TargetInstrInfo.h revision b87bc95db075dae3033a3c541b55b4cb711c332c
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/Target/TargetInstrDesc.h"
18#include "llvm/CodeGen/MachineFunction.h"
19
20namespace llvm {
21
22class MCAsmInfo;
23class TargetRegisterClass;
24class LiveVariables;
25class CalleeSavedInfo;
26class SDNode;
27class SelectionDAG;
28
29template<class T> class SmallVectorImpl;
30
31
32//---------------------------------------------------------------------------
33///
34/// TargetInstrInfo - Interface to description of machine instruction set
35///
36class TargetInstrInfo {
37  const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
38  unsigned NumOpcodes;                // Number of entries in the desc array
39
40  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
41  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
42public:
43  TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
44  virtual ~TargetInstrInfo();
45
46  // Invariant opcodes: All instruction sets have these as their low opcodes.
47  enum {
48    PHI = 0,
49    INLINEASM = 1,
50    DBG_LABEL = 2,
51    EH_LABEL = 3,
52    GC_LABEL = 4,
53
54    /// KILL - This instruction is a noop that is used only to adjust the liveness
55    /// of registers. This can be useful when dealing with sub-registers.
56    KILL = 5,
57
58    /// EXTRACT_SUBREG - This instruction takes two operands: a register
59    /// that has subregisters, and a subregister index. It returns the
60    /// extracted subregister value. This is commonly used to implement
61    /// truncation operations on target architectures which support it.
62    EXTRACT_SUBREG = 6,
63
64    /// INSERT_SUBREG - This instruction takes three operands: a register
65    /// that has subregisters, a register providing an insert value, and a
66    /// subregister index. It returns the value of the first register with
67    /// the value of the second register inserted. The first register is
68    /// often defined by an IMPLICIT_DEF, as is commonly used to implement
69    /// anyext operations on target architectures which support it.
70    INSERT_SUBREG = 7,
71
72    /// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
73    IMPLICIT_DEF = 8,
74
75    /// SUBREG_TO_REG - This instruction is similar to INSERT_SUBREG except
76    /// that the first operand is an immediate integer constant. This constant
77    /// is often zero, as is commonly used to implement zext operations on
78    /// target architectures which support it, such as with x86-64 (with
79    /// zext from i32 to i64 via implicit zero-extension).
80    SUBREG_TO_REG = 9,
81
82    /// COPY_TO_REGCLASS - This instruction is a placeholder for a plain
83    /// register-to-register copy into a specific register class. This is only
84    /// used between instruction selection and MachineInstr creation, before
85    /// virtual registers have been created for all the instructions, and it's
86    /// only needed in cases where the register classes implied by the
87    /// instructions are insufficient. The actual MachineInstrs to perform
88    /// the copy are emitted with the TargetInstrInfo::copyRegToReg hook.
89    COPY_TO_REGCLASS = 10
90  };
91
92  unsigned getNumOpcodes() const { return NumOpcodes; }
93
94  /// get - Return the machine instruction descriptor that corresponds to the
95  /// specified instruction opcode.
96  ///
97  const TargetInstrDesc &get(unsigned Opcode) const {
98    assert(Opcode < NumOpcodes && "Invalid opcode!");
99    return Descriptors[Opcode];
100  }
101
102  /// isTriviallyReMaterializable - Return true if the instruction is trivially
103  /// rematerializable, meaning it has no side effects and requires no operands
104  /// that aren't always available.
105  bool isTriviallyReMaterializable(const MachineInstr *MI,
106                                   AliasAnalysis *AA = 0) const {
107    return MI->getOpcode() == IMPLICIT_DEF ||
108           (MI->getDesc().isRematerializable() &&
109            (isReallyTriviallyReMaterializable(MI, AA) ||
110             isReallyTriviallyReMaterializableGeneric(MI, AA)));
111  }
112
113protected:
114  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
115  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
116  /// specify whether the instruction is actually trivially rematerializable,
117  /// taking into consideration its operands. This predicate must return false
118  /// if the instruction has any side effects other than producing a value, or
119  /// if it requres any address registers that are not always available.
