TargetInstrInfo.h revision c4af4638dfdab0dc3b6257276cfad2ee45053060
1ec3ed6a5ebf6f2c406d7bcf94b6bc34fcaeb976eepoger@google.com//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2ec3ed6a5ebf6f2c406d7bcf94b6bc34fcaeb976eepoger@google.com//
3ec3ed6a5ebf6f2c406d7bcf94b6bc34fcaeb976eepoger@google.com//                     The LLVM Compiler Infrastructure
4ec3ed6a5ebf6f2c406d7bcf94b6bc34fcaeb976eepoger@google.com//
5ec3ed6a5ebf6f2c406d7bcf94b6bc34fcaeb976eepoger@google.com// This file is distributed under the University of Illinois Open Source
6ec3ed6a5ebf6f2c406d7bcf94b6bc34fcaeb976eepoger@google.com// License. See LICENSE.TXT for details.
7ec3ed6a5ebf6f2c406d7bcf94b6bc34fcaeb976eepoger@google.com//
8ec3ed6a5ebf6f2c406d7bcf94b6bc34fcaeb976eepoger@google.com//===----------------------------------------------------------------------===//
98a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com//
108a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com// This file describes the target machine instruction set to the code generator.
118a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com//
128a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com//===----------------------------------------------------------------------===//
138a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
148a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com#ifndef LLVM_TARGET_TARGETINSTRINFO_H
158a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com#define LLVM_TARGET_TARGETINSTRINFO_H
168a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
178a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com#include "llvm/Target/TargetInstrDesc.h"
188a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com#include "llvm/CodeGen/MachineFunction.h"
198a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
208a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.comnamespace llvm {
218a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
228a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.comclass CalleeSavedInfo;
238a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.comclass InstrItineraryData;
24class LiveVariables;
25class MCAsmInfo;
26class MachineMemOperand;
27class MachineRegisterInfo;
28class MDNode;
29class MCInst;
30class SDNode;
31class ScheduleHazardRecognizer;
32class SelectionDAG;
33class TargetRegisterClass;
34class TargetRegisterInfo;
35
36template<class T> class SmallVectorImpl;
37
38
39//---------------------------------------------------------------------------
40///
41/// TargetInstrInfo - Interface to description of machine instruction set
42///
43class TargetInstrInfo {
44  const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
45  unsigned NumOpcodes;                // Number of entries in the desc array
46
47  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
48  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
49public:
50  TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
51  virtual ~TargetInstrInfo();
52
53  unsigned getNumOpcodes() const { return NumOpcodes; }
54
55  /// get - Return the machine instruction descriptor that corresponds to the
56  /// specified instruction opcode.
57  ///
58  const TargetInstrDesc &get(unsigned Opcode) const {
59    assert(Opcode < NumOpcodes && "Invalid opcode!");
60    return Descriptors[Opcode];
61  }
62
63  /// isTriviallyReMaterializable - Return true if the instruction is trivially
64  /// rematerializable, meaning it has no side effects and requires no operands
65  /// that aren't always available.
66  bool isTriviallyReMaterializable(const MachineInstr *MI,
67                                   AliasAnalysis *AA = 0) const {
68    return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
69           (MI->getDesc().isRematerializable() &&
70            (isReallyTriviallyReMaterializable(MI, AA) ||
71             isReallyTriviallyReMaterializableGeneric(MI, AA)));
72  }
73
74protected:
75  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
76  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
77  /// specify whether the instruction is actually trivially rematerializable,
78  /// taking into consideration its operands. This predicate must return false
79  /// if the instruction has any side effects other than producing a value, or
80  /// if it requres any address registers that are not always available.
81  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
82                                                 AliasAnalysis *AA) const {
83    return false;
84  }
85
86private:
87  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
88  /// for which the M_REMATERIALIZABLE flag is set and the target hook
89  /// isReallyTriviallyReMaterializable returns false, this function does
90  /// target-independent tests to determine if the instruction is really
91  /// trivially rematerializable.
