TargetInstrInfo.h revision a5a81d70720a4ce6ac7538927c2a874b0dfa8bd2
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/Target/TargetInstrDesc.h"
18#include "llvm/CodeGen/MachineFunction.h"
19
20namespace llvm {
21
22class MCAsmInfo;
23class TargetRegisterClass;
24class TargetRegisterInfo;
25class LiveVariables;
26class CalleeSavedInfo;
27class SDNode;
28class SelectionDAG;
29class MachineMemOperand;
30
31template<class T> class SmallVectorImpl;
32
33
34//---------------------------------------------------------------------------
35///
36/// TargetInstrInfo - Interface to description of machine instruction set
37///
38class TargetInstrInfo {
39  const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
40  unsigned NumOpcodes;                // Number of entries in the desc array
41
42  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
43  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
44public:
45  TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
46  virtual ~TargetInstrInfo();
47
48  // Invariant opcodes: All instruction sets have these as their low opcodes.
49  enum {
50    PHI = 0,
51    INLINEASM = 1,
52    DBG_LABEL = 2,
53    EH_LABEL = 3,
54    GC_LABEL = 4,
55
56    /// KILL - This instruction is a noop that is used only to adjust the liveness
57    /// of registers. This can be useful when dealing with sub-registers.
58    KILL = 5,
59
60    /// EXTRACT_SUBREG - This instruction takes two operands: a register
61    /// that has subregisters, and a subregister index. It returns the
62    /// extracted subregister value. This is commonly used to implement
63    /// truncation operations on target architectures which support it.
64    EXTRACT_SUBREG = 6,
65
66    /// INSERT_SUBREG - This instruction takes three operands: a register
67    /// that has subregisters, a register providing an insert value, and a
68    /// subregister index. It returns the value of the first register with
69    /// the value of the second register inserted. The first register is
70    /// often defined by an IMPLICIT_DEF, as is commonly used to implement
71    /// anyext operations on target architectures which support it.
72    INSERT_SUBREG = 7,
73
74    /// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
75    IMPLICIT_DEF = 8,
76
77    /// SUBREG_TO_REG - This instruction is similar to INSERT_SUBREG except
78    /// that the first operand is an immediate integer constant. This constant
79    /// is often zero, as is commonly used to implement zext operations on
80    /// target architectures which support it, such as with x86-64 (with
81    /// zext from i32 to i64 via implicit zero-extension).
82    SUBREG_TO_REG = 9,
83
84    /// COPY_TO_REGCLASS - This instruction is a placeholder for a plain
85    /// register-to-register copy into a specific register class. This is only
86    /// used between instruction selection and MachineInstr creation, before
87    /// virtual registers have been created for all the instructions, and it's
88    /// only needed in cases where the register classes implied by the
89    /// instructions are insufficient. The actual MachineInstrs to perform
90    /// the copy are emitted with the TargetInstrInfo::copyRegToReg hook.
91    COPY_TO_REGCLASS = 10,
92
93    // DEBUG_VALUE - a mapping of the llvm.dbg.value intrinsic
94    DEBUG_VALUE = 11,
95
96    // DEBUG_DECLARE - a mapping of the llvm.dbg.declare intrinsic
97    DEBUG_DECLARE = 12
98  };
99
100  unsigned getNumOpcodes() const { return NumOpcodes; }
101
102  /// get - Return the machine instruction descriptor that corresponds to the
103  /// specified instruction opcode.
104  ///
105  const TargetInstrDesc &get(unsigned Opcode) const {
106    assert(Opcode < NumOpcodes && "Invalid opcode!");
107    return Descriptors[Opcode];
108  }
109
110  /// isTriviallyReMaterializable - Return true if the instruction is trivially
111  /// rematerializable, meaning it has no side effects and requires no operands
112  /// that aren't always available.
113  bool isTriviallyReMaterializable(const MachineInstr *MI,
114                                   AliasAnalysis *AA = 0) const {
115    return MI->getOpcode() == IMPLICIT_DEF ||
116           (MI->getDesc().isRematerializable() &&
117            (isReallyTriviallyReMaterializable(MI, AA) ||
118             isReallyTriviallyReMaterializableGeneric(MI, AA)));
119  }
120
121protected:
122  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
123  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
124  /// specify whether the instruction is actually trivially rematerializable,
125  /// taking into consideration its operands. This predicate must return false
126  /// if the instruction has any side effects other than producing a value, or
127  /// if it requres any address registers that are not always available.
