TargetInstrInfo.h revision d1862037f04954f00cd6e6066ee213cfdc292877
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/Target/TargetInstrDesc.h"
18#include "llvm/CodeGen/MachineFunction.h"
19
20namespace llvm {
21
22class MCAsmInfo;
23class TargetRegisterClass;
24class TargetRegisterInfo;
25class LiveVariables;
26class CalleeSavedInfo;
27class SDNode;
28class SelectionDAG;
29class MachineMemOperand;
30
31template<class T> class SmallVectorImpl;
32
33
34//---------------------------------------------------------------------------
35///
36/// TargetInstrInfo - Interface to description of machine instruction set
37///
38class TargetInstrInfo {
39  const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
40  unsigned NumOpcodes;                // Number of entries in the desc array
41
42  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
43  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
44public:
45  TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
46  virtual ~TargetInstrInfo();
47
48  // Invariant opcodes: All instruction sets have these as their low opcodes.
49  enum {
50    PHI = 0,
51    INLINEASM = 1,
52    DBG_LABEL = 2,
53    EH_LABEL = 3,
54    GC_LABEL = 4,
55
56    /// KILL - This instruction is a noop that is used only to adjust the liveness
57    /// of registers. This can be useful when dealing with sub-registers.
58    KILL = 5,
59
60    /// EXTRACT_SUBREG - This instruction takes two operands: a register
61    /// that has subregisters, and a subregister index. It returns the
62    /// extracted subregister value. This is commonly used to implement
63    /// truncation operations on target architectures which support it.
64    EXTRACT_SUBREG = 6,
65
66    /// INSERT_SUBREG - This instruction takes three operands: a register
67    /// that has subregisters, a register providing an insert value, and a
68    /// subregister index. It returns the value of the first register with
69    /// the value of the second register inserted. The first register is
70    /// often defined by an IMPLICIT_DEF, as is commonly used to implement
71    /// anyext operations on target architectures which support it.
72    INSERT_SUBREG = 7,
73
74    /// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
75    IMPLICIT_DEF = 8,
76
77    /// SUBREG_TO_REG - This instruction is similar to INSERT_SUBREG except
78    /// that the first operand is an immediate integer constant. This constant
79    /// is often zero, as is commonly used to implement zext operations on
80    /// target architectures which support it, such as with x86-64 (with
81    /// zext from i32 to i64 via implicit zero-extension).
82    SUBREG_TO_REG = 9,
83
84    /// COPY_TO_REGCLASS - This instruction is a placeholder for a plain
85    /// register-to-register copy into a specific register class. This is only
86    /// used between instruction selection and MachineInstr creation, before
87    /// virtual registers have been created for all the instructions, and it's
88    /// only needed in cases where the register classes implied by the
89    /// instructions are insufficient. The actual MachineInstrs to perform
90    /// the copy are emitted with the TargetInstrInfo::copyRegToReg hook.
91    COPY_TO_REGCLASS = 10
92  };
93
94  unsigned getNumOpcodes() const { return NumOpcodes; }
95
96  /// get - Return the machine instruction descriptor that corresponds to the
97  /// specified instruction opcode.
98  ///
99  const TargetInstrDesc &get(unsigned Opcode) const {
100    assert(Opcode < NumOpcodes && "Invalid opcode!");
101    return Descriptors[Opcode];
102  }
103
104  /// isTriviallyReMaterializable - Return true if the instruction is trivially
105  /// rematerializable, meaning it has no side effects and requires no operands
106  /// that aren't always available.
107  bool isTriviallyReMaterializable(const MachineInstr *MI,
108                                   AliasAnalysis *AA = 0) const {
109    return MI->getOpcode() == IMPLICIT_DEF ||
110           (MI->getDesc().isRematerializable() &&
111            (isReallyTriviallyReMaterializable(MI, AA) ||
112             isReallyTriviallyReMaterializableGeneric(MI, AA)));
113  }
114
115protected:
116  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
117  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
118  /// specify whether the instruction is actually trivially rematerializable,
119  /// taking into consideration its operands. This predicate must return false
120  /// if the instruction has any side effects other than producing a value, or
121  /// if it requres any address registers that are not always available.