92  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
93                                                AliasAnalysis *AA) const;
94
95public:
96  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
97  /// extension instruction. That is, it's like a copy where it's legal for the
98  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
99  /// true, then it's expected the pre-extension value is available as a subreg
100  /// of the result register. This also returns the sub-register index in
101  /// SubIdx.
102  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
103                                     unsigned &SrcReg, unsigned &DstReg,
104                                     unsigned &SubIdx) const {
105    return false;
106  }
107
108  /// isLoadFromStackSlot - If the specified machine instruction is a direct
109  /// load from a stack slot, return the virtual or physical register number of
110  /// the destination along with the FrameIndex of the loaded stack slot.  If
111  /// not, return 0.  This predicate must return 0 if the instruction has
112  /// any side effects other than loading from the stack slot.
113  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
114                                       int &FrameIndex) const {
115    return 0;
116  }
117
118  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
119  /// stack locations as well.  This uses a heuristic so it isn't
120  /// reliable for correctness.
121  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
122                                             int &FrameIndex) const {
123    return 0;
124  }
125
126  /// hasLoadFromStackSlot - If the specified machine instruction has
127  /// a load from a stack slot, return true along with the FrameIndex
128  /// of the loaded stack slot and the machine mem operand containing
129  /// the reference.  If not, return false.  Unlike
130  /// isLoadFromStackSlot, this returns true for any instructions that
131  /// loads from the stack.  This is just a hint, as some cases may be
132  /// missed.
133  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
134                                    const MachineMemOperand *&MMO,
135                                    int &FrameIndex) const {
136    return 0;
137  }
138
139  /// isStoreToStackSlot - If the specified machine instruction is a direct
140  /// store to a stack slot, return the virtual or physical register number of
141  /// the source reg along with the FrameIndex of the loaded stack slot.  If
142  /// not, return 0.  This predicate must return 0 if the instruction has
143  /// any side effects other than storing to the stack slot.
144  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
145                                      int &FrameIndex) const {
146    return 0;
147  }
148
149  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
150  /// stack locations as well.  This uses a heuristic so it isn't
151  /// reliable for correctness.
152  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
153                                            int &FrameIndex) const {
154    return 0;
155  }
156
157  /// hasStoreToStackSlot - If the specified machine instruction has a
158  /// store to a stack slot, return true along with the FrameIndex of
159  /// the loaded stack slot and the machine mem operand containing the
160  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
161  /// this returns true for any instructions that stores to the
162  /// stack.  This is just a hint, as some cases may be missed.
163  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
164                                   const MachineMemOperand *&MMO,
165                                   int &FrameIndex) const {
166    return 0;
167  }
168
169  /// reMaterialize - Re-issue the specified 'original' instruction at the
170  /// specific location targeting a new destination register.
171  /// The register in Orig->getOperand(0).getReg() will be substituted by
172  /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
173  /// SubIdx.
174  virtual void reMaterialize(MachineBasicBlock &MBB,
175                             MachineBasicBlock::iterator MI,
176                             unsigned DestReg, unsigned SubIdx,
177                             const MachineInstr *Orig,
178                             const TargetRegisterInfo &TRI) const = 0;
179
180  /// scheduleTwoAddrSource - Schedule the copy / re-mat of the source of the
181  /// two-addrss instruction inserted by two-address pass.
182  virtual void scheduleTwoAddrSource(MachineInstr *SrcMI,
183                                     MachineInstr *UseMI,
184                                     const TargetRegisterInfo &TRI) const {
185    // Do nothing.
186  }
187
188  /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
189  /// MachineFunction::CloneMachineInstr(), but the target may update operands
190  /// that are required to be unique.
191  ///
192  /// The instruction must be duplicable as indicated by isNotDuplicable().
