271    return true;
272  }
273
274  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
275  /// This is only invoked in cases where AnalyzeBranch returns success. It
276  /// returns the number of instructions that were removed.
277  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
278    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
279    return 0;
280  }
281
282  /// InsertBranch - Insert branch code into the end of the specified
283  /// MachineBasicBlock.  The operands to this method are the same as those
284  /// returned by AnalyzeBranch.  This is only invoked in cases where
285  /// AnalyzeBranch returns success. It returns the number of instructions
286  /// inserted.
287  ///
288  /// It is also invoked by tail merging to add unconditional branches in
289  /// cases where AnalyzeBranch doesn't apply because there was no original
290  /// branch to analyze.  At least this much must be implemented, else tail
291  /// merging needs to be disabled.
292  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
293                                MachineBasicBlock *FBB,
294                                const SmallVectorImpl<MachineOperand> &Cond,
295                                DebugLoc DL) const {
296    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
297    return 0;
298  }
299
300  /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
301  /// after it, replacing it with an unconditional branch to NewDest. This is
302  /// used by the tail merging pass.
303  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
304                                       MachineBasicBlock *NewDest) const = 0;
305
306  /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
307  /// block at the specified instruction (i.e. instruction would be the start
308  /// of a new basic block).
309  virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
310                                   MachineBasicBlock::iterator MBBI) const {
311    return true;
312  }
313
314  /// isProfitableToIfCvt - Return true if it's profitable to predicate
315  /// instructions with accumulated instruction latency of "NumCycles"
316  /// of the specified basic block, where the probability of the instructions
317  /// being executed is given by Probability, and Confidence is a measure
318  /// of our confidence that it will be properly predicted.
319  virtual
320  bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCyles,
321                           unsigned ExtraPredCycles,
322                           float Probability, float Confidence) const {
323    return false;
324  }
325
326  /// isProfitableToIfCvt - Second variant of isProfitableToIfCvt, this one
327  /// checks for the case where two basic blocks from true and false path
328  /// of a if-then-else (diamond) are predicated on mutally exclusive
329  /// predicates, where the probability of the true path being taken is given
330  /// by Probability, and Confidence is a measure of our confidence that it
331  /// will be properly predicted.
332  virtual bool
333  isProfitableToIfCvt(MachineBasicBlock &TMBB,
334                      unsigned NumTCycles, unsigned ExtraTCycles,
335                      MachineBasicBlock &FMBB,
336                      unsigned NumFCycles, unsigned ExtraFCycles,
337                      float Probability, float Confidence) const {
338    return false;
339  }
340
341  /// isProfitableToDupForIfCvt - Return true if it's profitable for
342  /// if-converter to duplicate instructions of specified accumulated
343  /// instruction latencies in the specified MBB to enable if-conversion.
344  /// The probability of the instructions being executed is given by
345  /// Probability, and Confidence is a measure of our confidence that it
346  /// will be properly predicted.
347  virtual bool
348  isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCyles,
349                            float Probability, float Confidence) const {
350    return false;
351  }
352
353  /// copyPhysReg - Emit instructions to copy a pair of physical registers.
354  virtual void copyPhysReg(MachineBasicBlock &MBB,
355                           MachineBasicBlock::iterator MI, DebugLoc DL,
356                           unsigned DestReg, unsigned SrcReg,
357                           bool KillSrc) const {
358    assert(0 && "Target didn't implement TargetInstrInfo::copyPhysReg!");
359  }
360
361  /// storeRegToStackSlot - Store the specified register of the given register
362  /// class to the specified stack frame index. The store instruction is to be
363  /// added to the given machine basic block before the specified machine
364  /// instruction. If isKill is true, the register operand is the last use and
365  /// must be marked kill.
366  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
367                                   MachineBasicBlock::iterator MI,
368                                   unsigned SrcReg, bool isKill, int FrameIndex,
369                                   const TargetRegisterClass *RC,
370                                   const TargetRegisterInfo *TRI) const {
371  assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
372  }
373
374  /// loadRegFromStackSlot - Load the specified register of the given register
375  /// class from the specified stack frame index. The load instruction is to be
376  /// added to the given machine basic block before the specified machine
377  /// instruction.
