TargetInstrInfo.h revision cd775ceff0b25a0b026f643a7990c2924bd310a3
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/Target/TargetInstrDesc.h"
18#include "llvm/CodeGen/MachineFunction.h"
19
20namespace llvm {
21
22class InstrItineraryData;
23class LiveVariables;
24class MCAsmInfo;
25class MachineMemOperand;
26class MachineRegisterInfo;
27class MDNode;
28class MCInst;
29class SDNode;
30class ScheduleHazardRecognizer;
31class SelectionDAG;
32class TargetRegisterClass;
33class TargetRegisterInfo;
34
35template<class T> class SmallVectorImpl;
36
37
38//---------------------------------------------------------------------------
39///
40/// TargetInstrInfo - Interface to description of machine instruction set
41///
42class TargetInstrInfo {
43  const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
44  unsigned NumOpcodes;                // Number of entries in the desc array
45
46  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
47  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
48public:
49  TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
50  virtual ~TargetInstrInfo();
51
52  unsigned getNumOpcodes() const { return NumOpcodes; }
53
54  /// get - Return the machine instruction descriptor that corresponds to the
55  /// specified instruction opcode.
56  ///
57  const TargetInstrDesc &get(unsigned Opcode) const {
58    assert(Opcode < NumOpcodes && "Invalid opcode!");
59    return Descriptors[Opcode];
60  }
61
62  /// isTriviallyReMaterializable - Return true if the instruction is trivially
63  /// rematerializable, meaning it has no side effects and requires no operands
64  /// that aren't always available.
65  bool isTriviallyReMaterializable(const MachineInstr *MI,
66                                   AliasAnalysis *AA = 0) const {
67    return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
68           (MI->getDesc().isRematerializable() &&
69            (isReallyTriviallyReMaterializable(MI, AA) ||
70             isReallyTriviallyReMaterializableGeneric(MI, AA)));
71  }
72
73protected:
74  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
75  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
76  /// specify whether the instruction is actually trivially rematerializable,
77  /// taking into consideration its operands. This predicate must return false
78  /// if the instruction has any side effects other than producing a value, or
79  /// if it requres any address registers that are not always available.
80  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
81                                                 AliasAnalysis *AA) const {
82    return false;
83  }
84
85private:
86  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
87  /// for which the M_REMATERIALIZABLE flag is set and the target hook
88  /// isReallyTriviallyReMaterializable returns false, this function does
89  /// target-independent tests to determine if the instruction is really
90  /// trivially rematerializable.
91  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
92                                                AliasAnalysis *AA) const;
93
94public:
95  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
96  /// extension instruction. That is, it's like a copy where it's legal for the
97  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
98  /// true, then it's expected the pre-extension value is available as a subreg
99  /// of the result register. This also returns the sub-register index in
100  /// SubIdx.
101  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
102                                     unsigned &SrcReg, unsigned &DstReg,
103                                     unsigned &SubIdx) const {
104    return false;
105  }
106
107  /// isLoadFromStackSlot - If the specified machine instruction is a direct
108  /// load from a stack slot, return the virtual or physical register number of
109  /// the destination along with the FrameIndex of the loaded stack slot.  If
110  /// not, return 0.  This predicate must return 0 if the instruction has
111  /// any side effects other than loading from the stack slot.
112  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
113                                       int &FrameIndex) const {
114    return 0;
115  }
116
117  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
118  /// stack locations as well.  This uses a heuristic so it isn't
119  /// reliable for correctness.
120  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
121                                             int &FrameIndex) const {
122    return 0;
123  }
124
125  /// hasLoadFromStackSlot - If the specified machine instruction has
126  /// a load from a stack slot, return true along with the FrameIndex
127  /// of the loaded stack slot and the machine mem operand containing
128  /// the reference.  If not, return false.  Unlike
129  /// isLoadFromStackSlot, this returns true for any instructions that
130  /// loads from the stack.  This is just a hint, as some cases may be
131  /// missed.
132  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
133                                    const MachineMemOperand *&MMO,
134                                    int &FrameIndex) const {
135    return 0;
136  }
137
138  /// isStoreToStackSlot - If the specified machine instruction is a direct
139  /// store to a stack slot, return the virtual or physical register number of
140  /// the source reg along with the FrameIndex of the loaded stack slot.  If
141  /// not, return 0.  This predicate must return 0 if the instruction has
142  /// any side effects other than storing to the stack slot.