193  virtual MachineInstr *duplicate(MachineInstr *Orig,
194                                  MachineFunction &MF) const = 0;
195
196  /// convertToThreeAddress - This method must be implemented by targets that
197  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
198  /// may be able to convert a two-address instruction into one or more true
199  /// three-address instructions on demand.  This allows the X86 target (for
200  /// example) to convert ADD and SHL instructions into LEA instructions if they
201  /// would require register copies due to two-addressness.
202  ///
203  /// This method returns a null pointer if the transformation cannot be
204  /// performed, otherwise it returns the last new instruction.
205  ///
206  virtual MachineInstr *
207  convertToThreeAddress(MachineFunction::iterator &MFI,
208                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
209    return 0;
210  }
211
212  /// commuteInstruction - If a target has any instructions that are
213  /// commutable but require converting to different instructions or making
214  /// non-trivial changes to commute them, this method can overloaded to do
215  /// that.  The default implementation simply swaps the commutable operands.
216  /// If NewMI is false, MI is modified in place and returned; otherwise, a
217  /// new machine instruction is created and returned.  Do not call this
218  /// method for a non-commutable instruction, but there may be some cases
219  /// where this method fails and returns null.
220  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
221                                           bool NewMI = false) const = 0;
222
223  /// findCommutedOpIndices - If specified MI is commutable, return the two
224  /// operand indices that would swap value. Return false if the instruction
225  /// is not in a form which this routine understands.
226  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
227                                     unsigned &SrcOpIdx2) const = 0;
228
229  /// produceSameValue - Return true if two machine instructions would produce
230  /// identical values. By default, this is only true when the two instructions
231  /// are deemed identical except for defs.
232  virtual bool produceSameValue(const MachineInstr *MI0,
233                                const MachineInstr *MI1) const = 0;
234
235  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
236  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
237  /// implemented for a target).  Upon success, this returns false and returns
238  /// with the following information in various cases:
239  ///
240  /// 1. If this block ends with no branches (it just falls through to its succ)
241  ///    just return false, leaving TBB/FBB null.
242  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
243  ///    the destination block.
244  /// 3. If this block ends with a conditional branch and it falls through to a
245  ///    successor block, it sets TBB to be the branch destination block and a
246  ///    list of operands that evaluate the condition. These operands can be
247  ///    passed to other TargetInstrInfo methods to create new branches.
248  /// 4. If this block ends with a conditional branch followed by an
249  ///    unconditional branch, it returns the 'true' destination in TBB, the
250  ///    'false' destination in FBB, and a list of operands that evaluate the
251  ///    condition.  These operands can be passed to other TargetInstrInfo
252  ///    methods to create new branches.
253  ///
254  /// Note that RemoveBranch and InsertBranch must be implemented to support
255  /// cases where this method returns success.
256  ///
257  /// If AllowModify is true, then this routine is allowed to modify the basic
258  /// block (e.g. delete instructions after the unconditional branch).
259  ///
260  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
261                             MachineBasicBlock *&FBB,
262                             SmallVectorImpl<MachineOperand> &Cond,
263                             bool AllowModify = false) const {
264    return true;
265  }
266
267  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
268  /// This is only invoked in cases where AnalyzeBranch returns success. It
269  /// returns the number of instructions that were removed.
270  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
271    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
272    return 0;
273  }
274
275  /// InsertBranch - Insert branch code into the end of the specified
276  /// MachineBasicBlock.  The operands to this method are the same as those
277  /// returned by AnalyzeBranch.  This is only invoked in cases where
278  /// AnalyzeBranch returns success. It returns the number of instructions
279  /// inserted.
280  ///
281  /// It is also invoked by tail merging to add unconditional branches in
282  /// cases where AnalyzeBranch doesn't apply because there was no original
283  /// branch to analyze.  At least this much must be implemented, else tail
284  /// merging needs to be disabled.
285  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
286                                MachineBasicBlock *FBB,
287                                const SmallVectorImpl<MachineOperand> &Cond,
288                                DebugLoc DL) const {
289    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
290    return 0;
291  }
292
293  /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
294  /// after it, replacing it with an unconditional branch to NewDest. This is
295  /// used by the tail merging pass.