122  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
123                                                 AliasAnalysis *AA) const {
124    return false;
125  }
126
127private:
128  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
129  /// for which the M_REMATERIALIZABLE flag is set and the target hook
130  /// isReallyTriviallyReMaterializable returns false, this function does
131  /// target-independent tests to determine if the instruction is really
132  /// trivially rematerializable.
133  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
134                                                AliasAnalysis *AA) const;
135
136public:
137  /// isMoveInstr - Return true if the instruction is a register to register
138  /// move and return the source and dest operands and their sub-register
139  /// indices by reference.
140  virtual bool isMoveInstr(const MachineInstr& MI,
141                           unsigned& SrcReg, unsigned& DstReg,
142                           unsigned& SrcSubIdx, unsigned& DstSubIdx) const {
143    return false;
144  }
145
146  /// isIdentityCopy - Return true if the instruction is a copy (or
147  /// extract_subreg, insert_subreg, subreg_to_reg) where the source and
148  /// destination registers are the same.
149  bool isIdentityCopy(const MachineInstr &MI) const {
150    unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
151    if (isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
152        SrcReg == DstReg)
153      return true;
154
155    if (MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG &&
156        MI.getOperand(0).getReg() == MI.getOperand(1).getReg())
157    return true;
158
159    if ((MI.getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
160         MI.getOpcode() == TargetInstrInfo::SUBREG_TO_REG) &&
161        MI.getOperand(0).getReg() == MI.getOperand(2).getReg())
162      return true;
163    return false;
164  }
165
166  /// isLoadFromStackSlot - If the specified machine instruction is a direct
167  /// load from a stack slot, return the virtual or physical register number of
168  /// the destination along with the FrameIndex of the loaded stack slot.  If
169  /// not, return 0.  This predicate must return 0 if the instruction has
170  /// any side effects other than loading from the stack slot.
171  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
172                                       int &FrameIndex) const {
173    return 0;
174  }
175
176  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
177  /// stack locations as well.  This uses a heuristic so it isn't
178  /// reliable for correctness.
179  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
180                                             int &FrameIndex) const {
181    return 0;
182  }
183
184  /// hasLoadFromStackSlot - If the specified machine instruction has
185  /// a load from a stack slot, return true along with the FrameIndex
186  /// of the loaded stack slot and the machine mem operand containing
187  /// the reference.  If not, return false.  Unlike
188  /// isLoadFromStackSlot, this returns true for any instructions that
189  /// loads from the stack.  This is just a hint, as some cases may be
190  /// missed.
191  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
192                                    const MachineMemOperand *&MMO,
193                                    int &FrameIndex) const {
194    return 0;
195  }
196
197  /// isStoreToStackSlot - If the specified machine instruction is a direct
198  /// store to a stack slot, return the virtual or physical register number of
199  /// the source reg along with the FrameIndex of the loaded stack slot.  If
200  /// not, return 0.  This predicate must return 0 if the instruction has
201  /// any side effects other than storing to the stack slot.
202  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
203                                      int &FrameIndex) const {
204    return 0;
205  }
206
207  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
208  /// stack locations as well.  This uses a heuristic so it isn't
209  /// reliable for correctness.
210  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
211                                            int &FrameIndex) const {
212    return 0;
213  }
214
215  /// hasStoreToStackSlot - If the specified machine instruction has a
216  /// store to a stack slot, return true along with the FrameIndex of
217  /// the loaded stack slot and the machine mem operand containing the
218  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
219  /// this returns true for any instructions that loads from the
220  /// stack.  This is just a hint, as some cases may be missed.
221  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
222                                   const MachineMemOperand *&MMO,
223                                   int &FrameIndex) const {
224    return 0;
225  }
226
227  /// reMaterialize - Re-issue the specified 'original' instruction at the
228  /// specific location targeting a new destination register.
229  virtual void reMaterialize(MachineBasicBlock &MBB,
230                             MachineBasicBlock::iterator MI,
231                             unsigned DestReg, unsigned SubIdx,
232                             const MachineInstr *Orig,
233                             const TargetRegisterInfo *TRI) const = 0;
234
235  /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
236  /// MachineFunction::CloneMachineInstr(), but the target may update operands
237  /// that are required to be unique.
238  ///
239  /// The instruction must be duplicable as indicated by isNotDuplicable().