120  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
121                                                 AliasAnalysis *AA) const {
122    return false;
123  }
124
125private:
126  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
127  /// for which the M_REMATERIALIZABLE flag is set and the target hook
128  /// isReallyTriviallyReMaterializable returns false, this function does
129  /// target-independent tests to determine if the instruction is really
130  /// trivially rematerializable.
131  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
132                                                AliasAnalysis *AA) const;
133
134public:
135  /// isMoveInstr - Return true if the instruction is a register to register
136  /// move and return the source and dest operands and their sub-register
137  /// indices by reference.
138  virtual bool isMoveInstr(const MachineInstr& MI,
139                           unsigned& SrcReg, unsigned& DstReg,
140                           unsigned& SrcSubIdx, unsigned& DstSubIdx) const {
141    return false;
142  }
143
144  /// isIdentityCopy - Return true if the instruction is a copy (or
145  /// extract_subreg, insert_subreg, subreg_to_reg) where the source and
146  /// destination registers are the same.
147  bool isIdentityCopy(const MachineInstr &MI) const {
148    unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
149    if (isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
150        SrcReg == DstReg)
151      return true;
152
153    if (MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG &&
154        MI.getOperand(0).getReg() == MI.getOperand(1).getReg())
155    return true;
156
157    if ((MI.getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
158         MI.getOpcode() == TargetInstrInfo::SUBREG_TO_REG) &&
159        MI.getOperand(0).getReg() == MI.getOperand(2).getReg())
160      return true;
161    return false;
162  }
163
164  /// isLoadFromStackSlot - If the specified machine instruction is a direct
165  /// load from a stack slot, return the virtual or physical register number of
166  /// the destination along with the FrameIndex of the loaded stack slot.  If
167  /// not, return 0.  This predicate must return 0 if the instruction has
168  /// any side effects other than loading from the stack slot.
169  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
170                                       int &FrameIndex) const {
171    return 0;
172  }
173
174  /// hasLoadFromStackSlot - If the specified machine instruction has
175  /// a load from a stack slot, return true along with the FrameIndex
176  /// of the loaded stack slot.  If not, return false.  Unlike
177  /// isLoadFromStackSlot, this returns true for any instructions that
178  /// loads from the stack.  This is just a hint, as some cases may be
179  /// missed.
180  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
181                                    int &FrameIndex) const {
182    return 0;
183  }
184
185  /// isStoreToStackSlot - If the specified machine instruction is a direct
186  /// store to a stack slot, return the virtual or physical register number of
187  /// the source reg along with the FrameIndex of the loaded stack slot.  If
188  /// not, return 0.  This predicate must return 0 if the instruction has
189  /// any side effects other than storing to the stack slot.
190  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
191                                      int &FrameIndex) const {
192    return 0;
193  }
194
195  /// hasStoreToStackSlot - If the specified machine instruction has a
196  /// store to a stack slot, return true along with the FrameIndex of
197  /// the loaded stack slot.  If not, return false.  Unlike
198  /// isStoreToStackSlot, this returns true for any instructions that
199  /// loads from the stack.  This is just a hint, as some cases may be
200  /// missed.
201  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
202                                   int &FrameIndex) const {
203    return 0;
204  }
205
206  /// reMaterialize - Re-issue the specified 'original' instruction at the
207  /// specific location targeting a new destination register.
208  virtual void reMaterialize(MachineBasicBlock &MBB,
209                             MachineBasicBlock::iterator MI,
210                             unsigned DestReg, unsigned SubIdx,
211                             const MachineInstr *Orig) const = 0;
212
213  /// convertToThreeAddress - This method must be implemented by targets that
214  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
215  /// may be able to convert a two-address instruction into one or more true
216  /// three-address instructions on demand.  This allows the X86 target (for
217  /// example) to convert ADD and SHL instructions into LEA instructions if they
218  /// would require register copies due to two-addressness.