296  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
297                                       MachineBasicBlock *NewDest) const = 0;
298
299  /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
300  /// block at the specified instruction (i.e. instruction would be the start
301  /// of a new basic block).
302  virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
303                                   MachineBasicBlock::iterator MBBI) const {
304    return true;
305  }
306
307  /// isProfitableToIfCvt - Return true if it's profitable to predicate
308  /// instructions with accumulated instruction latency of "NumCycles"
309  /// of the specified basic block, where the probability of the instructions
310  /// being executed is given by Probability, and Confidence is a measure
311  /// of our confidence that it will be properly predicted.
312  virtual
313  bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCyles,
314                           unsigned ExtraPredCycles,
315                           float Probability, float Confidence) const {
316    return false;
317  }
318
319  /// isProfitableToIfCvt - Second variant of isProfitableToIfCvt, this one
320  /// checks for the case where two basic blocks from true and false path
321  /// of a if-then-else (diamond) are predicated on mutally exclusive
322  /// predicates, where the probability of the true path being taken is given
323  /// by Probability, and Confidence is a measure of our confidence that it
324  /// will be properly predicted.
325  virtual bool
326  isProfitableToIfCvt(MachineBasicBlock &TMBB,
327                      unsigned NumTCycles, unsigned ExtraTCycles,
328                      MachineBasicBlock &FMBB,
329                      unsigned NumFCycles, unsigned ExtraFCycles,
330                      float Probability, float Confidence) const {
331    return false;
332  }
333
334  /// isProfitableToDupForIfCvt - Return true if it's profitable for
335  /// if-converter to duplicate instructions of specified accumulated
336  /// instruction latencies in the specified MBB to enable if-conversion.
337  /// The probability of the instructions being executed is given by
338  /// Probability, and Confidence is a measure of our confidence that it
339  /// will be properly predicted.
340  virtual bool
341  isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCyles,
342                            float Probability, float Confidence) const {
343    return false;
344  }
345
346  /// copyPhysReg - Emit instructions to copy a pair of physical registers.
347  virtual void copyPhysReg(MachineBasicBlock &MBB,
348                           MachineBasicBlock::iterator MI, DebugLoc DL,
349                           unsigned DestReg, unsigned SrcReg,
350                           bool KillSrc) const {
351    assert(0 && "Target didn't implement TargetInstrInfo::copyPhysReg!");
352  }
353
354  /// storeRegToStackSlot - Store the specified register of the given register
355  /// class to the specified stack frame index. The store instruction is to be
356  /// added to the given machine basic block before the specified machine
357  /// instruction. If isKill is true, the register operand is the last use and
358  /// must be marked kill.
359  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
360                                   MachineBasicBlock::iterator MI,
361                                   unsigned SrcReg, bool isKill, int FrameIndex,
362                                   const TargetRegisterClass *RC,
363                                   const TargetRegisterInfo *TRI) const {
364  assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
365  }
366
367  /// loadRegFromStackSlot - Load the specified register of the given register
368  /// class from the specified stack frame index. The load instruction is to be
369  /// added to the given machine basic block before the specified machine
370  /// instruction.
371  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
372                                    MachineBasicBlock::iterator MI,
373                                    unsigned DestReg, int FrameIndex,
374                                    const TargetRegisterClass *RC,
375                                    const TargetRegisterInfo *TRI) const {
376  assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
377  }
378
379  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
380  /// saved registers and returns true if it isn't possible / profitable to do
381  /// so by issuing a series of store instructions via
382  /// storeRegToStackSlot(). Returns false otherwise.
383  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
384                                         MachineBasicBlock::iterator MI,
385                                        const std::vector<CalleeSavedInfo> &CSI,
386                                         const TargetRegisterInfo *TRI) const {
387    return false;
388  }
389
390  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
391  /// saved registers and returns true if it isn't possible / profitable to do
392  /// so by issuing a series of load instructions via loadRegToStackSlot().
393  /// Returns false otherwise.
