TargetInstrInfo.h revision d51c87f22f9b666204b27b301af771bc5badc142
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instructions to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/CodeGen/MachineBasicBlock.h"
18#include "llvm/Support/DataTypes.h"
19#include <vector>
20#include <cassert>
21
22namespace llvm {
23
24class MachineInstr;
25class TargetMachine;
26class Value;
27class Type;
28class Instruction;
29class Constant;
30class Function;
31class MachineCodeForInstruction;
32class TargetRegisterClass;
33
34//---------------------------------------------------------------------------
35// Data types used to define information about a single machine instruction
36//---------------------------------------------------------------------------
37
38typedef short MachineOpCode;
39typedef unsigned InstrSchedClass;
40
41//---------------------------------------------------------------------------
42// struct TargetInstrDescriptor:
43//  Predefined information about each machine instruction.
44//  Designed to initialized statically.
45//
46
47const unsigned M_BRANCH_FLAG           = 1 << 0;
48const unsigned M_CALL_FLAG             = 1 << 1;
49const unsigned M_RET_FLAG              = 1 << 2;
50const unsigned M_BARRIER_FLAG          = 1 << 3;
51const unsigned M_DELAY_SLOT_FLAG       = 1 << 4;
52const unsigned M_LOAD_FLAG             = 1 << 5;
53const unsigned M_STORE_FLAG            = 1 << 6;
54
55// M_2_ADDR_FLAG - 3-addr instructions which really work like 2-addr ones.
56const unsigned M_2_ADDR_FLAG           = 1 << 7;
57
58// M_CONVERTIBLE_TO_3_ADDR - This is a M_2_ADDR_FLAG instruction which can be
59// changed into a 3-address instruction if the first two operands cannot be
60// assigned to the same register.  The target must implement the
61// TargetInstrInfo::convertToThreeAddress method for this instruction.
62const unsigned M_CONVERTIBLE_TO_3_ADDR = 1 << 8;
63
64// This M_COMMUTABLE - is a 2- or 3-address instruction (of the form X = op Y,
65// Z), which produces the same result if Y and Z are exchanged.
66const unsigned M_COMMUTABLE            = 1 << 9;
67
68// M_TERMINATOR_FLAG - Is this instruction part of the terminator for a basic
69// block?  Typically this is things like return and branch instructions.
70// Various passes use this to insert code into the bottom of a basic block, but
71// before control flow occurs.
72const unsigned M_TERMINATOR_FLAG       = 1 << 10;
73
74// M_USES_CUSTOM_DAG_SCHED_INSERTION - Set if this instruction requires custom
75// insertion support when the DAG scheduler is inserting it into a machine basic
76// block.
77const unsigned M_USES_CUSTOM_DAG_SCHED_INSERTION = 1 << 11;
78
79// M_VARIABLE_OPS - Set if this instruction can have a variable number of extra
80// operands in addition to the minimum number operands specified.
81const unsigned M_VARIABLE_OPS = 1 << 12;
82
83// Machine operand flags
84// M_LOOK_UP_PTR_REG_CLASS - Set if this operand is a pointer value and it
85// requires a callback to look up its register class.
86const unsigned M_LOOK_UP_PTR_REG_CLASS = 1 << 0;
87
88/// TargetOperandInfo - This holds information about one operand of a machine
89/// instruction, indicating the register class for register operands, etc.
90///
91class TargetOperandInfo {
92public:
93  /// RegClass - This specifies the register class enumeration of the operand
94  /// if the operand is a register.  If not, this contains 0.
95  unsigned short RegClass;
96  unsigned short Flags;
97  /// Currently no other information.
98};
99
100
101class TargetInstrDescriptor {
102public:
103  const char *    Name;          // Assembly language mnemonic for the opcode.
104  unsigned        numOperands;   // Num of args (may be more if variable_ops).
105  InstrSchedClass schedClass;    // enum  identifying instr sched class
106  unsigned        Flags;         // flags identifying machine instr class
107  unsigned        TSFlags;       // Target Specific Flag values
108  const unsigned *ImplicitUses;  // Registers implicitly read by this instr
109  const unsigned *ImplicitDefs;  // Registers implicitly defined by this instr
110  const TargetOperandInfo *OpInfo; // 'numOperands' entries about operands.