128  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
129                                                 AliasAnalysis *AA) const {
130    return false;
131  }
132
133private:
134  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
135  /// for which the M_REMATERIALIZABLE flag is set and the target hook
136  /// isReallyTriviallyReMaterializable returns false, this function does
137  /// target-independent tests to determine if the instruction is really
138  /// trivially rematerializable.
139  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
140                                                AliasAnalysis *AA) const;
141
142public:
143  /// isMoveInstr - Return true if the instruction is a register to register
144  /// move and return the source and dest operands and their sub-register
145  /// indices by reference.
146  virtual bool isMoveInstr(const MachineInstr& MI,
147                           unsigned& SrcReg, unsigned& DstReg,
148                           unsigned& SrcSubIdx, unsigned& DstSubIdx) const {
149    return false;
150  }
151
152  /// isCoalescableInstr - Return true if the instruction is "coalescable". That
153  /// is, it's like a copy where it's legal for the source to overlap the
154  /// destination. e.g. X86::MOVSX64rr32.
155  virtual bool isCoalescableInstr(const MachineInstr &MI, bool &isCopy,
156                               unsigned &SrcReg, unsigned &DstReg,
157                               unsigned &SrcSubIdx, unsigned &DstSubIdx) const {
158    if (isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
159      isCopy = true;
160      return true;
161    }
162    return false;
163  }
164
165  /// isIdentityCopy - Return true if the instruction is a copy (or
166  /// extract_subreg, insert_subreg, subreg_to_reg) where the source and
167  /// destination registers are the same.
168  bool isIdentityCopy(const MachineInstr &MI) const {
169    unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
170    if (isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
171        SrcReg == DstReg)
172      return true;
173
174    if (MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG &&
175        MI.getOperand(0).getReg() == MI.getOperand(1).getReg())
176    return true;
177
178    if ((MI.getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
179         MI.getOpcode() == TargetInstrInfo::SUBREG_TO_REG) &&
180        MI.getOperand(0).getReg() == MI.getOperand(2).getReg())
181      return true;
182    return false;
183  }
184
185  /// isLoadFromStackSlot - If the specified machine instruction is a direct
186  /// load from a stack slot, return the virtual or physical register number of
187  /// the destination along with the FrameIndex of the loaded stack slot.  If
188  /// not, return 0.  This predicate must return 0 if the instruction has
189  /// any side effects other than loading from the stack slot.
190  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
191                                       int &FrameIndex) const {
192    return 0;
193  }
194
195  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
196  /// stack locations as well.  This uses a heuristic so it isn't
197  /// reliable for correctness.
198  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
199                                             int &FrameIndex) const {
200    return 0;
201  }
202
203  /// hasLoadFromStackSlot - If the specified machine instruction has
204  /// a load from a stack slot, return true along with the FrameIndex
205  /// of the loaded stack slot and the machine mem operand containing
206  /// the reference.  If not, return false.  Unlike
207  /// isLoadFromStackSlot, this returns true for any instructions that
208  /// loads from the stack.  This is just a hint, as some cases may be
209  /// missed.
210  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
211                                    const MachineMemOperand *&MMO,
212                                    int &FrameIndex) const {
213    return 0;
214  }
215
216  /// isStoreToStackSlot - If the specified machine instruction is a direct
217  /// store to a stack slot, return the virtual or physical register number of
218  /// the source reg along with the FrameIndex of the loaded stack slot.  If
219  /// not, return 0.  This predicate must return 0 if the instruction has
220  /// any side effects other than storing to the stack slot.
221  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
222                                      int &FrameIndex) const {
223    return 0;
224  }
225
226  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
227  /// stack locations as well.  This uses a heuristic so it isn't
228  /// reliable for correctness.
229  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
230                                            int &FrameIndex) const {
231    return 0;
232  }
233
234  /// hasStoreToStackSlot - If the specified machine instruction has a
235  /// store to a stack slot, return true along with the FrameIndex of
236  /// the loaded stack slot and the machine mem operand containing the
237  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
238  /// this returns true for any instructions that loads from the
239  /// stack.  This is just a hint, as some cases may be missed.
240  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
241                                   const MachineMemOperand *&MMO,
242                                   int &FrameIndex) const {
243    return 0;
244  }
245
246  /// reMaterialize - Re-issue the specified 'original' instruction at the
247  /// specific location targeting a new destination register.