394  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
395                                           MachineBasicBlock::iterator MI,
396                                        const std::vector<CalleeSavedInfo> &CSI,
397                                        const TargetRegisterInfo *TRI) const {
398    return false;
399  }
400
401  /// emitFrameIndexDebugValue - Emit a target-dependent form of
402  /// DBG_VALUE encoding the address of a frame index.  Addresses would
403  /// normally be lowered the same way as other addresses on the target,
404  /// e.g. in load instructions.  For targets that do not support this
405  /// the debug info is simply lost.
406  /// If you add this for a target you should handle this DBG_VALUE in the
407  /// target-specific AsmPrinter code as well; you will probably get invalid
408  /// assembly output if you don't.
409  virtual MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
410                                                 int FrameIx,
411                                                 uint64_t Offset,
412                                                 const MDNode *MDPtr,
413                                                 DebugLoc dl) const {
414    return 0;
415  }
416
417  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
418  /// slot into the specified machine instruction for the specified operand(s).
419  /// If this is possible, a new instruction is returned with the specified
420  /// operand folded, otherwise NULL is returned.
421  /// The new instruction is inserted before MI, and the client is responsible
422  /// for removing the old instruction.
423  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
424                                  const SmallVectorImpl<unsigned> &Ops,
425                                  int FrameIndex) const;
426
427  /// foldMemoryOperand - Same as the previous version except it allows folding
428  /// of any load and store from / to any address, not just from a specific
429  /// stack slot.
430  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
431                                  const SmallVectorImpl<unsigned> &Ops,
432                                  MachineInstr* LoadMI) const;
433
434protected:
435  /// foldMemoryOperandImpl - Target-dependent implementation for
436  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
437  /// take care of adding a MachineMemOperand to the newly created instruction.
438  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
439                                          MachineInstr* MI,
440                                          const SmallVectorImpl<unsigned> &Ops,
441                                          int FrameIndex) const {
442    return 0;
443  }
444
445  /// foldMemoryOperandImpl - Target-dependent implementation for
446  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
447  /// take care of adding a MachineMemOperand to the newly created instruction.
448  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
449                                              MachineInstr* MI,
450                                          const SmallVectorImpl<unsigned> &Ops,
451                                              MachineInstr* LoadMI) const {
452    return 0;
453  }
454
455public:
456  /// canFoldMemoryOperand - Returns true for the specified load / store if
457  /// folding is possible.
458  virtual
459  bool canFoldMemoryOperand(const MachineInstr *MI,
460                            const SmallVectorImpl<unsigned> &Ops) const =0;
461
462  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
463  /// a store or a load and a store into two or more instruction. If this is
464  /// possible, returns true as well as the new instructions by reference.
465  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
466                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
467                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
468    return false;
469  }
470
471  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
472                                   SmallVectorImpl<SDNode*> &NewNodes) const {
473    return false;
474  }
475
476  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
477  /// instruction after load / store are unfolded from an instruction of the
478  /// specified opcode. It returns zero if the specified unfolding is not
479  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
480  /// index of the operand which will hold the register holding the loaded
481  /// value.
482  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
483                                      bool UnfoldLoad, bool UnfoldStore,
484                                      unsigned *LoadRegIndex = 0) const {
485    return 0;
486  }
487
488  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
489  /// to determine if two loads are loading from the same base address. It
490  /// should only return true if the base pointers are the same and the
491  /// only differences between the two addresses are the offset. It also returns
492  /// the offsets by reference.
493  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
494                                    int64_t &Offset1, int64_t &Offset2) const {
495    return false;
496  }
497
498  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
499  /// determine (in conjuction with areLoadsFromSameBasePtr) if two loads should
500  /// be scheduled togther. On some targets if two loads are loading from
501  /// addresses in the same cache line, it's better if they are scheduled
502  /// together. This function takes two integers that represent the load offsets
503  /// from the common base address. It returns true if it decides it's desirable
504  /// to schedule the two loads together. "NumLoads" is the number of loads that
505  /// have already been scheduled after Load1.
