TargetInstrInfo.h revision d45eddd214061bf12ad1e6b86497a41725e61d75
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instructions to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/CodeGen/MachineBasicBlock.h"
18#include "llvm/CodeGen/MachineFunction.h"
19#include "llvm/Support/DataTypes.h"
20#include <vector>
21#include <cassert>
22
23namespace llvm {
24
25class MachineInstr;
26class TargetMachine;
27class MachineCodeForInstruction;
28class TargetRegisterClass;
29class LiveVariables;
30
31//---------------------------------------------------------------------------
32// Data types used to define information about a single machine instruction
33//---------------------------------------------------------------------------
34
35typedef short MachineOpCode;
36typedef unsigned InstrSchedClass;
37
38//---------------------------------------------------------------------------
39// struct TargetInstrDescriptor:
40//  Predefined information about each machine instruction.
41//  Designed to initialized statically.
42//
43
44const unsigned M_BRANCH_FLAG           = 1 << 0;
45const unsigned M_CALL_FLAG             = 1 << 1;
46const unsigned M_RET_FLAG              = 1 << 2;
47const unsigned M_BARRIER_FLAG          = 1 << 3;
48const unsigned M_DELAY_SLOT_FLAG       = 1 << 4;
49const unsigned M_LOAD_FLAG             = 1 << 5;
50const unsigned M_STORE_FLAG            = 1 << 6;
51
52// M_CONVERTIBLE_TO_3_ADDR - This is a 2-address instruction which can be
53// changed into a 3-address instruction if the first two operands cannot be
54// assigned to the same register.  The target must implement the
55// TargetInstrInfo::convertToThreeAddress method for this instruction.
56const unsigned M_CONVERTIBLE_TO_3_ADDR = 1 << 7;
57
58// This M_COMMUTABLE - is a 2- or 3-address instruction (of the form X = op Y,
59// Z), which produces the same result if Y and Z are exchanged.
60const unsigned M_COMMUTABLE            = 1 << 8;
61
62// M_TERMINATOR_FLAG - Is this instruction part of the terminator for a basic
63// block?  Typically this is things like return and branch instructions.
64// Various passes use this to insert code into the bottom of a basic block, but
65// before control flow occurs.
66const unsigned M_TERMINATOR_FLAG       = 1 << 9;
67
68// M_USES_CUSTOM_DAG_SCHED_INSERTION - Set if this instruction requires custom
69// insertion support when the DAG scheduler is inserting it into a machine basic
70// block.
71const unsigned M_USES_CUSTOM_DAG_SCHED_INSERTION = 1 << 10;
72
73// M_VARIABLE_OPS - Set if this instruction can have a variable number of extra
74// operands in addition to the minimum number operands specified.
75const unsigned M_VARIABLE_OPS = 1 << 11;
76
77// M_PREDICABLE - Set if this instruction has a predicate operand that
78// controls execution. It may be set to 'always'.
79const unsigned M_PREDICABLE = 1 << 12;
80
81// M_REMATERIALIZIBLE - Set if this instruction can be trivally re-materialized
82// at any time, e.g. constant generation, load from constant pool.
83const unsigned M_REMATERIALIZIBLE = 1 << 13;
84
85// M_CLOBBERS_PRED - Set if this instruction may clobbers the condition code
86// register and / or registers that are used to predicate instructions.
87const unsigned M_CLOBBERS_PRED = 1 << 14;
88
89// M_NOT_DUPLICABLE - Set if this instruction cannot be safely duplicated.
90// (e.g. instructions with unique labels attached).
91const unsigned M_NOT_DUPLICABLE = 1 << 15;
92
93// Machine operand flags
94// M_LOOK_UP_PTR_REG_CLASS - Set if this operand is a pointer value and it
95// requires a callback to look up its register class.
96const unsigned M_LOOK_UP_PTR_REG_CLASS = 1 << 0;
97
98/// M_PREDICATE_OPERAND - Set if this is one of the operands that made up of the
99/// predicate operand that controls an M_PREDICATED instruction.
100const unsigned M_PREDICATE_OPERAND = 1 << 1;
101
102namespace TOI {
103  // Operand constraints: only "tied_to" for now.
104  enum OperandConstraint {
105    TIED_TO = 0  // Must be allocated the same register as.
106  };
107}
108
109/// TargetOperandInfo - This holds information about one operand of a machine
110/// instruction, indicating the register class for register operands, etc.
111///
112class TargetOperandInfo {
113public:
114  /// RegClass - This specifies the register class enumeration of the operand
115  /// if the operand is a register.  If not, this contains 0.