143  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
144                                      int &FrameIndex) const {
145    return 0;
146  }
147
148  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
149  /// stack locations as well.  This uses a heuristic so it isn't
150  /// reliable for correctness.
151  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
152                                            int &FrameIndex) const {
153    return 0;
154  }
155
156  /// hasStoreToStackSlot - If the specified machine instruction has a
157  /// store to a stack slot, return true along with the FrameIndex of
158  /// the loaded stack slot and the machine mem operand containing the
159  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
160  /// this returns true for any instructions that stores to the
161  /// stack.  This is just a hint, as some cases may be missed.
162  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
163                                   const MachineMemOperand *&MMO,
164                                   int &FrameIndex) const {
165    return 0;
166  }
167
168  /// reMaterialize - Re-issue the specified 'original' instruction at the
169  /// specific location targeting a new destination register.
170  /// The register in Orig->getOperand(0).getReg() will be substituted by
171  /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
172  /// SubIdx.
173  virtual void reMaterialize(MachineBasicBlock &MBB,
174                             MachineBasicBlock::iterator MI,
175                             unsigned DestReg, unsigned SubIdx,
176                             const MachineInstr *Orig,
177                             const TargetRegisterInfo &TRI) const = 0;
178
179  /// scheduleTwoAddrSource - Schedule the copy / re-mat of the source of the
180  /// two-addrss instruction inserted by two-address pass.
181  virtual void scheduleTwoAddrSource(MachineInstr *SrcMI,
182                                     MachineInstr *UseMI,
183                                     const TargetRegisterInfo &TRI) const {
184    // Do nothing.
185  }
186
187  /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
188  /// MachineFunction::CloneMachineInstr(), but the target may update operands
189  /// that are required to be unique.
190  ///
191  /// The instruction must be duplicable as indicated by isNotDuplicable().
192  virtual MachineInstr *duplicate(MachineInstr *Orig,
193                                  MachineFunction &MF) const = 0;
194
195  /// convertToThreeAddress - This method must be implemented by targets that
196  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
197  /// may be able to convert a two-address instruction into one or more true
198  /// three-address instructions on demand.  This allows the X86 target (for
199  /// example) to convert ADD and SHL instructions into LEA instructions if they
200  /// would require register copies due to two-addressness.
201  ///
202  /// This method returns a null pointer if the transformation cannot be
203  /// performed, otherwise it returns the last new instruction.
204  ///
205  virtual MachineInstr *
206  convertToThreeAddress(MachineFunction::iterator &MFI,
207                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
208    return 0;
209  }
210
211  /// commuteInstruction - If a target has any instructions that are
212  /// commutable but require converting to different instructions or making
213  /// non-trivial changes to commute them, this method can overloaded to do
214  /// that.  The default implementation simply swaps the commutable operands.
215  /// If NewMI is false, MI is modified in place and returned; otherwise, a
216  /// new machine instruction is created and returned.  Do not call this
217  /// method for a non-commutable instruction, but there may be some cases
218  /// where this method fails and returns null.
219  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
220                                           bool NewMI = false) const = 0;
221
222  /// findCommutedOpIndices - If specified MI is commutable, return the two
223  /// operand indices that would swap value. Return false if the instruction
224  /// is not in a form which this routine understands.
225  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
226                                     unsigned &SrcOpIdx2) const = 0;
227
228  /// produceSameValue - Return true if two machine instructions would produce
229  /// identical values. By default, this is only true when the two instructions
230  /// are deemed identical except for defs.
231  virtual bool produceSameValue(const MachineInstr *MI0,
232                                const MachineInstr *MI1) const = 0;
233
234  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
235  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
236  /// implemented for a target).  Upon success, this returns false and returns
237  /// with the following information in various cases:
238  ///
239  /// 1. If this block ends with no branches (it just falls through to its succ)
240  ///    just return false, leaving TBB/FBB null.
241  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
242  ///    the destination block.
243  /// 3. If this block ends with a conditional branch and it falls through to a
244  ///    successor block, it sets TBB to be the branch destination block and a
245  ///    list of operands that evaluate the condition. These operands can be
246  ///    passed to other TargetInstrInfo methods to create new branches.