248  virtual void reMaterialize(MachineBasicBlock &MBB,
249                             MachineBasicBlock::iterator MI,
250                             unsigned DestReg, unsigned SubIdx,
251                             const MachineInstr *Orig,
252                             const TargetRegisterInfo *TRI) const = 0;
253
254  /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
255  /// MachineFunction::CloneMachineInstr(), but the target may update operands
256  /// that are required to be unique.
257  ///
258  /// The instruction must be duplicable as indicated by isNotDuplicable().
259  virtual MachineInstr *duplicate(MachineInstr *Orig,
260                                  MachineFunction &MF) const = 0;
261
262  /// convertToThreeAddress - This method must be implemented by targets that
263  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
264  /// may be able to convert a two-address instruction into one or more true
265  /// three-address instructions on demand.  This allows the X86 target (for
266  /// example) to convert ADD and SHL instructions into LEA instructions if they
267  /// would require register copies due to two-addressness.
268  ///
269  /// This method returns a null pointer if the transformation cannot be
270  /// performed, otherwise it returns the last new instruction.
271  ///
272  virtual MachineInstr *
273  convertToThreeAddress(MachineFunction::iterator &MFI,
274                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
275    return 0;
276  }
277
278  /// commuteInstruction - If a target has any instructions that are commutable,
279  /// but require converting to a different instruction or making non-trivial
280  /// changes to commute them, this method can overloaded to do this.  The
281  /// default implementation of this method simply swaps the first two operands
282  /// of MI and returns it.
283  ///
284  /// If a target wants to make more aggressive changes, they can construct and
285  /// return a new machine instruction.  If an instruction cannot commute, it
286  /// can also return null.
287  ///
288  /// If NewMI is true, then a new machine instruction must be created.
289  ///
290  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
291                                           bool NewMI = false) const = 0;
292
293  /// findCommutedOpIndices - If specified MI is commutable, return the two
294  /// operand indices that would swap value. Return true if the instruction
295  /// is not in a form which this routine understands.
296  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
297                                     unsigned &SrcOpIdx2) const = 0;
298
299  /// isIdentical - Return true if two instructions are identical. This differs
300  /// from MachineInstr::isIdenticalTo() in that it does not require the
301  /// virtual destination registers to be the same. This is used by MachineLICM
302  /// and other MI passes to perform CSE.
303  virtual bool isIdentical(const MachineInstr *MI,
304                           const MachineInstr *Other,
305                           const MachineRegisterInfo *MRI) const = 0;
306
307  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
308  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
309  /// implemented for a target).  Upon success, this returns false and returns
310  /// with the following information in various cases:
311  ///
312  /// 1. If this block ends with no branches (it just falls through to its succ)
313  ///    just return false, leaving TBB/FBB null.
314  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
315  ///    the destination block.
316  /// 3. If this block ends with a conditional branch and it falls through to a
317  ///    successor block, it sets TBB to be the branch destination block and a
318  ///    list of operands that evaluate the condition. These operands can be
319  ///    passed to other TargetInstrInfo methods to create new branches.
320  /// 4. If this block ends with a conditional branch followed by an
321  ///    unconditional branch, it returns the 'true' destination in TBB, the
322  ///    'false' destination in FBB, and a list of operands that evaluate the
323  ///    condition.  These operands can be passed to other TargetInstrInfo
324  ///    methods to create new branches.
325  ///
326  /// Note that RemoveBranch and InsertBranch must be implemented to support
327  /// cases where this method returns success.
328  ///
329  /// If AllowModify is true, then this routine is allowed to modify the basic
330  /// block (e.g. delete instructions after the unconditional branch).
331  ///
332  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
333                             MachineBasicBlock *&FBB,
334                             SmallVectorImpl<MachineOperand> &Cond,
335                             bool AllowModify = false) const {
336    return true;
337  }
338
339  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
340  /// This is only invoked in cases where AnalyzeBranch returns success. It
341  /// returns the number of instructions that were removed.
342  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
343    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
344    return 0;
345  }
346
347  /// InsertBranch - Insert branch code into the end of the specified
348  /// MachineBasicBlock.  The operands to this method are the same as those
349  /// returned by AnalyzeBranch.  This is only invoked in cases where
350  /// AnalyzeBranch returns success. It returns the number of instructions
351  /// inserted.