116  unsigned short RegClass;
117  unsigned short Flags;
118  /// Lower 16 bits are used to specify which constraints are set. The higher 16
119  /// bits are used to specify the value of constraints (4 bits each).
120  unsigned int Constraints;
121  /// Currently no other information.
122};
123
124
125class TargetInstrDescriptor {
126public:
127  MachineOpCode   Opcode;        // The opcode.
128  unsigned short  numOperands;   // Num of args (may be more if variable_ops).
129  const char *    Name;          // Assembly language mnemonic for the opcode.
130  InstrSchedClass schedClass;    // enum  identifying instr sched class
131  unsigned        Flags;         // flags identifying machine instr class
132  unsigned        TSFlags;       // Target Specific Flag values
133  const unsigned *ImplicitUses;  // Registers implicitly read by this instr
134  const unsigned *ImplicitDefs;  // Registers implicitly defined by this instr
135  const TargetOperandInfo *OpInfo; // 'numOperands' entries about operands.
136
137  /// getOperandConstraint - Returns the value of the specific constraint if
138  /// it is set. Returns -1 if it is not set.
139  int getOperandConstraint(unsigned OpNum,
140                           TOI::OperandConstraint Constraint) const {
141    assert((OpNum < numOperands || (Flags & M_VARIABLE_OPS)) &&
142           "Invalid operand # of TargetInstrInfo");
143    if (OpNum < numOperands &&
144        (OpInfo[OpNum].Constraints & (1 << Constraint))) {
145      unsigned Pos = 16 + Constraint * 4;
146      return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
147    }
148    return -1;
149  }
150
151  /// findTiedToSrcOperand - Returns the operand that is tied to the specified
152  /// dest operand. Returns -1 if there isn't one.
153  int findTiedToSrcOperand(unsigned OpNum) const;
154};
155
156
157//---------------------------------------------------------------------------
158///
159/// TargetInstrInfo - Interface to description of machine instructions
160///
161class TargetInstrInfo {
162  const TargetInstrDescriptor* desc;    // raw array to allow static init'n
163  unsigned NumOpcodes;                  // number of entries in the desc array
164  unsigned numRealOpCodes;              // number of non-dummy op codes
165
166  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
167  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
168public:
169  TargetInstrInfo(const TargetInstrDescriptor *desc, unsigned NumOpcodes);
170  virtual ~TargetInstrInfo();
171
172  // Invariant opcodes: All instruction sets have these as their low opcodes.
173  enum {
174    PHI = 0,
175    INLINEASM = 1,
176    LABEL = 2
177  };
178
179  unsigned getNumOpcodes() const { return NumOpcodes; }
180
181  /// get - Return the machine instruction descriptor that corresponds to the
182  /// specified instruction opcode.
183  ///
184  const TargetInstrDescriptor& get(MachineOpCode Opcode) const {
185    assert((unsigned)Opcode < NumOpcodes);
186    return desc[Opcode];
187  }
188
189  const char *getName(MachineOpCode Opcode) const {
190    return get(Opcode).Name;
191  }
192
193  int getNumOperands(MachineOpCode Opcode) const {
194    return get(Opcode).numOperands;
195  }
196
197  InstrSchedClass getSchedClass(MachineOpCode Opcode) const {
198    return get(Opcode).schedClass;
199  }
200
201  const unsigned *getImplicitUses(MachineOpCode Opcode) const {
202    return get(Opcode).ImplicitUses;
203  }
204
205  const unsigned *getImplicitDefs(MachineOpCode Opcode) const {
206    return get(Opcode).ImplicitDefs;
207  }
208
209
210  //
211  // Query instruction class flags according to the machine-independent
212  // flags listed above.
213  //
214  bool isReturn(MachineOpCode Opcode) const {
215    return get(Opcode).Flags & M_RET_FLAG;
216  }
217
218  bool isCommutableInstr(MachineOpCode Opcode) const {
219    return get(Opcode).Flags & M_COMMUTABLE;
220  }
221  bool isTerminatorInstr(MachineOpCode Opcode) const {
222    return get(Opcode).Flags & M_TERMINATOR_FLAG;
223  }
224
225  bool isBranch(MachineOpCode Opcode) const {
226    return get(Opcode).Flags & M_BRANCH_FLAG;
227  }
228
229  /// isBarrier - Returns true if the specified instruction stops control flow
230  /// from executing the instruction immediately following it.  Examples include
231  /// unconditional branches and return instructions.