247  /// 4. If this block ends with a conditional branch followed by an
248  ///    unconditional branch, it returns the 'true' destination in TBB, the
249  ///    'false' destination in FBB, and a list of operands that evaluate the
250  ///    condition.  These operands can be passed to other TargetInstrInfo
251  ///    methods to create new branches.
252  ///
253  /// Note that RemoveBranch and InsertBranch must be implemented to support
254  /// cases where this method returns success.
255  ///
256  /// If AllowModify is true, then this routine is allowed to modify the basic
257  /// block (e.g. delete instructions after the unconditional branch).
258  ///
259  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
260                             MachineBasicBlock *&FBB,
261                             SmallVectorImpl<MachineOperand> &Cond,
262                             bool AllowModify = false) const {
263    return true;
264  }
265
266  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
267  /// This is only invoked in cases where AnalyzeBranch returns success. It
268  /// returns the number of instructions that were removed.
269  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
270    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
271    return 0;
272  }
273
274  /// InsertBranch - Insert branch code into the end of the specified
275  /// MachineBasicBlock.  The operands to this method are the same as those
276  /// returned by AnalyzeBranch.  This is only invoked in cases where
277  /// AnalyzeBranch returns success. It returns the number of instructions
278  /// inserted.
279  ///
280  /// It is also invoked by tail merging to add unconditional branches in
281  /// cases where AnalyzeBranch doesn't apply because there was no original
282  /// branch to analyze.  At least this much must be implemented, else tail
283  /// merging needs to be disabled.
284  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
285                                MachineBasicBlock *FBB,
286                                const SmallVectorImpl<MachineOperand> &Cond,
287                                DebugLoc DL) const {
288    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
289    return 0;
290  }
291
292  /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
293  /// after it, replacing it with an unconditional branch to NewDest. This is
294  /// used by the tail merging pass.
295  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
296                                       MachineBasicBlock *NewDest) const = 0;
297
298  /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
299  /// block at the specified instruction (i.e. instruction would be the start
300  /// of a new basic block).
301  virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
302                                   MachineBasicBlock::iterator MBBI) const {
303    return true;
304  }
305
306  /// isProfitableToIfCvt - Return true if it's profitable to predicate
307  /// instructions with accumulated instruction latency of "NumCycles"
308  /// of the specified basic block, where the probability of the instructions
309  /// being executed is given by Probability, and Confidence is a measure
310  /// of our confidence that it will be properly predicted.
311  virtual
312  bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCyles,
313                           unsigned ExtraPredCycles,
314                           float Probability, float Confidence) const {
315    return false;
316  }
317
318  /// isProfitableToIfCvt - Second variant of isProfitableToIfCvt, this one
319  /// checks for the case where two basic blocks from true and false path
320  /// of a if-then-else (diamond) are predicated on mutally exclusive
321  /// predicates, where the probability of the true path being taken is given
322  /// by Probability, and Confidence is a measure of our confidence that it
323  /// will be properly predicted.
324  virtual bool
325  isProfitableToIfCvt(MachineBasicBlock &TMBB,
326                      unsigned NumTCycles, unsigned ExtraTCycles,
327                      MachineBasicBlock &FMBB,
328                      unsigned NumFCycles, unsigned ExtraFCycles,
329                      float Probability, float Confidence) const {
330    return false;
331  }
332
333  /// isProfitableToDupForIfCvt - Return true if it's profitable for
334  /// if-converter to duplicate instructions of specified accumulated
335  /// instruction latencies in the specified MBB to enable if-conversion.
336  /// The probability of the instructions being executed is given by
337  /// Probability, and Confidence is a measure of our confidence that it
338  /// will be properly predicted.
339  virtual bool
340  isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCyles,
341                            float Probability, float Confidence) const {
342    return false;
343  }
344
345  /// copyPhysReg - Emit instructions to copy a pair of physical registers.