378  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
379                                    MachineBasicBlock::iterator MI,
380                                    unsigned DestReg, int FrameIndex,
381                                    const TargetRegisterClass *RC,
382                                    const TargetRegisterInfo *TRI) const {
383  assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
384  }
385
386  /// emitFrameIndexDebugValue - Emit a target-dependent form of
387  /// DBG_VALUE encoding the address of a frame index.  Addresses would
388  /// normally be lowered the same way as other addresses on the target,
389  /// e.g. in load instructions.  For targets that do not support this
390  /// the debug info is simply lost.
391  /// If you add this for a target you should handle this DBG_VALUE in the
392  /// target-specific AsmPrinter code as well; you will probably get invalid
393  /// assembly output if you don't.
394  virtual MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
395                                                 int FrameIx,
396                                                 uint64_t Offset,
397                                                 const MDNode *MDPtr,
398                                                 DebugLoc dl) const {
399    return 0;
400  }
401
402  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
403  /// slot into the specified machine instruction for the specified operand(s).
404  /// If this is possible, a new instruction is returned with the specified
405  /// operand folded, otherwise NULL is returned.
406  /// The new instruction is inserted before MI, and the client is responsible
407  /// for removing the old instruction.
408  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
409                                  const SmallVectorImpl<unsigned> &Ops,
410                                  int FrameIndex) const;
411
412  /// foldMemoryOperand - Same as the previous version except it allows folding
413  /// of any load and store from / to any address, not just from a specific
414  /// stack slot.
415  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
416                                  const SmallVectorImpl<unsigned> &Ops,
417                                  MachineInstr* LoadMI) const;
418
419protected:
420  /// foldMemoryOperandImpl - Target-dependent implementation for
421  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
422  /// take care of adding a MachineMemOperand to the newly created instruction.
423  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
424                                          MachineInstr* MI,
425                                          const SmallVectorImpl<unsigned> &Ops,
426                                          int FrameIndex) const {
427    return 0;
428  }
429
430  /// foldMemoryOperandImpl - Target-dependent implementation for
431  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
432  /// take care of adding a MachineMemOperand to the newly created instruction.
433  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
434                                              MachineInstr* MI,
435                                          const SmallVectorImpl<unsigned> &Ops,
436                                              MachineInstr* LoadMI) const {
437    return 0;
438  }
439
440public:
441  /// canFoldMemoryOperand - Returns true for the specified load / store if
442  /// folding is possible.
443  virtual
444  bool canFoldMemoryOperand(const MachineInstr *MI,
445                            const SmallVectorImpl<unsigned> &Ops) const =0;
446
447  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
448  /// a store or a load and a store into two or more instruction. If this is
449  /// possible, returns true as well as the new instructions by reference.
450  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
451                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
452                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
453    return false;
454  }
455
456  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
457                                   SmallVectorImpl<SDNode*> &NewNodes) const {
458    return false;
459  }
460
461  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
462  /// instruction after load / store are unfolded from an instruction of the
463  /// specified opcode. It returns zero if the specified unfolding is not
464  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
465  /// index of the operand which will hold the register holding the loaded
466  /// value.
467  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
468                                      bool UnfoldLoad, bool UnfoldStore,
469                                      unsigned *LoadRegIndex = 0) const {
470    return 0;
471  }
472
473  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
474  /// to determine if two loads are loading from the same base address. It
475  /// should only return true if the base pointers are the same and the
476  /// only differences between the two addresses are the offset. It also returns
477  /// the offsets by reference.
478  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
479                                    int64_t &Offset1, int64_t &Offset2) const {
480    return false;
481  }
482
483  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
484  /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
485  /// be scheduled togther. On some targets if two loads are loading from
486  /// addresses in the same cache line, it's better if they are scheduled
487  /// together. This function takes two integers that represent the load offsets
488  /// from the common base address. It returns true if it decides it's desirable
489  /// to schedule the two loads together. "NumLoads" is the number of loads that
490  /// have already been scheduled after Load1.
491  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
492                                       int64_t Offset1, int64_t Offset2,
493                                       unsigned NumLoads) const {
494    return false;
495  }
496
497  /// ReverseBranchCondition - Reverses the branch condition of the specified
498  /// condition list, returning false on success and true if it cannot be
499  /// reversed.
500  virtual
501  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
502    return true;
503  }
504
505  /// insertNoop - Insert a noop into the instruction stream at the specified
506  /// point.
507  virtual void insertNoop(MachineBasicBlock &MBB,
508                          MachineBasicBlock::iterator MI) const;
509
510
511  /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
512  virtual void getNoopForMachoTarget(MCInst &NopInst) const {
513    // Default to just using 'nop' string.