352  ///
353  /// It is also invoked by tail merging to add unconditional branches in
354  /// cases where AnalyzeBranch doesn't apply because there was no original
355  /// branch to analyze.  At least this much must be implemented, else tail
356  /// merging needs to be disabled.
357  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
358                            MachineBasicBlock *FBB,
359                            const SmallVectorImpl<MachineOperand> &Cond) const {
360    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
361    return 0;
362  }
363
364  /// copyRegToReg - Emit instructions to copy between a pair of registers. It
365  /// returns false if the target does not how to copy between the specified
366  /// registers.
367  virtual bool copyRegToReg(MachineBasicBlock &MBB,
368                            MachineBasicBlock::iterator MI,
369                            unsigned DestReg, unsigned SrcReg,
370                            const TargetRegisterClass *DestRC,
371                            const TargetRegisterClass *SrcRC) const {
372    assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!");
373    return false;
374  }
375
376  /// storeRegToStackSlot - Store the specified register of the given register
377  /// class to the specified stack frame index. The store instruction is to be
378  /// added to the given machine basic block before the specified machine
379  /// instruction. If isKill is true, the register operand is the last use and
380  /// must be marked kill.
381  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
382                                   MachineBasicBlock::iterator MI,
383                                   unsigned SrcReg, bool isKill, int FrameIndex,
384                                   const TargetRegisterClass *RC) const {
385    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
386  }
387
388  /// loadRegFromStackSlot - Load the specified register of the given register
389  /// class from the specified stack frame index. The load instruction is to be
390  /// added to the given machine basic block before the specified machine
391  /// instruction.
392  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
393                                    MachineBasicBlock::iterator MI,
394                                    unsigned DestReg, int FrameIndex,
395                                    const TargetRegisterClass *RC) const {
396    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
397  }
398
399  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
400  /// saved registers and returns true if it isn't possible / profitable to do
401  /// so by issuing a series of store instructions via
402  /// storeRegToStackSlot(). Returns false otherwise.
403  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
404                                         MachineBasicBlock::iterator MI,
405                                const std::vector<CalleeSavedInfo> &CSI) const {
406    return false;
407  }
408
409  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
410  /// saved registers and returns true if it isn't possible / profitable to do
411  /// so by issuing a series of load instructions via loadRegToStackSlot().
412  /// Returns false otherwise.
413  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
414                                           MachineBasicBlock::iterator MI,
415                                const std::vector<CalleeSavedInfo> &CSI) const {
416    return false;
417  }
418
419  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
420  /// slot into the specified machine instruction for the specified operand(s).
421  /// If this is possible, a new instruction is returned with the specified
422  /// operand folded, otherwise NULL is returned. The client is responsible for
423  /// removing the old instruction and adding the new one in the instruction
424  /// stream.
425  MachineInstr* foldMemoryOperand(MachineFunction &MF,
426                                  MachineInstr* MI,
427                                  const SmallVectorImpl<unsigned> &Ops,
428                                  int FrameIndex) const;
429
430  /// foldMemoryOperand - Same as the previous version except it allows folding
431  /// of any load and store from / to any address, not just from a specific
432  /// stack slot.
433  MachineInstr* foldMemoryOperand(MachineFunction &MF,
434                                  MachineInstr* MI,
435                                  const SmallVectorImpl<unsigned> &Ops,
436                                  MachineInstr* LoadMI) const;
437
438protected:
439  /// foldMemoryOperandImpl - Target-dependent implementation for
440  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
441  /// take care of adding a MachineMemOperand to the newly created instruction.
442  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
443                                          MachineInstr* MI,
444                                          const SmallVectorImpl<unsigned> &Ops,
445                                          int FrameIndex) const {
446    return 0;
447  }
448
449  /// foldMemoryOperandImpl - Target-dependent implementation for
450  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
451  /// take care of adding a MachineMemOperand to the newly created instruction.
452  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
453                                              MachineInstr* MI,
454                                              const SmallVectorImpl<unsigned> &Ops,
455                                              MachineInstr* LoadMI) const {
456    return 0;
457  }
458
459public:
460  /// canFoldMemoryOperand - Returns true for the specified load / store if
461  /// folding is possible.
462  virtual
463  bool canFoldMemoryOperand(const MachineInstr *MI,
464                            const SmallVectorImpl<unsigned> &Ops) const {
465    return false;
466  }
467
468  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
469  /// a store or a load and a store into two or more instruction. If this is
470  /// possible, returns true as well as the new instructions by reference.