219  ///
220  /// This method returns a null pointer if the transformation cannot be
221  /// performed, otherwise it returns the last new instruction.
222  ///
223  virtual MachineInstr *
224  convertToThreeAddress(MachineFunction::iterator &MFI,
225                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
226    return 0;
227  }
228
229  /// commuteInstruction - If a target has any instructions that are commutable,
230  /// but require converting to a different instruction or making non-trivial
231  /// changes to commute them, this method can overloaded to do this.  The
232  /// default implementation of this method simply swaps the first two operands
233  /// of MI and returns it.
234  ///
235  /// If a target wants to make more aggressive changes, they can construct and
236  /// return a new machine instruction.  If an instruction cannot commute, it
237  /// can also return null.
238  ///
239  /// If NewMI is true, then a new machine instruction must be created.
240  ///
241  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
242                                           bool NewMI = false) const = 0;
243
244  /// findCommutedOpIndices - If specified MI is commutable, return the two
245  /// operand indices that would swap value. Return true if the instruction
246  /// is not in a form which this routine understands.
247  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
248                                     unsigned &SrcOpIdx2) const = 0;
249
250  /// isIdentical - Return true if two instructions are identical. This differs
251  /// from MachineInstr::isIdenticalTo() in that it does not require the
252  /// virtual destination registers to be the same. This is used by MachineLICM
253  /// and other MI passes to perform CSE.
254  virtual bool isIdentical(const MachineInstr *MI,
255                           const MachineInstr *Other,
256                           const MachineRegisterInfo *MRI) const = 0;
257
258  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
259  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
260  /// implemented for a target).  Upon success, this returns false and returns
261  /// with the following information in various cases:
262  ///
263  /// 1. If this block ends with no branches (it just falls through to its succ)
264  ///    just return false, leaving TBB/FBB null.
265  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
266  ///    the destination block.
267  /// 3. If this block ends with an conditional branch and it falls through to
268  ///    a successor block, it sets TBB to be the branch destination block and
269  ///    a list of operands that evaluate the condition. These
270  ///    operands can be passed to other TargetInstrInfo methods to create new
271  ///    branches.
272  /// 4. If this block ends with a conditional branch followed by an
273  ///    unconditional branch, it returns the 'true' destination in TBB, the
274  ///    'false' destination in FBB, and a list of operands that evaluate the
275  ///    condition.  These operands can be passed to other TargetInstrInfo
276  ///    methods to create new branches.
277  ///
278  /// Note that RemoveBranch and InsertBranch must be implemented to support
279  /// cases where this method returns success.
280  ///
281  /// If AllowModify is true, then this routine is allowed to modify the basic
282  /// block (e.g. delete instructions after the unconditional branch).
283  ///
284  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
285                             MachineBasicBlock *&FBB,
286                             SmallVectorImpl<MachineOperand> &Cond,
287                             bool AllowModify = false) const {
288    return true;
289  }
290
291  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
292  /// This is only invoked in cases where AnalyzeBranch returns success. It
293  /// returns the number of instructions that were removed.
294  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
295    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
296    return 0;
297  }
298
299  /// InsertBranch - Insert branch code into the end of the specified
300  /// MachineBasicBlock.  The operands to this method are the same as those
301  /// returned by AnalyzeBranch.  This is only invoked in cases where
302  /// AnalyzeBranch returns success. It returns the number of instructions
303  /// inserted.
304  ///
305  /// It is also invoked by tail merging to add unconditional branches in
306  /// cases where AnalyzeBranch doesn't apply because there was no original
307  /// branch to analyze.  At least this much must be implemented, else tail
308  /// merging needs to be disabled.
309  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
310                            MachineBasicBlock *FBB,
311                            const SmallVectorImpl<MachineOperand> &Cond) const {
312    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
313    return 0;
314  }
315
316  /// copyRegToReg - Emit instructions to copy between a pair of registers. It
317  /// returns false if the target does not how to copy between the specified
318  /// registers.
