TargetInstrInfo.h revision ba6da5d5b72618c836ebc3a7613583a16bc8ceac
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instructions to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/CodeGen/MachineBasicBlock.h"
18#include "llvm/CodeGen/MachineFunction.h"
19#include "llvm/Support/DataTypes.h"
20#include <vector>
21#include <cassert>
22
23namespace llvm {
24
25class MachineInstr;
26class TargetMachine;
27class TargetRegisterClass;
28class LiveVariables;
29class CalleeSavedInfo;
30class SDNode;
31class SelectionDAG;
32
33template<class T> class SmallVectorImpl;
34
35//===----------------------------------------------------------------------===//
36// Data types used to define information about a single machine instruction
37//===----------------------------------------------------------------------===//
38
39typedef short MachineOpCode;
40
41//===----------------------------------------------------------------------===//
42// struct TargetInstrDescriptor:
43//  Predefined information about each machine instruction.
44//  Designed to initialized statically.
45//
46
47const unsigned M_BRANCH_FLAG           = 1 << 0;
48const unsigned M_CALL_FLAG             = 1 << 1;
49const unsigned M_RET_FLAG              = 1 << 2;
50const unsigned M_BARRIER_FLAG          = 1 << 3;
51const unsigned M_DELAY_SLOT_FLAG       = 1 << 4;
52
53/// M_SIMPLE_LOAD_FLAG - This flag is set for instructions that are simple loads
54/// from memory.  This should only be set on instructions that load a value from
55/// memory and return it in their only virtual register definition.
56const unsigned M_SIMPLE_LOAD_FLAG      = 1 << 5;
57
58/// M_MAY_STORE_FLAG - This flag is set to any instruction that could possibly
59/// modify memory.  Instructions with this flag set are not necessarily simple
60/// store instructions, they may store a modified value based on their operands,
61/// or may not actually modify anything, for example.
62const unsigned M_MAY_STORE_FLAG        = 1 << 6;
63
64const unsigned M_INDIRECT_FLAG         = 1 << 7;
65const unsigned M_IMPLICIT_DEF_FLAG     = 1 << 8;
66
67// M_CONVERTIBLE_TO_3_ADDR - This is a 2-address instruction which can be
68// changed into a 3-address instruction if the first two operands cannot be
69// assigned to the same register.  The target must implement the
70// TargetInstrInfo::convertToThreeAddress method for this instruction.
71const unsigned M_CONVERTIBLE_TO_3_ADDR = 1 << 9;
72
73// This M_COMMUTABLE - is a 2- or 3-address instruction (of the form X = op Y,
74// Z), which produces the same result if Y and Z are exchanged.
75const unsigned M_COMMUTABLE            = 1 << 10;
76
77// M_TERMINATOR_FLAG - Is this instruction part of the terminator for a basic
78// block?  Typically this is things like return and branch instructions.
79// Various passes use this to insert code into the bottom of a basic block, but
80// before control flow occurs.
81const unsigned M_TERMINATOR_FLAG       = 1 << 11;
82
83// M_USES_CUSTOM_DAG_SCHED_INSERTION - Set if this instruction requires custom
84// insertion support when the DAG scheduler is inserting it into a machine basic
85// block.
86const unsigned M_USES_CUSTOM_DAG_SCHED_INSERTION = 1 << 12;
87
88// M_VARIABLE_OPS - Set if this instruction can have a variable number of extra
89// operands in addition to the minimum number operands specified.
90const unsigned M_VARIABLE_OPS          = 1 << 13;
91
92// M_PREDICABLE - Set if this instruction has a predicate operand that
93// controls execution. It may be set to 'always'.
94const unsigned M_PREDICABLE            = 1 << 14;
95
96// M_REMATERIALIZIBLE - Set if this instruction can be trivally re-materialized
97// at any time, e.g. constant generation, load from constant pool.
98const unsigned M_REMATERIALIZIBLE      = 1 << 15;
99
100// M_NOT_DUPLICABLE - Set if this instruction cannot be safely duplicated.
101// (e.g. instructions with unique labels attached).
102const unsigned M_NOT_DUPLICABLE        = 1 << 16;
103
104// M_HAS_OPTIONAL_DEF - Set if this instruction has an optional definition, e.g.
105// ARM instructions which can set condition code if 's' bit is set.
106const unsigned M_HAS_OPTIONAL_DEF      = 1 << 17;
107
108// M_NEVER_HAS_SIDE_EFFECTS - Set if this instruction has no side effects that
109// are not captured by any operands of the instruction or other flags, and when
110// *all* instances of the instruction of that opcode have no side effects.