240  virtual MachineInstr *duplicate(MachineInstr *Orig,
241                                  MachineFunction &MF) const = 0;
242
243  /// convertToThreeAddress - This method must be implemented by targets that
244  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
245  /// may be able to convert a two-address instruction into one or more true
246  /// three-address instructions on demand.  This allows the X86 target (for
247  /// example) to convert ADD and SHL instructions into LEA instructions if they
248  /// would require register copies due to two-addressness.
249  ///
250  /// This method returns a null pointer if the transformation cannot be
251  /// performed, otherwise it returns the last new instruction.
252  ///
253  virtual MachineInstr *
254  convertToThreeAddress(MachineFunction::iterator &MFI,
255                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
256    return 0;
257  }
258
259  /// commuteInstruction - If a target has any instructions that are commutable,
260  /// but require converting to a different instruction or making non-trivial
261  /// changes to commute them, this method can overloaded to do this.  The
262  /// default implementation of this method simply swaps the first two operands
263  /// of MI and returns it.
264  ///
265  /// If a target wants to make more aggressive changes, they can construct and
266  /// return a new machine instruction.  If an instruction cannot commute, it
267  /// can also return null.
268  ///
269  /// If NewMI is true, then a new machine instruction must be created.
270  ///
271  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
272                                           bool NewMI = false) const = 0;
273
274  /// findCommutedOpIndices - If specified MI is commutable, return the two
275  /// operand indices that would swap value. Return true if the instruction
276  /// is not in a form which this routine understands.
277  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
278                                     unsigned &SrcOpIdx2) const = 0;
279
280  /// isIdentical - Return true if two instructions are identical. This differs
281  /// from MachineInstr::isIdenticalTo() in that it does not require the
282  /// virtual destination registers to be the same. This is used by MachineLICM
283  /// and other MI passes to perform CSE.
284  virtual bool isIdentical(const MachineInstr *MI,
285                           const MachineInstr *Other,
286                           const MachineRegisterInfo *MRI) const = 0;
287
288  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
289  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
290  /// implemented for a target).  Upon success, this returns false and returns
291  /// with the following information in various cases:
292  ///
293  /// 1. If this block ends with no branches (it just falls through to its succ)
294  ///    just return false, leaving TBB/FBB null.
295  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
296  ///    the destination block.
297  /// 3. If this block ends with a conditional branch and it falls through to a
298  ///    successor block, it sets TBB to be the branch destination block and a
299  ///    list of operands that evaluate the condition. These operands can be
300  ///    passed to other TargetInstrInfo methods to create new branches.
301  /// 4. If this block ends with a conditional branch followed by an
302  ///    unconditional branch, it returns the 'true' destination in TBB, the
303  ///    'false' destination in FBB, and a list of operands that evaluate the
304  ///    condition.  These operands can be passed to other TargetInstrInfo
305  ///    methods to create new branches.
306  ///
307  /// Note that RemoveBranch and InsertBranch must be implemented to support
308  /// cases where this method returns success.
309  ///
310  /// If AllowModify is true, then this routine is allowed to modify the basic
311  /// block (e.g. delete instructions after the unconditional branch).
312  ///
313  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
314                             MachineBasicBlock *&FBB,
315                             SmallVectorImpl<MachineOperand> &Cond,
316                             bool AllowModify = false) const {
317    return true;
318  }
319
320  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
321  /// This is only invoked in cases where AnalyzeBranch returns success. It
322  /// returns the number of instructions that were removed.
323  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
324    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
325    return 0;
326  }
327
328  /// InsertBranch - Insert branch code into the end of the specified
329  /// MachineBasicBlock.  The operands to this method are the same as those
330  /// returned by AnalyzeBranch.  This is only invoked in cases where
331  /// AnalyzeBranch returns success. It returns the number of instructions
332  /// inserted.
333  ///
334  /// It is also invoked by tail merging to add unconditional branches in
335  /// cases where AnalyzeBranch doesn't apply because there was no original
336  /// branch to analyze.  At least this much must be implemented, else tail
337  /// merging needs to be disabled.