514  }
515
516
517  /// isPredicated - Returns true if the instruction is already predicated.
518  ///
519  virtual bool isPredicated(const MachineInstr *MI) const {
520    return false;
521  }
522
523  /// isUnpredicatedTerminator - Returns true if the instruction is a
524  /// terminator instruction that has not been predicated.
525  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
526
527  /// PredicateInstruction - Convert the instruction into a predicated
528  /// instruction. It returns true if the operation was successful.
529  virtual
530  bool PredicateInstruction(MachineInstr *MI,
531                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
532
533  /// SubsumesPredicate - Returns true if the first specified predicate
534  /// subsumes the second, e.g. GE subsumes GT.
535  virtual
536  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
537                         const SmallVectorImpl<MachineOperand> &Pred2) const {
538    return false;
539  }
540
541  /// DefinesPredicate - If the specified instruction defines any predicate
542  /// or condition code register(s) used for predication, returns true as well
543  /// as the definition predicate(s) by reference.
544  virtual bool DefinesPredicate(MachineInstr *MI,
545                                std::vector<MachineOperand> &Pred) const {
546    return false;
547  }
548
549  /// isPredicable - Return true if the specified instruction can be predicated.
550  /// By default, this returns true for every instruction with a
551  /// PredicateOperand.
552  virtual bool isPredicable(MachineInstr *MI) const {
553    return MI->getDesc().isPredicable();
554  }
555
556  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
557  /// instruction that defines the specified register class.
558  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
559    return true;
560  }
561
562  /// isSchedulingBoundary - Test if the given instruction should be
563  /// considered a scheduling boundary. This primarily includes labels and
564  /// terminators.
565  virtual bool isSchedulingBoundary(const MachineInstr *MI,
566                                    const MachineBasicBlock *MBB,
567                                    const MachineFunction &MF) const = 0;
568
569  /// Measure the specified inline asm to determine an approximation of its
570  /// length.
571  virtual unsigned getInlineAsmLength(const char *Str,
572                                      const MCAsmInfo &MAI) const;
573
574  /// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer to
575  /// use for this target when scheduling the machine instructions before
576  /// register allocation.
577  virtual ScheduleHazardRecognizer*
578  CreateTargetHazardRecognizer(const TargetMachine *TM,
579                               const ScheduleDAG *DAG) const = 0;
580
581  /// CreateTargetPostRAHazardRecognizer - Allocate and return a hazard
582  /// recognizer to use for this target when scheduling the machine instructions
583  /// after register allocation.
584  virtual ScheduleHazardRecognizer*
585  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
586                                     const ScheduleDAG *DAG) const = 0;
587
588  /// AnalyzeCompare - For a comparison instruction, return the source register
589  /// in SrcReg and the value it compares against in CmpValue. Return true if
590  /// the comparison instruction can be analyzed.
591  virtual bool AnalyzeCompare(const MachineInstr *MI,
592                              unsigned &SrcReg, int &Mask, int &Value) const {
593    return false;
594  }
595
596  /// OptimizeCompareInstr - See if the comparison instruction can be converted
597  /// into something more efficient. E.g., on ARM most instructions can set the
598  /// flags register, obviating the need for a separate CMP.
599  virtual bool OptimizeCompareInstr(MachineInstr *CmpInstr,
600                                    unsigned SrcReg, int Mask, int Value,
601                                    const MachineRegisterInfo *MRI) const {
602    return false;
603  }
604
605  /// FoldImmediate - 'Reg' is known to be defined by a move immediate
606  /// instruction, try to fold the immediate into the use instruction.
607  virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
608                             unsigned Reg, MachineRegisterInfo *MRI) const {
609    return false;
610  }
611
612  /// getNumMicroOps - Return the number of u-operations the given machine
613  /// instruction will be decoded to on the target cpu.
614  virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
615                                  const MachineInstr *MI) const;
616
617  /// isZeroCost - Return true for pseudo instructions that don't consume any
618  /// machine resources in their current form. These are common cases that the
619  /// scheduler should consider free, rather than conservatively handling them
620  /// as instructions with no itinerary.
621  bool isZeroCost(unsigned Opcode) const {
622    return Opcode <= TargetOpcode::COPY;
623  }
624
625  /// getOperandLatency - Compute and return the use operand latency of a given
626  /// pair of def and use.