319  virtual bool copyRegToReg(MachineBasicBlock &MBB,
320                            MachineBasicBlock::iterator MI,
321                            unsigned DestReg, unsigned SrcReg,
322                            const TargetRegisterClass *DestRC,
323                            const TargetRegisterClass *SrcRC) const {
324    assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!");
325    return false;
326  }
327
328  /// storeRegToStackSlot - Store the specified register of the given register
329  /// class to the specified stack frame index. The store instruction is to be
330  /// added to the given machine basic block before the specified machine
331  /// instruction. If isKill is true, the register operand is the last use and
332  /// must be marked kill.
333  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
334                                   MachineBasicBlock::iterator MI,
335                                   unsigned SrcReg, bool isKill, int FrameIndex,
336                                   const TargetRegisterClass *RC) const {
337    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
338  }
339
340  /// loadRegFromStackSlot - Load the specified register of the given register
341  /// class from the specified stack frame index. The load instruction is to be
342  /// added to the given machine basic block before the specified machine
343  /// instruction.
344  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
345                                    MachineBasicBlock::iterator MI,
346                                    unsigned DestReg, int FrameIndex,
347                                    const TargetRegisterClass *RC) const {
348    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
349  }
350
351  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
352  /// saved registers and returns true if it isn't possible / profitable to do
353  /// so by issuing a series of store instructions via
354  /// storeRegToStackSlot(). Returns false otherwise.
355  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
356                                         MachineBasicBlock::iterator MI,
357                                const std::vector<CalleeSavedInfo> &CSI) const {
358    return false;
359  }
360
361  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
362  /// saved registers and returns true if it isn't possible / profitable to do
363  /// so by issuing a series of load instructions via loadRegToStackSlot().
364  /// Returns false otherwise.
365  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
366                                           MachineBasicBlock::iterator MI,
367                                const std::vector<CalleeSavedInfo> &CSI) const {
368    return false;
369  }
370
371  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
372  /// slot into the specified machine instruction for the specified operand(s).
373  /// If this is possible, a new instruction is returned with the specified
374  /// operand folded, otherwise NULL is returned. The client is responsible for
375  /// removing the old instruction and adding the new one in the instruction
376  /// stream.
377  MachineInstr* foldMemoryOperand(MachineFunction &MF,
378                                  MachineInstr* MI,
379                                  const SmallVectorImpl<unsigned> &Ops,
380                                  int FrameIndex) const;
381
382  /// foldMemoryOperand - Same as the previous version except it allows folding
383  /// of any load and store from / to any address, not just from a specific
384  /// stack slot.
385  MachineInstr* foldMemoryOperand(MachineFunction &MF,
386                                  MachineInstr* MI,
387                                  const SmallVectorImpl<unsigned> &Ops,
388                                  MachineInstr* LoadMI) const;
389
390protected:
391  /// foldMemoryOperandImpl - Target-dependent implementation for
392  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
393  /// take care of adding a MachineMemOperand to the newly created instruction.
394  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
395                                          MachineInstr* MI,
396                                          const SmallVectorImpl<unsigned> &Ops,
397                                          int FrameIndex) const {
398    return 0;
399  }
400
401  /// foldMemoryOperandImpl - Target-dependent implementation for
402  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
403  /// take care of adding a MachineMemOperand to the newly created instruction.
404  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
405                                              MachineInstr* MI,
406                                              const SmallVectorImpl<unsigned> &Ops,
407                                              MachineInstr* LoadMI) const {
408    return 0;
409  }
410
411public:
412  /// canFoldMemoryOperand - Returns true for the specified load / store if
413  /// folding is possible.
414  virtual
415  bool canFoldMemoryOperand(const MachineInstr *MI,
416                            const SmallVectorImpl<unsigned> &Ops) const {
417    return false;
418  }
419
420  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
421  /// a store or a load and a store into two or more instruction. If this is
422  /// possible, returns true as well as the new instructions by reference.