232  bool isBarrier(MachineOpCode Opcode) const {
233    return get(Opcode).Flags & M_BARRIER_FLAG;
234  }
235
236  bool isCall(MachineOpCode Opcode) const {
237    return get(Opcode).Flags & M_CALL_FLAG;
238  }
239  bool isLoad(MachineOpCode Opcode) const {
240    return get(Opcode).Flags & M_LOAD_FLAG;
241  }
242  bool isStore(MachineOpCode Opcode) const {
243    return get(Opcode).Flags & M_STORE_FLAG;
244  }
245
246  /// hasDelaySlot - Returns true if the specified instruction has a delay slot
247  /// which must be filled by the code generator.
248  bool hasDelaySlot(MachineOpCode Opcode) const {
249    return get(Opcode).Flags & M_DELAY_SLOT_FLAG;
250  }
251
252  /// usesCustomDAGSchedInsertionHook - Return true if this instruction requires
253  /// custom insertion support when the DAG scheduler is inserting it into a
254  /// machine basic block.
255  bool usesCustomDAGSchedInsertionHook(MachineOpCode Opcode) const {
256    return get(Opcode).Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION;
257  }
258
259  bool hasVariableOperands(MachineOpCode Opcode) const {
260    return get(Opcode).Flags & M_VARIABLE_OPS;
261  }
262
263  bool isPredicable(MachineOpCode Opcode) const {
264    return get(Opcode).Flags & M_PREDICABLE;
265  }
266
267  bool clobbersPredicate(MachineOpCode Opcode) const {
268    return get(Opcode).Flags & M_CLOBBERS_PRED;
269  }
270
271  bool isNotDuplicable(MachineOpCode Opcode) const {
272    return get(Opcode).Flags & M_NOT_DUPLICABLE;
273  }
274
275  /// isTriviallyReMaterializable - Return true if the instruction is trivially
276  /// rematerializable, meaning it has no side effects and requires no operands
277  /// that aren't always available.
278  bool isTriviallyReMaterializable(MachineInstr *MI) const {
279    return (MI->getInstrDescriptor()->Flags & M_REMATERIALIZIBLE) &&
280           isReallyTriviallyReMaterializable(MI);
281  }
282
283protected:
284  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
285  /// which the M_REMATERIALIZABLE flag is set, this function tests whether the
286  /// instruction itself is actually trivially rematerializable, considering
287  /// its operands.  This is used for targets that have instructions that are
288  /// only trivially rematerializable for specific uses.  This predicate must
289  /// return false if the instruction has any side effects other than
290  /// producing a value, or if it requres any address registers that are not
291  /// always available.
292  virtual bool isReallyTriviallyReMaterializable(MachineInstr *MI) const {
293    return true;
294  }
295
296public:
297  /// getOperandConstraint - Returns the value of the specific constraint if
298  /// it is set. Returns -1 if it is not set.
299  int getOperandConstraint(MachineOpCode Opcode, unsigned OpNum,
300                           TOI::OperandConstraint Constraint) const {
301    return get(Opcode).getOperandConstraint(OpNum, Constraint);
302  }
303
304  /// Return true if the instruction is a register to register move
305  /// and leave the source and dest operands in the passed parameters.
306  virtual bool isMoveInstr(const MachineInstr& MI,
307                           unsigned& sourceReg,
308                           unsigned& destReg) const {
309    return false;
310  }
311
312  /// isLoadFromStackSlot - If the specified machine instruction is a direct
313  /// load from a stack slot, return the virtual or physical register number of
314  /// the destination along with the FrameIndex of the loaded stack slot.  If
315  /// not, return 0.  This predicate must return 0 if the instruction has
316  /// any side effects other than loading from the stack slot.
317  virtual unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const{
318    return 0;
319  }
320
321  /// isStoreToStackSlot - If the specified machine instruction is a direct
322  /// store to a stack slot, return the virtual or physical register number of
323  /// the source reg along with the FrameIndex of the loaded stack slot.  If
324  /// not, return 0.  This predicate must return 0 if the instruction has
325  /// any side effects other than storing to the stack slot.
326  virtual unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const {
327    return 0;
328  }
329
330  /// convertToThreeAddress - This method must be implemented by targets that
331  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
332  /// may be able to convert a two-address instruction into one or moretrue
333  /// three-address instructions on demand.  This allows the X86 target (for
334  /// example) to convert ADD and SHL instructions into LEA instructions if they
335  /// would require register copies due to two-addressness.
336  ///
337  /// This method returns a null pointer if the transformation cannot be
338  /// performed, otherwise it returns the last new instruction.