111//
112// Note: This and M_MAY_HAVE_SIDE_EFFECTS are mutually exclusive. You can't set
113// both! If neither flag is set, then the instruction *always* has side effects.
114const unsigned M_NEVER_HAS_SIDE_EFFECTS = 1 << 18;
115
116// M_MAY_HAVE_SIDE_EFFECTS - Set if some instances of this instruction can have
117// side effects. The virtual method "isReallySideEffectFree" is called to
118// determine this. Load instructions are an example of where this is useful. In
119// general, loads always have side effects. However, loads from constant pools
120// don't. We let the specific back end make this determination.
121//
122// Note: This and M_NEVER_HAS_SIDE_EFFECTS are mutually exclusive. You can't set
123// both! If neither flag is set, then the instruction *always* has side effects.
124const unsigned M_MAY_HAVE_SIDE_EFFECTS = 1 << 19;
125
126
127//===----------------------------------------------------------------------===//
128// Machine operand flags
129//===----------------------------------------------------------------------===//
130
131namespace TOI {
132  // Operand constraints: only "tied_to" for now.
133  enum OperandConstraint {
134    TIED_TO = 0  // Must be allocated the same register as.
135  };
136
137  /// OperandFlags - These are flags set on operands, but should be considered
138  /// private, all access should go through the TargetOperandInfo accessors.
139  /// See the accessors for a description of what these are.
140  enum OperandFlags {
141    LookupPtrRegClass = 1 << 0,
142    Predicate         = 1 << 1,
143    OptionalDef       = 1 << 2
144  };
145}
146
147/// TargetOperandInfo - This holds information about one operand of a machine
148/// instruction, indicating the register class for register operands, etc.
149///
150class TargetOperandInfo {
151public:
152  /// RegClass - This specifies the register class enumeration of the operand
153  /// if the operand is a register.  If not, this contains 0.
154  unsigned short RegClass;
155  unsigned short Flags;
156  /// Lower 16 bits are used to specify which constraints are set. The higher 16
157  /// bits are used to specify the value of constraints (4 bits each).
158  unsigned int Constraints;
159  /// Currently no other information.
160
161  /// isLookupPtrRegClass - Set if this operand is a pointer value and it
162  /// requires a callback to look up its register class.
163  bool isLookupPtrRegClass() const { return Flags & TOI::LookupPtrRegClass; }
164
165  /// isPredicate - Set if this is one of the operands that made up of
166  /// the predicate operand that controls an M_PREDICATED instruction.
167  bool isPredicate() const { return Flags & TOI::Predicate; }
168
169  /// isOptionalDef - Set if this operand is a optional def.
170  ///
171  bool isOptionalDef() const { return Flags & TOI::OptionalDef; }
172};
173
174
175class TargetInstrDescriptor {
176public:
177  unsigned short  Opcode;        // The opcode.
178  unsigned short  numOperands;   // Num of args (may be more if variable_ops).
179  unsigned short  numDefs;       // Num of args that are definitions.
180  const char *    Name;          // Assembly language mnemonic for the opcode.
181  unsigned        SchedClass;    // enum  identifying instr sched class
182  unsigned        Flags;         // flags identifying machine instr class
183  unsigned        TSFlags;       // Target Specific Flag values
184  const unsigned *ImplicitUses;  // Registers implicitly read by this instr
185  const unsigned *ImplicitDefs;  // Registers implicitly defined by this instr
186  const TargetOperandInfo *OpInfo; // 'numOperands' entries about operands.
187
188  /// getOperandConstraint - Returns the value of the specific constraint if
189  /// it is set. Returns -1 if it is not set.
190  int getOperandConstraint(unsigned OpNum,
191                           TOI::OperandConstraint Constraint) const {
192    assert((OpNum < numOperands || (Flags & M_VARIABLE_OPS)) &&
193           "Invalid operand # of TargetInstrInfo");
194    if (OpNum < numOperands &&
195        (OpInfo[OpNum].Constraints & (1 << Constraint))) {
196      unsigned Pos = 16 + Constraint * 4;
197      return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
198    }
199    return -1;
200  }
201
202  /// findTiedToSrcOperand - Returns the operand that is tied to the specified
203  /// dest operand. Returns -1 if there isn't one.