471  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
472                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
473                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
474    return false;
475  }
476
477  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
478                                   SmallVectorImpl<SDNode*> &NewNodes) const {
479    return false;
480  }
481
482  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
483  /// instruction after load / store are unfolded from an instruction of the
484  /// specified opcode. It returns zero if the specified unfolding is not
485  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
486  /// index of the operand which will hold the register holding the loaded
487  /// value.
488  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
489                                      bool UnfoldLoad, bool UnfoldStore,
490                                      unsigned *LoadRegIndex = 0) const {
491    return 0;
492  }
493
494  /// ReverseBranchCondition - Reverses the branch condition of the specified
495  /// condition list, returning false on success and true if it cannot be
496  /// reversed.
497  virtual
498  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
499    return true;
500  }
501
502  /// insertNoop - Insert a noop into the instruction stream at the specified
503  /// point.
504  virtual void insertNoop(MachineBasicBlock &MBB,
505                          MachineBasicBlock::iterator MI) const;
506
507  /// isPredicated - Returns true if the instruction is already predicated.
508  ///
509  virtual bool isPredicated(const MachineInstr *MI) const {
510    return false;
511  }
512
513  /// isUnpredicatedTerminator - Returns true if the instruction is a
514  /// terminator instruction that has not been predicated.
515  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
516
517  /// PredicateInstruction - Convert the instruction into a predicated
518  /// instruction. It returns true if the operation was successful.
519  virtual
520  bool PredicateInstruction(MachineInstr *MI,
521                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
522
523  /// SubsumesPredicate - Returns true if the first specified predicate
524  /// subsumes the second, e.g. GE subsumes GT.
525  virtual
526  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
527                         const SmallVectorImpl<MachineOperand> &Pred2) const {
528    return false;
529  }
530
531  /// DefinesPredicate - If the specified instruction defines any predicate
532  /// or condition code register(s) used for predication, returns true as well
533  /// as the definition predicate(s) by reference.
534  virtual bool DefinesPredicate(MachineInstr *MI,
535                                std::vector<MachineOperand> &Pred) const {
536    return false;
537  }
538
539  /// isPredicable - Return true if the specified instruction can be predicated.
540  /// By default, this returns true for every instruction with a
541  /// PredicateOperand.
542  virtual bool isPredicable(MachineInstr *MI) const {
543    return MI->getDesc().isPredicable();
544  }
545
546  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
547  /// instruction that defines the specified register class.
548  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
549    return true;
550  }
551
552  /// GetInstSize - Returns the size of the specified Instruction.
553  ///
554  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const {
555    assert(0 && "Target didn't implement TargetInstrInfo::GetInstSize!");
556    return 0;
557  }
558
559  /// GetFunctionSizeInBytes - Returns the size of the specified
560  /// MachineFunction.
561  ///
562  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const = 0;
563
564  /// Measure the specified inline asm to determine an approximation of its
565  /// length.
566  virtual unsigned getInlineAsmLength(const char *Str,
567                                      const MCAsmInfo &MAI) const;
568};
569
570/// TargetInstrInfoImpl - This is the default implementation of
571/// TargetInstrInfo, which just provides a couple of default implementations
572/// for various methods.  This separated out because it is implemented in
573/// libcodegen, not in libtarget.
574class TargetInstrInfoImpl : public TargetInstrInfo {
575protected:
576  TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
577  : TargetInstrInfo(desc, NumOpcodes) {}
578public:
579  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
580                                           bool NewMI = false) const;
581  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
582                                     unsigned &SrcOpIdx2) const;
583  virtual bool PredicateInstruction(MachineInstr *MI,
584                            const SmallVectorImpl<MachineOperand> &Pred) const;
585  virtual void reMaterialize(MachineBasicBlock &MBB,
586                             MachineBasicBlock::iterator MI,
587                             unsigned DestReg, unsigned SubReg,
588                             const MachineInstr *Orig,
589                             const TargetRegisterInfo *TRI) const;
590  virtual MachineInstr *duplicate(MachineInstr *Orig,
591                                  MachineFunction &MF) const;
592  virtual bool isIdentical(const MachineInstr *MI,
593                           const MachineInstr *Other,
594                           const MachineRegisterInfo *MRI) const;
595
596  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const;
597};
598
599} // End llvm namespace
600
601#endif
602