339  ///
340  virtual MachineInstr *
341  convertToThreeAddress(MachineFunction::iterator &MFI,
342                   MachineBasicBlock::iterator &MBBI, LiveVariables &LV) const {
343    return 0;
344  }
345
346  /// commuteInstruction - If a target has any instructions that are commutable,
347  /// but require converting to a different instruction or making non-trivial
348  /// changes to commute them, this method can overloaded to do this.  The
349  /// default implementation of this method simply swaps the first two operands
350  /// of MI and returns it.
351  ///
352  /// If a target wants to make more aggressive changes, they can construct and
353  /// return a new machine instruction.  If an instruction cannot commute, it
354  /// can also return null.
355  ///
356  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
357
358  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
359  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
360  /// implemented for a target).  Upon success, this returns false and returns
361  /// with the following information in various cases:
362  ///
363  /// 1. If this block ends with no branches (it just falls through to its succ)
364  ///    just return false, leaving TBB/FBB null.
365  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
366  ///    the destination block.
367  /// 3. If this block ends with an conditional branch and it falls through to
368  ///    an successor block, it sets TBB to be the branch destination block and a
369  ///    list of operands that evaluate the condition. These
370  ///    operands can be passed to other TargetInstrInfo methods to create new
371  ///    branches.
372  /// 4. If this block ends with an conditional branch and an unconditional
373  ///    block, it returns the 'true' destination in TBB, the 'false' destination
374  ///    in FBB, and a list of operands that evaluate the condition. These
375  ///    operands can be passed to other TargetInstrInfo methods to create new
376  ///    branches.
377  ///
378  /// Note that RemoveBranch and InsertBranch must be implemented to support
379  /// cases where this method returns success.
380  ///
381  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
382                             MachineBasicBlock *&FBB,
383                             std::vector<MachineOperand> &Cond) const {
384    return true;
385  }
386
387  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
388  /// this is only invoked in cases where AnalyzeBranch returns success. It
389  /// returns the number of instructions that were removed.
390  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
391    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
392    return 0;
393  }
394
395  /// InsertBranch - Insert a branch into the end of the specified
396  /// MachineBasicBlock.  This operands to this method are the same as those
397  /// returned by AnalyzeBranch.  This is invoked in cases where AnalyzeBranch
398  /// returns success and when an unconditional branch (TBB is non-null, FBB is
399  /// null, Cond is empty) needs to be inserted. It returns the number of
400  /// instructions inserted.
401  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
402                            MachineBasicBlock *FBB,
403                            const std::vector<MachineOperand> &Cond) const {
404    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
405    return 0;
406  }
407
408  /// BlockHasNoFallThrough - Return true if the specified block does not
409  /// fall-through into its successor block.  This is primarily used when a
410  /// branch is unanalyzable.  It is useful for things like unconditional
411  /// indirect branches (jump tables).
412  virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
413    return false;
414  }
415
416  /// ReverseBranchCondition - Reverses the branch condition of the specified
417  /// condition list, returning false on success and true if it cannot be
418  /// reversed.
419  virtual bool ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
420    return true;
421  }
422
423  /// insertNoop - Insert a noop into the instruction stream at the specified
424  /// point.
425  virtual void insertNoop(MachineBasicBlock &MBB,
426                          MachineBasicBlock::iterator MI) const {
427    assert(0 && "Target didn't implement insertNoop!");
428    abort();
429  }
430
431  /// isPredicated - Returns true if the instruction is already predicated.
432  ///
433  virtual bool isPredicated(const MachineInstr *MI) const {
434    return false;
435  }
436
437  /// isUnpredicatedTerminator - Returns true if the instruction is a
438  /// terminator instruction that has not been predicated.
439  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
440
441  /// PredicateInstruction - Convert the instruction into a predicated
442  /// instruction. It returns true if the operation was successful.
443  virtual
444  bool PredicateInstruction(MachineInstr *MI,
445                            const std::vector<MachineOperand> &Pred) const;
446
447  /// SubsumesPredicate - Returns true if the first specified predicate
448  /// subsumes the second, e.g. GE subsumes GT.
449  virtual
450  bool SubsumesPredicate(const std::vector<MachineOperand> &Pred1,
451                         const std::vector<MachineOperand> &Pred2) const {
452    return false;
453  }
454
455  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
456  /// values.
457  virtual const TargetRegisterClass *getPointerRegClass() const {
458    assert(0 && "Target didn't implement getPointerRegClass!");
459    abort();
460    return 0; // Must return a value in order to compile with VS 2005
461  }
462};
463
464} // End llvm namespace
465
466#endif
467