204  int findTiedToSrcOperand(unsigned OpNum) const;
205
206  bool isCall() const {
207    return Flags & M_CALL_FLAG;
208  }
209
210  bool isBranch() const {
211    return Flags & M_BRANCH_FLAG;
212  }
213
214  bool isTerminator() const {
215    return Flags & M_TERMINATOR_FLAG;
216  }
217
218  bool isIndirectBranch() const {
219    return Flags & M_INDIRECT_FLAG;
220  }
221
222  bool isPredicable() const {
223    return Flags & M_PREDICABLE;
224  }
225
226  bool isNotDuplicable() const {
227    return Flags & M_NOT_DUPLICABLE;
228  }
229
230
231
232  /// isSimpleLoad - Return true for instructions that are simple loads from
233  /// memory.  This should only be set on instructions that load a value from
234  /// memory and return it in their only virtual register definition.
235  /// Instructions that return a value loaded from memory and then modified in
236  /// some way should not return true for this.
237  bool isSimpleLoad() const {
238    return Flags & M_SIMPLE_LOAD_FLAG;
239  }
240
241  /// mayStore - Return true if this instruction could possibly modify memory.
242  /// Instructions with this flag set are not necessarily simple store
243  /// instructions, they may store a modified value based on their operands, or
244  /// may not actually modify anything, for example.
245  bool mayStore() const {
246    return Flags & M_MAY_STORE_FLAG;
247  }
248
249  /// isBarrier - Returns true if the specified instruction stops control flow
250  /// from executing the instruction immediately following it.  Examples include
251  /// unconditional branches and return instructions.
252  bool isBarrier() const {
253    return Flags & M_BARRIER_FLAG;
254  }
255
256  /// hasDelaySlot - Returns true if the specified instruction has a delay slot
257  /// which must be filled by the code generator.
258  bool hasDelaySlot() const {
259    return Flags & M_DELAY_SLOT_FLAG;
260  }
261
262  unsigned getSchedClass() const {
263    return SchedClass;
264  }
265};
266
267
268//---------------------------------------------------------------------------
269///
270/// TargetInstrInfo - Interface to description of machine instructions
271///
272class TargetInstrInfo {
273  const TargetInstrDescriptor* desc;    // raw array to allow static init'n
274  unsigned NumOpcodes;                  // number of entries in the desc array
275  unsigned numRealOpCodes;              // number of non-dummy op codes
276
277  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
278  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
279public:
280  TargetInstrInfo(const TargetInstrDescriptor *desc, unsigned NumOpcodes);
281  virtual ~TargetInstrInfo();
282
283  // Invariant opcodes: All instruction sets have these as their low opcodes.
284  enum {
285    PHI = 0,
286    INLINEASM = 1,
287    LABEL = 2,
288    EXTRACT_SUBREG = 3,
289    INSERT_SUBREG = 4
290  };
291
292  unsigned getNumOpcodes() const { return NumOpcodes; }
293
294  /// get - Return the machine instruction descriptor that corresponds to the
295  /// specified instruction opcode.
296  ///
297  const TargetInstrDescriptor& get(unsigned Opcode) const {
298    assert(Opcode < NumOpcodes);
299    return desc[Opcode];
300  }
301
302  const char *getName(unsigned Opcode) const {
303    return get(Opcode).Name;
304  }
305
306  int getNumOperands(unsigned Opcode) const {
307    return get(Opcode).numOperands;
308  }
309
310  int getNumDefs(unsigned Opcode) const {
311    return get(Opcode).numDefs;
312  }
313
314  const unsigned *getImplicitUses(unsigned Opcode) const {
315    return get(Opcode).ImplicitUses;
316  }
317
318  const unsigned *getImplicitDefs(unsigned Opcode) const {
319    return get(Opcode).ImplicitDefs;
320  }
321
322
323  //
324  // Query instruction class flags according to the machine-independent
325  // flags listed above.
326  //
327  bool isReturn(unsigned Opcode) const {
328    return get(Opcode).Flags & M_RET_FLAG;
329  }
330
331  bool isCommutableInstr(unsigned Opcode) const {
332    return get(Opcode).Flags & M_COMMUTABLE;
333  }
334
335  /// usesCustomDAGSchedInsertionHook - Return true if this instruction requires
336  /// custom insertion support when the DAG scheduler is inserting it into a
337  /// machine basic block.