111};
112
113
114//---------------------------------------------------------------------------
115///
116/// TargetInstrInfo - Interface to description of machine instructions
117///
118class TargetInstrInfo {
119  const TargetInstrDescriptor* desc;    // raw array to allow static init'n
120  unsigned NumOpcodes;                  // number of entries in the desc array
121  unsigned numRealOpCodes;              // number of non-dummy op codes
122
123  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
124  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
125public:
126  TargetInstrInfo(const TargetInstrDescriptor *desc, unsigned NumOpcodes);
127  virtual ~TargetInstrInfo();
128
129  // Invariant opcodes: All instruction sets have these as their low opcodes.
130  enum {
131    PHI = 0,
132    INLINEASM = 1
133  };
134
135  unsigned getNumOpcodes() const { return NumOpcodes; }
136
137  /// get - Return the machine instruction descriptor that corresponds to the
138  /// specified instruction opcode.
139  ///
140  const TargetInstrDescriptor& get(MachineOpCode Opcode) const {
141    assert((unsigned)Opcode < NumOpcodes);
142    return desc[Opcode];
143  }
144
145  const char *getName(MachineOpCode Opcode) const {
146    return get(Opcode).Name;
147  }
148
149  int getNumOperands(MachineOpCode Opcode) const {
150    return get(Opcode).numOperands;
151  }
152
153  InstrSchedClass getSchedClass(MachineOpCode Opcode) const {
154    return get(Opcode).schedClass;
155  }
156
157  const unsigned *getImplicitUses(MachineOpCode Opcode) const {
158    return get(Opcode).ImplicitUses;
159  }
160
161  const unsigned *getImplicitDefs(MachineOpCode Opcode) const {
162    return get(Opcode).ImplicitDefs;
163  }
164
165
166  //
167  // Query instruction class flags according to the machine-independent
168  // flags listed above.
169  //
170  bool isReturn(MachineOpCode Opcode) const {
171    return get(Opcode).Flags & M_RET_FLAG;
172  }
173
174  bool isTwoAddrInstr(MachineOpCode Opcode) const {
175    return get(Opcode).Flags & M_2_ADDR_FLAG;
176  }
177  bool isCommutableInstr(MachineOpCode Opcode) const {
178    return get(Opcode).Flags & M_COMMUTABLE;
179  }
180  bool isTerminatorInstr(unsigned Opcode) const {
181    return get(Opcode).Flags & M_TERMINATOR_FLAG;
182  }
183
184  bool isBranch(MachineOpCode Opcode) const {
185    return get(Opcode).Flags & M_BRANCH_FLAG;
186  }
187
188  /// isBarrier - Returns true if the specified instruction stops control flow
189  /// from executing the instruction immediately following it.  Examples include
190  /// unconditional branches and return instructions.
191  bool isBarrier(MachineOpCode Opcode) const {
192    return get(Opcode).Flags & M_BARRIER_FLAG;
193  }
194
195  bool isCall(MachineOpCode Opcode) const {
196    return get(Opcode).Flags & M_CALL_FLAG;
197  }
198  bool isLoad(MachineOpCode Opcode) const {
199    return get(Opcode).Flags & M_LOAD_FLAG;
200  }
201  bool isStore(MachineOpCode Opcode) const {
202    return get(Opcode).Flags & M_STORE_FLAG;
203  }
204
205  /// hasDelaySlot - Returns true if the specified instruction has a delay slot
206  /// which must be filled by the code generator.
207  bool hasDelaySlot(unsigned Opcode) const {
208    return get(Opcode).Flags & M_DELAY_SLOT_FLAG;
209  }
210
211  /// usesCustomDAGSchedInsertionHook - Return true if this instruction requires
212  /// custom insertion support when the DAG scheduler is inserting it into a
213  /// machine basic block.
214  bool usesCustomDAGSchedInsertionHook(unsigned Opcode) const {
215    return get(Opcode).Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION;
216  }
217
218  bool hasVariableOperands(MachineOpCode Opcode) const {
219    return get(Opcode).Flags & M_VARIABLE_OPS;
220  }
221
222  /// Return true if the instruction is a register to register move
223  /// and leave the source and dest operands in the passed parameters.