506  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
507                                       int64_t Offset1, int64_t Offset2,
508                                       unsigned NumLoads) const {
509    return false;
510  }
511
512  /// ReverseBranchCondition - Reverses the branch condition of the specified
513  /// condition list, returning false on success and true if it cannot be
514  /// reversed.
515  virtual
516  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
517    return true;
518  }
519
520  /// insertNoop - Insert a noop into the instruction stream at the specified
521  /// point.
522  virtual void insertNoop(MachineBasicBlock &MBB,
523                          MachineBasicBlock::iterator MI) const;
524
525
526  /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
527  virtual void getNoopForMachoTarget(MCInst &NopInst) const {
528    // Default to just using 'nop' string.
529  }
530
531
532  /// isPredicated - Returns true if the instruction is already predicated.
533  ///
534  virtual bool isPredicated(const MachineInstr *MI) const {
535    return false;
536  }
537
538  /// isUnpredicatedTerminator - Returns true if the instruction is a
539  /// terminator instruction that has not been predicated.
540  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
541
542  /// PredicateInstruction - Convert the instruction into a predicated
543  /// instruction. It returns true if the operation was successful.
544  virtual
545  bool PredicateInstruction(MachineInstr *MI,
546                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
547
548  /// SubsumesPredicate - Returns true if the first specified predicate
549  /// subsumes the second, e.g. GE subsumes GT.
550  virtual
551  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
552                         const SmallVectorImpl<MachineOperand> &Pred2) const {
553    return false;
554  }
555
556  /// DefinesPredicate - If the specified instruction defines any predicate
557  /// or condition code register(s) used for predication, returns true as well
558  /// as the definition predicate(s) by reference.
559  virtual bool DefinesPredicate(MachineInstr *MI,
560                                std::vector<MachineOperand> &Pred) const {
561    return false;
562  }
563
564  /// isPredicable - Return true if the specified instruction can be predicated.
565  /// By default, this returns true for every instruction with a
566  /// PredicateOperand.
567  virtual bool isPredicable(MachineInstr *MI) const {
568    return MI->getDesc().isPredicable();
569  }
570
571  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
572  /// instruction that defines the specified register class.
573  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
574    return true;
575  }
576
577  /// isSchedulingBoundary - Test if the given instruction should be
578  /// considered a scheduling boundary. This primarily includes labels and
579  /// terminators.
580  virtual bool isSchedulingBoundary(const MachineInstr *MI,
581                                    const MachineBasicBlock *MBB,
582                                    const MachineFunction &MF) const = 0;
583
584  /// Measure the specified inline asm to determine an approximation of its
585  /// length.
586  virtual unsigned getInlineAsmLength(const char *Str,
587                                      const MCAsmInfo &MAI) const;
588
589  /// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer
590  /// to use for this target when scheduling the machine instructions after
591  /// register allocation.
592  virtual ScheduleHazardRecognizer*
593  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*) const = 0;
594
595  /// AnalyzeCompare - For a comparison instruction, return the source register
596  /// in SrcReg and the value it compares against in CmpValue. Return true if
597  /// the comparison instruction can be analyzed.
598  virtual bool AnalyzeCompare(const MachineInstr *MI,
599                              unsigned &SrcReg, int &Mask, int &Value) const {
600    return false;
601  }
602
603  /// OptimizeCompareInstr - See if the comparison instruction can be converted
604  /// into something more efficient. E.g., on ARM most instructions can set the
605  /// flags register, obviating the need for a separate CMP.
606  virtual bool OptimizeCompareInstr(MachineInstr *CmpInstr,
607                                    unsigned SrcReg, int Mask, int Value,
608                                    const MachineRegisterInfo *MRI) const {
609    return false;
610  }
611
612  /// FoldImmediate - 'Reg' is known to be defined by a move immediate
613  /// instruction, try to fold the immediate into the use instruction.