338  bool usesCustomDAGSchedInsertionHook(unsigned Opcode) const {
339    return get(Opcode).Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION;
340  }
341
342  bool hasVariableOperands(unsigned Opcode) const {
343    return get(Opcode).Flags & M_VARIABLE_OPS;
344  }
345
346  bool hasOptionalDef(unsigned Opcode) const {
347    return get(Opcode).Flags & M_HAS_OPTIONAL_DEF;
348  }
349
350  /// isTriviallyReMaterializable - Return true if the instruction is trivially
351  /// rematerializable, meaning it has no side effects and requires no operands
352  /// that aren't always available.
353  bool isTriviallyReMaterializable(MachineInstr *MI) const {
354    return (MI->getDesc()->Flags & M_REMATERIALIZIBLE) &&
355           isReallyTriviallyReMaterializable(MI);
356  }
357
358  /// hasUnmodelledSideEffects - Returns true if the instruction has side
359  /// effects that are not captured by any operands of the instruction or other
360  /// flags.
361  bool hasUnmodelledSideEffects(MachineInstr *MI) const {
362    const TargetInstrDescriptor *TID = MI->getDesc();
363    if (TID->Flags & M_NEVER_HAS_SIDE_EFFECTS) return false;
364    if (!(TID->Flags & M_MAY_HAVE_SIDE_EFFECTS)) return true;
365    return !isReallySideEffectFree(MI); // May have side effects
366  }
367protected:
368  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
369  /// which the M_REMATERIALIZABLE flag is set, this function tests whether the
370  /// instruction itself is actually trivially rematerializable, considering
371  /// its operands.  This is used for targets that have instructions that are
372  /// only trivially rematerializable for specific uses.  This predicate must
373  /// return false if the instruction has any side effects other than
374  /// producing a value, or if it requres any address registers that are not
375  /// always available.
376  virtual bool isReallyTriviallyReMaterializable(MachineInstr *MI) const {
377    return true;
378  }
379
380  /// isReallySideEffectFree - If the M_MAY_HAVE_SIDE_EFFECTS flag is set, this
381  /// method is called to determine if the specific instance of this
382  /// instruction has side effects. This is useful in cases of instructions,
383  /// like loads, which generally always have side effects. A load from a
384  /// constant pool doesn't have side effects, though. So we need to
385  /// differentiate it from the general case.
386  virtual bool isReallySideEffectFree(MachineInstr *MI) const {
387    return false;
388  }
389public:
390  /// getOperandConstraint - Returns the value of the specific constraint if
391  /// it is set. Returns -1 if it is not set.
392  int getOperandConstraint(unsigned Opcode, unsigned OpNum,
393                           TOI::OperandConstraint Constraint) const {
394    return get(Opcode).getOperandConstraint(OpNum, Constraint);
395  }
396
397  /// Return true if the instruction is a register to register move
398  /// and leave the source and dest operands in the passed parameters.
399  virtual bool isMoveInstr(const MachineInstr& MI,
400                           unsigned& sourceReg,
401                           unsigned& destReg) const {
402    return false;
403  }
404
405  /// isLoadFromStackSlot - If the specified machine instruction is a direct
406  /// load from a stack slot, return the virtual or physical register number of
407  /// the destination along with the FrameIndex of the loaded stack slot.  If
408  /// not, return 0.  This predicate must return 0 if the instruction has
409  /// any side effects other than loading from the stack slot.
410  virtual unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const{
411    return 0;
412  }
413
414  /// isStoreToStackSlot - If the specified machine instruction is a direct
415  /// store to a stack slot, return the virtual or physical register number of
416  /// the source reg along with the FrameIndex of the loaded stack slot.  If
417  /// not, return 0.  This predicate must return 0 if the instruction has
418  /// any side effects other than storing to the stack slot.
419  virtual unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const {
420    return 0;
421  }
422
423  /// convertToThreeAddress - This method must be implemented by targets that
424  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
425  /// may be able to convert a two-address instruction into one or more true
426  /// three-address instructions on demand.  This allows the X86 target (for
427  /// example) to convert ADD and SHL instructions into LEA instructions if they
428  /// would require register copies due to two-addressness.
429  ///
430  /// This method returns a null pointer if the transformation cannot be
431  /// performed, otherwise it returns the last new instruction.
432  ///
433  virtual MachineInstr *
434  convertToThreeAddress(MachineFunction::iterator &MFI,
435                   MachineBasicBlock::iterator &MBBI, LiveVariables &LV) const {
436    return 0;
437  }
438
439  /// commuteInstruction - If a target has any instructions that are commutable,
440  /// but require converting to a different instruction or making non-trivial
441  /// changes to commute them, this method can overloaded to do this.  The
442  /// default implementation of this method simply swaps the first two operands
443  /// of MI and returns it.