338  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
339                            MachineBasicBlock *FBB,
340                            const SmallVectorImpl<MachineOperand> &Cond) const {
341    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
342    return 0;
343  }
344
345  /// copyRegToReg - Emit instructions to copy between a pair of registers. It
346  /// returns false if the target does not how to copy between the specified
347  /// registers.
348  virtual bool copyRegToReg(MachineBasicBlock &MBB,
349                            MachineBasicBlock::iterator MI,
350                            unsigned DestReg, unsigned SrcReg,
351                            const TargetRegisterClass *DestRC,
352                            const TargetRegisterClass *SrcRC) const {
353    assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!");
354    return false;
355  }
356
357  /// storeRegToStackSlot - Store the specified register of the given register
358  /// class to the specified stack frame index. The store instruction is to be
359  /// added to the given machine basic block before the specified machine
360  /// instruction. If isKill is true, the register operand is the last use and
361  /// must be marked kill.
362  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
363                                   MachineBasicBlock::iterator MI,
364                                   unsigned SrcReg, bool isKill, int FrameIndex,
365                                   const TargetRegisterClass *RC) const {
366    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
367  }
368
369  /// loadRegFromStackSlot - Load the specified register of the given register
370  /// class from the specified stack frame index. The load instruction is to be
371  /// added to the given machine basic block before the specified machine
372  /// instruction.
373  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
374                                    MachineBasicBlock::iterator MI,
375                                    unsigned DestReg, int FrameIndex,
376                                    const TargetRegisterClass *RC) const {
377    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
378  }
379
380  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
381  /// saved registers and returns true if it isn't possible / profitable to do
382  /// so by issuing a series of store instructions via
383  /// storeRegToStackSlot(). Returns false otherwise.
384  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
385                                         MachineBasicBlock::iterator MI,
386                                const std::vector<CalleeSavedInfo> &CSI) const {
387    return false;
388  }
389
390  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
391  /// saved registers and returns true if it isn't possible / profitable to do
392  /// so by issuing a series of load instructions via loadRegToStackSlot().
393  /// Returns false otherwise.
394  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
395                                           MachineBasicBlock::iterator MI,
396                                const std::vector<CalleeSavedInfo> &CSI) const {
397    return false;
398  }
399
400  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
401  /// slot into the specified machine instruction for the specified operand(s).
402  /// If this is possible, a new instruction is returned with the specified
403  /// operand folded, otherwise NULL is returned. The client is responsible for
404  /// removing the old instruction and adding the new one in the instruction
405  /// stream.
406  MachineInstr* foldMemoryOperand(MachineFunction &MF,
407                                  MachineInstr* MI,
408                                  const SmallVectorImpl<unsigned> &Ops,
409                                  int FrameIndex) const;
410
411  /// foldMemoryOperand - Same as the previous version except it allows folding
412  /// of any load and store from / to any address, not just from a specific
413  /// stack slot.
414  MachineInstr* foldMemoryOperand(MachineFunction &MF,
415                                  MachineInstr* MI,
416                                  const SmallVectorImpl<unsigned> &Ops,
417                                  MachineInstr* LoadMI) const;
418
419protected:
420  /// foldMemoryOperandImpl - Target-dependent implementation for
421  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
422  /// take care of adding a MachineMemOperand to the newly created instruction.
423  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
424                                          MachineInstr* MI,
425                                          const SmallVectorImpl<unsigned> &Ops,
426                                          int FrameIndex) const {
427    return 0;
428  }
429
430  /// foldMemoryOperandImpl - Target-dependent implementation for
431  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
432  /// take care of adding a MachineMemOperand to the newly created instruction.
433  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
434                                              MachineInstr* MI,
435                                              const SmallVectorImpl<unsigned> &Ops,
436                                              MachineInstr* LoadMI) const {
437    return 0;
438  }
439
440public:
441  /// canFoldMemoryOperand - Returns true for the specified load / store if
442  /// folding is possible.
443  virtual
444  bool canFoldMemoryOperand(const MachineInstr *MI,
445                            const SmallVectorImpl<unsigned> &Ops) const {
446    return false;
447  }
448
449  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
450  /// a store or a load and a store into two or more instruction. If this is
451  /// possible, returns true as well as the new instructions by reference.