614  virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
615                             unsigned Reg, MachineRegisterInfo *MRI) const {
616    return false;
617  }
618
619  /// getNumMicroOps - Return the number of u-operations the given machine
620  /// instruction will be decoded to on the target cpu.
621  virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
622                                  const MachineInstr *MI) const;
623
624  /// getOperandLatency - Compute and return the use operand latency of a given
625  /// pair of def and use.
626  /// In most cases, the static scheduling itinerary was enough to determine the
627  /// operand latency. But it may not be possible for instructions with variable
628  /// number of defs / uses.
629  virtual int getOperandLatency(const InstrItineraryData *ItinData,
630                              const MachineInstr *DefMI, unsigned DefIdx,
631                              const MachineInstr *UseMI, unsigned UseIdx) const;
632
633  virtual int getOperandLatency(const InstrItineraryData *ItinData,
634                                SDNode *DefNode, unsigned DefIdx,
635                                SDNode *UseNode, unsigned UseIdx) const;
636
637  /// getInstrLatency - Compute the instruction latency of a given instruction.
638  /// If the instruction has higher cost when predicated, it's returned via
639  /// PredCost.
640  virtual int getInstrLatency(const InstrItineraryData *ItinData,
641                              const MachineInstr *MI,
642                              unsigned *PredCost = 0) const;
643
644  virtual int getInstrLatency(const InstrItineraryData *ItinData,
645                              SDNode *Node) const;
646
647  /// hasHighOperandLatency - Compute operand latency between a def of 'Reg'
648  /// and an use in the current loop, return true if the target considered
649  /// it 'high'. This is used by optimization passes such as machine LICM to
650  /// determine whether it makes sense to hoist an instruction out even in
651  /// high register pressure situation.
652  virtual
653  bool hasHighOperandLatency(const InstrItineraryData *ItinData,
654                             const MachineRegisterInfo *MRI,
655                             const MachineInstr *DefMI, unsigned DefIdx,
656                             const MachineInstr *UseMI, unsigned UseIdx) const {
657    return false;
658  }
659
660  /// hasLowDefLatency - Compute operand latency of a def of 'Reg', return true
661  /// if the target considered it 'low'.
662  virtual
663  bool hasLowDefLatency(const InstrItineraryData *ItinData,
664                        const MachineInstr *DefMI, unsigned DefIdx) const;
665};
666
667/// TargetInstrInfoImpl - This is the default implementation of
668/// TargetInstrInfo, which just provides a couple of default implementations
669/// for various methods.  This separated out because it is implemented in
670/// libcodegen, not in libtarget.
671class TargetInstrInfoImpl : public TargetInstrInfo {
672protected:
673  TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
674  : TargetInstrInfo(desc, NumOpcodes) {}
675public:
676  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
677                                       MachineBasicBlock *NewDest) const;
678  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
679                                           bool NewMI = false) const;
680  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
681                                     unsigned &SrcOpIdx2) const;
682  virtual bool canFoldMemoryOperand(const MachineInstr *MI,
683                                    const SmallVectorImpl<unsigned> &Ops) const;
684  virtual bool PredicateInstruction(MachineInstr *MI,
685                            const SmallVectorImpl<MachineOperand> &Pred) const;
686  virtual void reMaterialize(MachineBasicBlock &MBB,
687                             MachineBasicBlock::iterator MI,
688                             unsigned DestReg, unsigned SubReg,
689                             const MachineInstr *Orig,
690                             const TargetRegisterInfo &TRI) const;
691  virtual MachineInstr *duplicate(MachineInstr *Orig,
692                                  MachineFunction &MF) const;
693  virtual bool produceSameValue(const MachineInstr *MI0,
694                                const MachineInstr *MI1) const;
695  virtual bool isSchedulingBoundary(const MachineInstr *MI,
696                                    const MachineBasicBlock *MBB,
697                                    const MachineFunction &MF) const;
698
699  virtual ScheduleHazardRecognizer *
700  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*) const;
701};
702
703} // End llvm namespace
704
705#endif
706