444  ///
445  /// If a target wants to make more aggressive changes, they can construct and
446  /// return a new machine instruction.  If an instruction cannot commute, it
447  /// can also return null.
448  ///
449  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const = 0;
450
451  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
452  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
453  /// implemented for a target).  Upon success, this returns false and returns
454  /// with the following information in various cases:
455  ///
456  /// 1. If this block ends with no branches (it just falls through to its succ)
457  ///    just return false, leaving TBB/FBB null.
458  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
459  ///    the destination block.
460  /// 3. If this block ends with an conditional branch and it falls through to
461  ///    an successor block, it sets TBB to be the branch destination block and a
462  ///    list of operands that evaluate the condition. These
463  ///    operands can be passed to other TargetInstrInfo methods to create new
464  ///    branches.
465  /// 4. If this block ends with an conditional branch and an unconditional
466  ///    block, it returns the 'true' destination in TBB, the 'false' destination
467  ///    in FBB, and a list of operands that evaluate the condition. These
468  ///    operands can be passed to other TargetInstrInfo methods to create new
469  ///    branches.
470  ///
471  /// Note that RemoveBranch and InsertBranch must be implemented to support
472  /// cases where this method returns success.
473  ///
474  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
475                             MachineBasicBlock *&FBB,
476                             std::vector<MachineOperand> &Cond) const {
477    return true;
478  }
479
480  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
481  /// this is only invoked in cases where AnalyzeBranch returns success. It
482  /// returns the number of instructions that were removed.
483  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
484    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
485    return 0;
486  }
487
488  /// InsertBranch - Insert a branch into the end of the specified
489  /// MachineBasicBlock.  This operands to this method are the same as those
490  /// returned by AnalyzeBranch.  This is invoked in cases where AnalyzeBranch
491  /// returns success and when an unconditional branch (TBB is non-null, FBB is
492  /// null, Cond is empty) needs to be inserted. It returns the number of
493  /// instructions inserted.
494  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
495                            MachineBasicBlock *FBB,
496                            const std::vector<MachineOperand> &Cond) const {
497    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
498    return 0;
499  }
500
501  /// copyRegToReg - Add a copy between a pair of registers
502  virtual void copyRegToReg(MachineBasicBlock &MBB,
503                            MachineBasicBlock::iterator MI,
504                            unsigned DestReg, unsigned SrcReg,
505                            const TargetRegisterClass *DestRC,
506                            const TargetRegisterClass *SrcRC) const {
507    assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!");
508  }
509
510  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
511                                   MachineBasicBlock::iterator MI,
512                                   unsigned SrcReg, bool isKill, int FrameIndex,
513                                   const TargetRegisterClass *RC) const {
514    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
515  }
516
517  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
518                              SmallVectorImpl<MachineOperand> &Addr,
519                              const TargetRegisterClass *RC,
520                              SmallVectorImpl<MachineInstr*> &NewMIs) const {
521    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToAddr!");
522  }
523
524  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
525                                    MachineBasicBlock::iterator MI,
526                                    unsigned DestReg, int FrameIndex,
527                                    const TargetRegisterClass *RC) const {
528    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
529  }
530
531  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
532                               SmallVectorImpl<MachineOperand> &Addr,
533                               const TargetRegisterClass *RC,
534                               SmallVectorImpl<MachineInstr*> &NewMIs) const {
535    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromAddr!");
536  }
537
538  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
539  /// saved registers and returns true if it isn't possible / profitable to do
540  /// so by issuing a series of store instructions via
541  /// storeRegToStackSlot(). Returns false otherwise.
542  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
543                                         MachineBasicBlock::iterator MI,
544                                const std::vector<CalleeSavedInfo> &CSI) const {
545    return false;
546  }
547
548  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
549  /// saved registers and returns true if it isn't possible / profitable to do
550  /// so by issuing a series of load instructions via loadRegToStackSlot().
551  /// Returns false otherwise.
552  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
553                                           MachineBasicBlock::iterator MI,
554                                const std::vector<CalleeSavedInfo> &CSI) const {
555    return false;
556  }
557
558  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
559  /// slot into the specified machine instruction for the specified operand(s).
560  /// If this is possible, a new instruction is returned with the specified
561  /// operand folded, otherwise NULL is returned. The client is responsible for
562  /// removing the old instruction and adding the new one in the instruction
563  /// stream.