346  virtual void copyPhysReg(MachineBasicBlock &MBB,
347                           MachineBasicBlock::iterator MI, DebugLoc DL,
348                           unsigned DestReg, unsigned SrcReg,
349                           bool KillSrc) const {
350    assert(0 && "Target didn't implement TargetInstrInfo::copyPhysReg!");
351  }
352
353  /// storeRegToStackSlot - Store the specified register of the given register
354  /// class to the specified stack frame index. The store instruction is to be
355  /// added to the given machine basic block before the specified machine
356  /// instruction. If isKill is true, the register operand is the last use and
357  /// must be marked kill.
358  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
359                                   MachineBasicBlock::iterator MI,
360                                   unsigned SrcReg, bool isKill, int FrameIndex,
361                                   const TargetRegisterClass *RC,
362                                   const TargetRegisterInfo *TRI) const {
363  assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
364  }
365
366  /// loadRegFromStackSlot - Load the specified register of the given register
367  /// class from the specified stack frame index. The load instruction is to be
368  /// added to the given machine basic block before the specified machine
369  /// instruction.
370  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
371                                    MachineBasicBlock::iterator MI,
372                                    unsigned DestReg, int FrameIndex,
373                                    const TargetRegisterClass *RC,
374                                    const TargetRegisterInfo *TRI) const {
375  assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
376  }
377
378  /// emitFrameIndexDebugValue - Emit a target-dependent form of
379  /// DBG_VALUE encoding the address of a frame index.  Addresses would
380  /// normally be lowered the same way as other addresses on the target,
381  /// e.g. in load instructions.  For targets that do not support this
382  /// the debug info is simply lost.
383  /// If you add this for a target you should handle this DBG_VALUE in the
384  /// target-specific AsmPrinter code as well; you will probably get invalid
385  /// assembly output if you don't.
386  virtual MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
387                                                 int FrameIx,
388                                                 uint64_t Offset,
389                                                 const MDNode *MDPtr,
390                                                 DebugLoc dl) const {
391    return 0;
392  }
393
394  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
395  /// slot into the specified machine instruction for the specified operand(s).
396  /// If this is possible, a new instruction is returned with the specified
397  /// operand folded, otherwise NULL is returned.
398  /// The new instruction is inserted before MI, and the client is responsible
399  /// for removing the old instruction.
400  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
401                                  const SmallVectorImpl<unsigned> &Ops,
402                                  int FrameIndex) const;
403
404  /// foldMemoryOperand - Same as the previous version except it allows folding
405  /// of any load and store from / to any address, not just from a specific
406  /// stack slot.
407  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
408                                  const SmallVectorImpl<unsigned> &Ops,
409                                  MachineInstr* LoadMI) const;
410
411protected:
412  /// foldMemoryOperandImpl - Target-dependent implementation for
413  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
414  /// take care of adding a MachineMemOperand to the newly created instruction.
415  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
416                                          MachineInstr* MI,
417                                          const SmallVectorImpl<unsigned> &Ops,
418                                          int FrameIndex) const {
419    return 0;
420  }
421
422  /// foldMemoryOperandImpl - Target-dependent implementation for
423  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
424  /// take care of adding a MachineMemOperand to the newly created instruction.
425  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
426                                              MachineInstr* MI,
427                                          const SmallVectorImpl<unsigned> &Ops,
428                                              MachineInstr* LoadMI) const {
429    return 0;
430  }
431
432public:
433  /// canFoldMemoryOperand - Returns true for the specified load / store if
434  /// folding is possible.
435  virtual
436  bool canFoldMemoryOperand(const MachineInstr *MI,
437                            const SmallVectorImpl<unsigned> &Ops) const =0;
438
439  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
440  /// a store or a load and a store into two or more instruction. If this is
441  /// possible, returns true as well as the new instructions by reference.
442  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
443                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
444                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
445    return false;
446  }
447
448  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
449                                   SmallVectorImpl<SDNode*> &NewNodes) const {
450    return false;
451  }
452
453  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
454  /// instruction after load / store are unfolded from an instruction of the
455  /// specified opcode. It returns zero if the specified unfolding is not
456  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
457  /// index of the operand which will hold the register holding the loaded
458  /// value.
459  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
460                                      bool UnfoldLoad, bool UnfoldStore,
461                                      unsigned *LoadRegIndex = 0) const {
462    return 0;
463  }
464
465  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
466  /// to determine if two loads are loading from the same base address. It
467  /// should only return true if the base pointers are the same and the
468  /// only differences between the two addresses are the offset. It also returns
469  /// the offsets by reference.