224  virtual bool isMoveInstr(const MachineInstr& MI,
225                           unsigned& sourceReg,
226                           unsigned& destReg) const {
227    return false;
228  }
229
230  /// isLoadFromStackSlot - If the specified machine instruction is a direct
231  /// load from a stack slot, return the virtual or physical register number of
232  /// the destination along with the FrameIndex of the loaded stack slot.  If
233  /// not, return 0.  This predicate must return 0 if the instruction has
234  /// any side effects other than loading from the stack slot.
235  virtual unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const{
236    return 0;
237  }
238
239  /// isStoreToStackSlot - If the specified machine instruction is a direct
240  /// store to a stack slot, return the virtual or physical register number of
241  /// the source reg along with the FrameIndex of the loaded stack slot.  If
242  /// not, return 0.  This predicate must return 0 if the instruction has
243  /// any side effects other than storing to the stack slot.
244  virtual unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const {
245    return 0;
246  }
247
248  /// convertToThreeAddress - This method must be implemented by targets that
249  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
250  /// may be able to convert a two-address instruction into a true
251  /// three-address instruction on demand.  This allows the X86 target (for
252  /// example) to convert ADD and SHL instructions into LEA instructions if they
253  /// would require register copies due to two-addressness.
254  ///
255  /// This method returns a null pointer if the transformation cannot be
256  /// performed, otherwise it returns the new instruction.
257  ///
258  virtual MachineInstr *convertToThreeAddress(MachineInstr *TA) const {
259    return 0;
260  }
261
262  /// commuteInstruction - If a target has any instructions that are commutable,
263  /// but require converting to a different instruction or making non-trivial
264  /// changes to commute them, this method can overloaded to do this.  The
265  /// default implementation of this method simply swaps the first two operands
266  /// of MI and returns it.
267  ///
268  /// If a target wants to make more aggressive changes, they can construct and
269  /// return a new machine instruction.  If an instruction cannot commute, it
270  /// can also return null.
271  ///
272  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
273
274  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
275  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
276  /// implemented for a target).  Upon success, this returns false and returns
277  /// with the following information in various cases:
278  ///
279  /// 1. If this block ends with only an unconditional branch, it sets TBB to be
280  ///    the destination block.
281  /// 2. If this block ends with an conditional branch, it returns the 'true'
282  ///    destination in TBB, the 'false' destination in FBB, and a list of
283  ///    operands that evaluate the condition.  These operands can be passed to
284  ///    other TargetInstrInfo methods to create new branches.
285  ///
286  /// Note that RemoveBranch and InsertBranch must be implemented to support
287  /// cases where this method returns success.
288  ///
289  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
290                             MachineBasicBlock *&FBB,
291                             std::vector<MachineOperand> &Cond) const {
292    return true;
293  }
294
295  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
296  /// this is only invoked in cases where AnalyzeBranch returns success.
297  virtual void RemoveBranch(MachineBasicBlock &MBB) const {
298    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
299  }
300
301  /// InsertBranch - Insert a branch into the end of the specified
302  /// MachineBasicBlock.  This operands to this method are the same as those
303  /// returned by AnalyzeBranch.  This nis invoked in cases where AnalyzeBranch
304  /// returns success.
305  virtual void InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
306                            MachineBasicBlock *FBB,
307                            const std::vector<MachineOperand> &Cond) const {
308    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
309  }
310
311  /// ReverseBranchCondition - Reverses the branch condition of the specified
312  /// condition list, returning false on success and true if it cannot be
313  /// reversed.
314  virtual bool ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
315    return true;
316  }
317
318  /// insertNoop - Insert a noop into the instruction stream at the specified
319  /// point.
320  virtual void insertNoop(MachineBasicBlock &MBB,
321                          MachineBasicBlock::iterator MI) const {
322    assert(0 && "Target didn't implement insertNoop!");
323    abort();
324  }
325
326  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
327  /// values.
328  virtual const TargetRegisterClass *getPointerRegClass() const {
329    assert(0 && "Target didn't implement getPointerRegClass!");
330    abort();
331  }
332};
333
334} // End llvm namespace
335
336#endif
337