564  virtual MachineInstr* foldMemoryOperand(MachineInstr* MI,
565                                          SmallVectorImpl<unsigned> &Ops,
566                                          int FrameIndex) const {
567    return 0;
568  }
569
570  /// foldMemoryOperand - Same as the previous version except it allows folding
571  /// of any load and store from / to any address, not just from a specific
572  /// stack slot.
573  virtual MachineInstr* foldMemoryOperand(MachineInstr* MI,
574                                          SmallVectorImpl<unsigned> &Ops,
575                                          MachineInstr* LoadMI) const {
576    return 0;
577  }
578
579  /// canFoldMemoryOperand - Returns true if the specified load / store is
580  /// folding is possible.
581  virtual
582  bool canFoldMemoryOperand(MachineInstr *MI,
583                            SmallVectorImpl<unsigned> &Ops) const{
584    return false;
585  }
586
587  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
588  /// a store or a load and a store into two or more instruction. If this is
589  /// possible, returns true as well as the new instructions by reference.
590  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
591                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
592                                  SmallVectorImpl<MachineInstr*> &NewMIs) const{
593    return false;
594  }
595
596  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
597                                   SmallVectorImpl<SDNode*> &NewNodes) const {
598    return false;
599  }
600
601  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
602  /// instruction after load / store are unfolded from an instruction of the
603  /// specified opcode. It returns zero if the specified unfolding is not
604  /// possible.
605  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
606                                      bool UnfoldLoad, bool UnfoldStore) const {
607    return 0;
608  }
609
610  /// BlockHasNoFallThrough - Return true if the specified block does not
611  /// fall-through into its successor block.  This is primarily used when a
612  /// branch is unanalyzable.  It is useful for things like unconditional
613  /// indirect branches (jump tables).
614  virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
615    return false;
616  }
617
618  /// ReverseBranchCondition - Reverses the branch condition of the specified
619  /// condition list, returning false on success and true if it cannot be
620  /// reversed.
621  virtual bool ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
622    return true;
623  }
624
625  /// insertNoop - Insert a noop into the instruction stream at the specified
626  /// point.
627  virtual void insertNoop(MachineBasicBlock &MBB,
628                          MachineBasicBlock::iterator MI) const {
629    assert(0 && "Target didn't implement insertNoop!");
630    abort();
631  }
632
633  /// isPredicated - Returns true if the instruction is already predicated.
634  ///
635  virtual bool isPredicated(const MachineInstr *MI) const {
636    return false;
637  }
638
639  /// isUnpredicatedTerminator - Returns true if the instruction is a
640  /// terminator instruction that has not been predicated.
641  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
642
643  /// PredicateInstruction - Convert the instruction into a predicated
644  /// instruction. It returns true if the operation was successful.
645  virtual
646  bool PredicateInstruction(MachineInstr *MI,
647                            const std::vector<MachineOperand> &Pred) const = 0;
648
649  /// SubsumesPredicate - Returns true if the first specified predicate
650  /// subsumes the second, e.g. GE subsumes GT.
651  virtual
652  bool SubsumesPredicate(const std::vector<MachineOperand> &Pred1,
653                         const std::vector<MachineOperand> &Pred2) const {
654    return false;
655  }
656
657  /// DefinesPredicate - If the specified instruction defines any predicate
658  /// or condition code register(s) used for predication, returns true as well
659  /// as the definition predicate(s) by reference.
660  virtual bool DefinesPredicate(MachineInstr *MI,
661                                std::vector<MachineOperand> &Pred) const {
662    return false;
663  }
664
665  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
666  /// values.
667  virtual const TargetRegisterClass *getPointerRegClass() const {
668    assert(0 && "Target didn't implement getPointerRegClass!");
669    abort();
670    return 0; // Must return a value in order to compile with VS 2005
671  }
672};
673
674/// TargetInstrInfoImpl - This is the default implementation of
675/// TargetInstrInfo, which just provides a couple of default implementations
676/// for various methods.  This separated out because it is implemented in
677/// libcodegen, not in libtarget.
678class TargetInstrInfoImpl : public TargetInstrInfo {
679protected:
680  TargetInstrInfoImpl(const TargetInstrDescriptor *desc, unsigned NumOpcodes)
681  : TargetInstrInfo(desc, NumOpcodes) {}
682public:
683  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
684  virtual bool PredicateInstruction(MachineInstr *MI,
685                              const std::vector<MachineOperand> &Pred) const;
686
687};
688
689} // End llvm namespace
690
691#endif
692