470  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
471                                    int64_t &Offset1, int64_t &Offset2) const {
472    return false;
473  }
474
475  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
476  /// determine (in conjuction with areLoadsFromSameBasePtr) if two loads should
477  /// be scheduled togther. On some targets if two loads are loading from
478  /// addresses in the same cache line, it's better if they are scheduled
479  /// together. This function takes two integers that represent the load offsets
480  /// from the common base address. It returns true if it decides it's desirable
481  /// to schedule the two loads together. "NumLoads" is the number of loads that
482  /// have already been scheduled after Load1.
483  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
484                                       int64_t Offset1, int64_t Offset2,
485                                       unsigned NumLoads) const {
486    return false;
487  }
488
489  /// ReverseBranchCondition - Reverses the branch condition of the specified
490  /// condition list, returning false on success and true if it cannot be
491  /// reversed.
492  virtual
493  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
494    return true;
495  }
496
497  /// insertNoop - Insert a noop into the instruction stream at the specified
498  /// point.
499  virtual void insertNoop(MachineBasicBlock &MBB,
500                          MachineBasicBlock::iterator MI) const;
501
502
503  /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
504  virtual void getNoopForMachoTarget(MCInst &NopInst) const {
505    // Default to just using 'nop' string.
506  }
507
508
509  /// isPredicated - Returns true if the instruction is already predicated.
510  ///
511  virtual bool isPredicated(const MachineInstr *MI) const {
512    return false;
513  }
514
515  /// isUnpredicatedTerminator - Returns true if the instruction is a
516  /// terminator instruction that has not been predicated.
517  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
518
519  /// PredicateInstruction - Convert the instruction into a predicated
520  /// instruction. It returns true if the operation was successful.
521  virtual
522  bool PredicateInstruction(MachineInstr *MI,
523                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
524
525  /// SubsumesPredicate - Returns true if the first specified predicate
526  /// subsumes the second, e.g. GE subsumes GT.
527  virtual
528  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
529                         const SmallVectorImpl<MachineOperand> &Pred2) const {
530    return false;
531  }
532
533  /// DefinesPredicate - If the specified instruction defines any predicate
534  /// or condition code register(s) used for predication, returns true as well
535  /// as the definition predicate(s) by reference.
536  virtual bool DefinesPredicate(MachineInstr *MI,
537                                std::vector<MachineOperand> &Pred) const {
538    return false;
539  }
540
541  /// isPredicable - Return true if the specified instruction can be predicated.
542  /// By default, this returns true for every instruction with a
543  /// PredicateOperand.
544  virtual bool isPredicable(MachineInstr *MI) const {
545    return MI->getDesc().isPredicable();
546  }
547
548  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
549  /// instruction that defines the specified register class.
550  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
551    return true;
552  }
553
554  /// isSchedulingBoundary - Test if the given instruction should be
555  /// considered a scheduling boundary. This primarily includes labels and
556  /// terminators.
557  virtual bool isSchedulingBoundary(const MachineInstr *MI,
558                                    const MachineBasicBlock *MBB,
559                                    const MachineFunction &MF) const = 0;
560
561  /// Measure the specified inline asm to determine an approximation of its
562  /// length.
563  virtual unsigned getInlineAsmLength(const char *Str,
564                                      const MCAsmInfo &MAI) const;
565
566  /// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer
567  /// to use for this target when scheduling the machine instructions after
568  /// register allocation.
569  virtual ScheduleHazardRecognizer*
570  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*) const = 0;
571
572  /// AnalyzeCompare - For a comparison instruction, return the source register
573  /// in SrcReg and the value it compares against in CmpValue. Return true if
574  /// the comparison instruction can be analyzed.
575  virtual bool AnalyzeCompare(const MachineInstr *MI,
576                              unsigned &SrcReg, int &Mask, int &Value) const {
577    return false;
578  }
579
580  /// OptimizeCompareInstr - See if the comparison instruction can be converted
581  /// into something more efficient. E.g., on ARM most instructions can set the
582  /// flags register, obviating the need for a separate CMP.