423  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
424                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
425                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
426    return false;
427  }
428
429  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
430                                   SmallVectorImpl<SDNode*> &NewNodes) const {
431    return false;
432  }
433
434  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
435  /// instruction after load / store are unfolded from an instruction of the
436  /// specified opcode. It returns zero if the specified unfolding is not
437  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
438  /// index of the operand which will hold the register holding the loaded
439  /// value.
440  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
441                                      bool UnfoldLoad, bool UnfoldStore,
442                                      unsigned *LoadRegIndex = 0) const {
443    return 0;
444  }
445
446  /// BlockHasNoFallThrough - Return true if the specified block does not
447  /// fall-through into its successor block.  This is primarily used when a
448  /// branch is unanalyzable.  It is useful for things like unconditional
449  /// indirect branches (jump tables).
450  virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
451    return false;
452  }
453
454  /// ReverseBranchCondition - Reverses the branch condition of the specified
455  /// condition list, returning false on success and true if it cannot be
456  /// reversed.
457  virtual
458  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
459    return true;
460  }
461
462  /// insertNoop - Insert a noop into the instruction stream at the specified
463  /// point.
464  virtual void insertNoop(MachineBasicBlock &MBB,
465                          MachineBasicBlock::iterator MI) const;
466
467  /// isPredicated - Returns true if the instruction is already predicated.
468  ///
469  virtual bool isPredicated(const MachineInstr *MI) const {
470    return false;
471  }
472
473  /// isUnpredicatedTerminator - Returns true if the instruction is a
474  /// terminator instruction that has not been predicated.
475  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
476
477  /// PredicateInstruction - Convert the instruction into a predicated
478  /// instruction. It returns true if the operation was successful.
479  virtual
480  bool PredicateInstruction(MachineInstr *MI,
481                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
482
483  /// SubsumesPredicate - Returns true if the first specified predicate
484  /// subsumes the second, e.g. GE subsumes GT.
485  virtual
486  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
487                         const SmallVectorImpl<MachineOperand> &Pred2) const {
488    return false;
489  }
490
491  /// DefinesPredicate - If the specified instruction defines any predicate
492  /// or condition code register(s) used for predication, returns true as well
493  /// as the definition predicate(s) by reference.
494  virtual bool DefinesPredicate(MachineInstr *MI,
495                                std::vector<MachineOperand> &Pred) const {
496    return false;
497  }
498
499  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
500  /// instruction that defines the specified register class.
501  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
502    return true;
503  }
504
505  /// GetInstSize - Returns the size of the specified Instruction.
506  ///
507  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const {
508    assert(0 && "Target didn't implement TargetInstrInfo::GetInstSize!");
509    return 0;
510  }
511
512  /// GetFunctionSizeInBytes - Returns the size of the specified
513  /// MachineFunction.
514  ///
515  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const = 0;
516
517  /// Measure the specified inline asm to determine an approximation of its
518  /// length.
519  virtual unsigned getInlineAsmLength(const char *Str,
520                                      const MCAsmInfo &MAI) const;
521};
522
523/// TargetInstrInfoImpl - This is the default implementation of
524/// TargetInstrInfo, which just provides a couple of default implementations
525/// for various methods.  This separated out because it is implemented in
526/// libcodegen, not in libtarget.
527class TargetInstrInfoImpl : public TargetInstrInfo {
528protected:
529  TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
530  : TargetInstrInfo(desc, NumOpcodes) {}
531public:
532  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
533                                           bool NewMI = false) const;
534  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
535                                     unsigned &SrcOpIdx2) const;
536  virtual bool PredicateInstruction(MachineInstr *MI,
537                            const SmallVectorImpl<MachineOperand> &Pred) const;
538  virtual void reMaterialize(MachineBasicBlock &MBB,
539                             MachineBasicBlock::iterator MI,
540                             unsigned DestReg, unsigned SubReg,
541                             const MachineInstr *Orig) const;
542  virtual bool isIdentical(const MachineInstr *MI,
543                           const MachineInstr *Other,
544                           const MachineRegisterInfo *MRI) const;
545
546  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const;
547};
548
549} // End llvm namespace
550
551#endif
552