627  /// In most cases, the static scheduling itinerary was enough to determine the
628  /// operand latency. But it may not be possible for instructions with variable
629  /// number of defs / uses.
630  virtual int getOperandLatency(const InstrItineraryData *ItinData,
631                              const MachineInstr *DefMI, unsigned DefIdx,
632                              const MachineInstr *UseMI, unsigned UseIdx) const;
633
634  virtual int getOperandLatency(const InstrItineraryData *ItinData,
635                                SDNode *DefNode, unsigned DefIdx,
636                                SDNode *UseNode, unsigned UseIdx) const;
637
638  /// getInstrLatency - Compute the instruction latency of a given instruction.
639  /// If the instruction has higher cost when predicated, it's returned via
640  /// PredCost.
641  virtual int getInstrLatency(const InstrItineraryData *ItinData,
642                              const MachineInstr *MI,
643                              unsigned *PredCost = 0) const;
644
645  virtual int getInstrLatency(const InstrItineraryData *ItinData,
646                              SDNode *Node) const;
647
648  /// isHighLatencyDef - Return true if this opcode has high latency to its
649  /// result.
650  virtual bool isHighLatencyDef(int opc) const { return false; }
651
652  /// hasHighOperandLatency - Compute operand latency between a def of 'Reg'
653  /// and an use in the current loop, return true if the target considered
654  /// it 'high'. This is used by optimization passes such as machine LICM to
655  /// determine whether it makes sense to hoist an instruction out even in
656  /// high register pressure situation.
657  virtual
658  bool hasHighOperandLatency(const InstrItineraryData *ItinData,
659                             const MachineRegisterInfo *MRI,
660                             const MachineInstr *DefMI, unsigned DefIdx,
661                             const MachineInstr *UseMI, unsigned UseIdx) const {
662    return false;
663  }
664
665  /// hasLowDefLatency - Compute operand latency of a def of 'Reg', return true
666  /// if the target considered it 'low'.
667  virtual
668  bool hasLowDefLatency(const InstrItineraryData *ItinData,
669                        const MachineInstr *DefMI, unsigned DefIdx) const;
670
671private:
672  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
673};
674
675/// TargetInstrInfoImpl - This is the default implementation of
676/// TargetInstrInfo, which just provides a couple of default implementations
677/// for various methods.  This separated out because it is implemented in
678/// libcodegen, not in libtarget.
679class TargetInstrInfoImpl : public TargetInstrInfo {
680protected:
681  TargetInstrInfoImpl(const MCInstrDesc *desc, unsigned NumOpcodes,
682                      int CallFrameSetupOpcode = -1,
683                      int CallFrameDestroyOpcode = -1)
684    : TargetInstrInfo(desc, NumOpcodes,
685                      CallFrameSetupOpcode, CallFrameDestroyOpcode) {}
686public:
687  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
688                                       MachineBasicBlock *NewDest) const;
689  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
690                                           bool NewMI = false) const;
691  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
692                                     unsigned &SrcOpIdx2) const;
693  virtual bool canFoldMemoryOperand(const MachineInstr *MI,
694                                    const SmallVectorImpl<unsigned> &Ops) const;
695  virtual bool PredicateInstruction(MachineInstr *MI,
696                            const SmallVectorImpl<MachineOperand> &Pred) const;
697  virtual void reMaterialize(MachineBasicBlock &MBB,
698                             MachineBasicBlock::iterator MI,
699                             unsigned DestReg, unsigned SubReg,
700                             const MachineInstr *Orig,
701                             const TargetRegisterInfo &TRI) const;
702  virtual MachineInstr *duplicate(MachineInstr *Orig,
703                                  MachineFunction &MF) const;
704  virtual bool produceSameValue(const MachineInstr *MI0,
705                                const MachineInstr *MI1,
706                                const MachineRegisterInfo *MRI) const;
707  virtual bool isSchedulingBoundary(const MachineInstr *MI,
708                                    const MachineBasicBlock *MBB,
709                                    const MachineFunction &MF) const;
710
711  bool usePreRAHazardRecognizer() const;
712
713  virtual ScheduleHazardRecognizer *
714  CreateTargetHazardRecognizer(const TargetMachine*, const ScheduleDAG*) const;
715
716  virtual ScheduleHazardRecognizer *
717  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
718                                     const ScheduleDAG*) const;
719};
720
721} // End llvm namespace
722
723#endif
724