583  virtual bool OptimizeCompareInstr(MachineInstr *CmpInstr,
584                                    unsigned SrcReg, int Mask, int Value,
585                                    const MachineRegisterInfo *MRI) const {
586    return false;
587  }
588
589  /// FoldImmediate - 'Reg' is known to be defined by a move immediate
590  /// instruction, try to fold the immediate into the use instruction.
591  virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
592                             unsigned Reg, MachineRegisterInfo *MRI) const {
593    return false;
594  }
595
596  /// getNumMicroOps - Return the number of u-operations the given machine
597  /// instruction will be decoded to on the target cpu.
598  virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
599                                  const MachineInstr *MI) const;
600
601  /// getOperandLatency - Compute and return the use operand latency of a given
602  /// pair of def and use.
603  /// In most cases, the static scheduling itinerary was enough to determine the
604  /// operand latency. But it may not be possible for instructions with variable
605  /// number of defs / uses.
606  virtual int getOperandLatency(const InstrItineraryData *ItinData,
607                              const MachineInstr *DefMI, unsigned DefIdx,
608                              const MachineInstr *UseMI, unsigned UseIdx) const;
609
610  virtual int getOperandLatency(const InstrItineraryData *ItinData,
611                                SDNode *DefNode, unsigned DefIdx,
612                                SDNode *UseNode, unsigned UseIdx) const;
613
614  /// getInstrLatency - Compute the instruction latency of a given instruction.
615  /// If the instruction has higher cost when predicated, it's returned via
616  /// PredCost.
617  virtual int getInstrLatency(const InstrItineraryData *ItinData,
618                              const MachineInstr *MI,
619                              unsigned *PredCost = 0) const;
620
621  virtual int getInstrLatency(const InstrItineraryData *ItinData,
622                              SDNode *Node) const;
623
624  /// hasHighOperandLatency - Compute operand latency between a def of 'Reg'
625  /// and an use in the current loop, return true if the target considered
626  /// it 'high'. This is used by optimization passes such as machine LICM to
627  /// determine whether it makes sense to hoist an instruction out even in
628  /// high register pressure situation.
629  virtual
630  bool hasHighOperandLatency(const InstrItineraryData *ItinData,
631                             const MachineRegisterInfo *MRI,
632                             const MachineInstr *DefMI, unsigned DefIdx,
633                             const MachineInstr *UseMI, unsigned UseIdx) const {
634    return false;
635  }
636
637  /// hasLowDefLatency - Compute operand latency of a def of 'Reg', return true
638  /// if the target considered it 'low'.
639  virtual
640  bool hasLowDefLatency(const InstrItineraryData *ItinData,
641                        const MachineInstr *DefMI, unsigned DefIdx) const;
642};
643
644/// TargetInstrInfoImpl - This is the default implementation of
645/// TargetInstrInfo, which just provides a couple of default implementations
646/// for various methods.  This separated out because it is implemented in
647/// libcodegen, not in libtarget.
648class TargetInstrInfoImpl : public TargetInstrInfo {
649protected:
650  TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
651  : TargetInstrInfo(desc, NumOpcodes) {}
652public:
653  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
654                                       MachineBasicBlock *NewDest) const;
655  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
656                                           bool NewMI = false) const;
657  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
658                                     unsigned &SrcOpIdx2) const;
659  virtual bool canFoldMemoryOperand(const MachineInstr *MI,
660                                    const SmallVectorImpl<unsigned> &Ops) const;
661  virtual bool PredicateInstruction(MachineInstr *MI,
662                            const SmallVectorImpl<MachineOperand> &Pred) const;
663  virtual void reMaterialize(MachineBasicBlock &MBB,
664                             MachineBasicBlock::iterator MI,
665                             unsigned DestReg, unsigned SubReg,
666                             const MachineInstr *Orig,
667                             const TargetRegisterInfo &TRI) const;
668  virtual MachineInstr *duplicate(MachineInstr *Orig,
669                                  MachineFunction &MF) const;
670  virtual bool produceSameValue(const MachineInstr *MI0,
671                                const MachineInstr *MI1) const;
672  virtual bool isSchedulingBoundary(const MachineInstr *MI,
673                                    const MachineBasicBlock *MBB,
674                                    const MachineFunction &MF) const;
675
676  virtual ScheduleHazardRecognizer *
677  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*) const;
678};
679
680} // End llvm namespace
681
682#endif
683