452  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
453                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
454                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
455    return false;
456  }
457
458  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
459                                   SmallVectorImpl<SDNode*> &NewNodes) const {
460    return false;
461  }
462
463  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
464  /// instruction after load / store are unfolded from an instruction of the
465  /// specified opcode. It returns zero if the specified unfolding is not
466  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
467  /// index of the operand which will hold the register holding the loaded
468  /// value.
469  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
470                                      bool UnfoldLoad, bool UnfoldStore,
471                                      unsigned *LoadRegIndex = 0) const {
472    return 0;
473  }
474
475  /// ReverseBranchCondition - Reverses the branch condition of the specified
476  /// condition list, returning false on success and true if it cannot be
477  /// reversed.
478  virtual
479  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
480    return true;
481  }
482
483  /// insertNoop - Insert a noop into the instruction stream at the specified
484  /// point.
485  virtual void insertNoop(MachineBasicBlock &MBB,
486                          MachineBasicBlock::iterator MI) const;
487
488  /// isPredicated - Returns true if the instruction is already predicated.
489  ///
490  virtual bool isPredicated(const MachineInstr *MI) const {
491    return false;
492  }
493
494  /// isUnpredicatedTerminator - Returns true if the instruction is a
495  /// terminator instruction that has not been predicated.
496  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
497
498  /// PredicateInstruction - Convert the instruction into a predicated
499  /// instruction. It returns true if the operation was successful.
500  virtual
501  bool PredicateInstruction(MachineInstr *MI,
502                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
503
504  /// SubsumesPredicate - Returns true if the first specified predicate
505  /// subsumes the second, e.g. GE subsumes GT.
506  virtual
507  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
508                         const SmallVectorImpl<MachineOperand> &Pred2) const {
509    return false;
510  }
511
512  /// DefinesPredicate - If the specified instruction defines any predicate
513  /// or condition code register(s) used for predication, returns true as well
514  /// as the definition predicate(s) by reference.
515  virtual bool DefinesPredicate(MachineInstr *MI,
516                                std::vector<MachineOperand> &Pred) const {
517    return false;
518  }
519
520  /// isPredicable - Return true if the specified instruction can be predicated.
521  /// By default, this returns true for every instruction with a
522  /// PredicateOperand.
523  virtual bool isPredicable(MachineInstr *MI) const {
524    return MI->getDesc().isPredicable();
525  }
526
527  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
528  /// instruction that defines the specified register class.
529  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
530    return true;
531  }
532
533  /// GetInstSize - Returns the size of the specified Instruction.
534  ///
535  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const {
536    assert(0 && "Target didn't implement TargetInstrInfo::GetInstSize!");
537    return 0;
538  }
539
540  /// GetFunctionSizeInBytes - Returns the size of the specified
541  /// MachineFunction.
542  ///
543  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const = 0;
544
545  /// Measure the specified inline asm to determine an approximation of its
546  /// length.
547  virtual unsigned getInlineAsmLength(const char *Str,
548                                      const MCAsmInfo &MAI) const;
549};
550
551/// TargetInstrInfoImpl - This is the default implementation of
552/// TargetInstrInfo, which just provides a couple of default implementations
553/// for various methods.  This separated out because it is implemented in
554/// libcodegen, not in libtarget.
555class TargetInstrInfoImpl : public TargetInstrInfo {
556protected:
557  TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
558  : TargetInstrInfo(desc, NumOpcodes) {}
559public:
560  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
561                                           bool NewMI = false) const;
562  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
563                                     unsigned &SrcOpIdx2) const;
564  virtual bool PredicateInstruction(MachineInstr *MI,
565                            const SmallVectorImpl<MachineOperand> &Pred) const;
566  virtual void reMaterialize(MachineBasicBlock &MBB,
567                             MachineBasicBlock::iterator MI,
568                             unsigned DestReg, unsigned SubReg,
569                             const MachineInstr *Orig,
570                             const TargetRegisterInfo *TRI) const;
571  virtual MachineInstr *duplicate(MachineInstr *Orig,
572                                  MachineFunction &MF) const;
573  virtual bool isIdentical(const MachineInstr *MI,
574                           const MachineInstr *Other,
575                           const MachineRegisterInfo *MRI) const;
576
577  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const;
578};
579
580} // End llvm namespace
581
582#endif
583