TargetInstrInfo.h revision e54cb16308ad40d0f0b257de47efaa0ee5a47004
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/Target/TargetInstrDesc.h"
18#include "llvm/CodeGen/MachineFunction.h"
19
20namespace llvm {
21
22class MCAsmInfo;
23class TargetRegisterClass;
24class TargetRegisterInfo;
25class LiveVariables;
26class CalleeSavedInfo;
27class SDNode;
28class SelectionDAG;
29
30template<class T> class SmallVectorImpl;
31
32
33//---------------------------------------------------------------------------
34///
35/// TargetInstrInfo - Interface to description of machine instruction set
36///
37class TargetInstrInfo {
38  const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
39  unsigned NumOpcodes;                // Number of entries in the desc array
40
41  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
42  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
43public:
44  TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
45  virtual ~TargetInstrInfo();
46
47  // Invariant opcodes: All instruction sets have these as their low opcodes.
48  enum {
49    PHI = 0,
50    INLINEASM = 1,
51    DBG_LABEL = 2,
52    EH_LABEL = 3,
53    GC_LABEL = 4,
54
55    /// KILL - This instruction is a noop that is used only to adjust the liveness
56    /// of registers. This can be useful when dealing with sub-registers.
57    KILL = 5,
58
59    /// EXTRACT_SUBREG - This instruction takes two operands: a register
60    /// that has subregisters, and a subregister index. It returns the
61    /// extracted subregister value. This is commonly used to implement
62    /// truncation operations on target architectures which support it.
63    EXTRACT_SUBREG = 6,
64
65    /// INSERT_SUBREG - This instruction takes three operands: a register
66    /// that has subregisters, a register providing an insert value, and a
67    /// subregister index. It returns the value of the first register with
68    /// the value of the second register inserted. The first register is
69    /// often defined by an IMPLICIT_DEF, as is commonly used to implement
70    /// anyext operations on target architectures which support it.
71    INSERT_SUBREG = 7,
72
73    /// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
74    IMPLICIT_DEF = 8,
75
76    /// SUBREG_TO_REG - This instruction is similar to INSERT_SUBREG except
77    /// that the first operand is an immediate integer constant. This constant
78    /// is often zero, as is commonly used to implement zext operations on
79    /// target architectures which support it, such as with x86-64 (with
80    /// zext from i32 to i64 via implicit zero-extension).
81    SUBREG_TO_REG = 9,
82
83    /// COPY_TO_REGCLASS - This instruction is a placeholder for a plain
84    /// register-to-register copy into a specific register class. This is only
85    /// used between instruction selection and MachineInstr creation, before
86    /// virtual registers have been created for all the instructions, and it's
87    /// only needed in cases where the register classes implied by the
88    /// instructions are insufficient. The actual MachineInstrs to perform
89    /// the copy are emitted with the TargetInstrInfo::copyRegToReg hook.
90    COPY_TO_REGCLASS = 10
91  };
92
93  unsigned getNumOpcodes() const { return NumOpcodes; }
94
95  /// get - Return the machine instruction descriptor that corresponds to the
96  /// specified instruction opcode.
97  ///
98  const TargetInstrDesc &get(unsigned Opcode) const {
99    assert(Opcode < NumOpcodes && "Invalid opcode!");
100    return Descriptors[Opcode];
101  }
102
103  /// isTriviallyReMaterializable - Return true if the instruction is trivially
104  /// rematerializable, meaning it has no side effects and requires no operands
105  /// that aren't always available.
106  bool isTriviallyReMaterializable(const MachineInstr *MI,
107                                   AliasAnalysis *AA = 0) const {
108    return MI->getOpcode() == IMPLICIT_DEF ||
109           (MI->getDesc().isRematerializable() &&
110            (isReallyTriviallyReMaterializable(MI, AA) ||
111             isReallyTriviallyReMaterializableGeneric(MI, AA)));
112  }
113
114protected:
115  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
116  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
117  /// specify whether the instruction is actually trivially rematerializable,
118  /// taking into consideration its operands. This predicate must return false
119  /// if the instruction has any side effects other than producing a value, or
120  /// if it requres any address registers that are not always available.
121  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
122                                                 AliasAnalysis *AA) const {
123    return false;
124  }
125
126private:
127  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
128  /// for which the M_REMATERIALIZABLE flag is set and the target hook
129  /// isReallyTriviallyReMaterializable returns false, this function does
130  /// target-independent tests to determine if the instruction is really
131  /// trivially rematerializable.
132  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
133                                                AliasAnalysis *AA) const;
134
135public:
136  /// isMoveInstr - Return true if the instruction is a register to register
137  /// move and return the source and dest operands and their sub-register
138  /// indices by reference.
139  virtual bool isMoveInstr(const MachineInstr& MI,
140                           unsigned& SrcReg, unsigned& DstReg,
141                           unsigned& SrcSubIdx, unsigned& DstSubIdx) const {
142    return false;
143  }
144
145  /// isIdentityCopy - Return true if the instruction is a copy (or
146  /// extract_subreg, insert_subreg, subreg_to_reg) where the source and
147  /// destination registers are the same.
148  bool isIdentityCopy(const MachineInstr &MI) const {
149    unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
150    if (isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
151        SrcReg == DstReg)
152      return true;
153
154    if (MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG &&
155        MI.getOperand(0).getReg() == MI.getOperand(1).getReg())
156    return true;
157
158    if ((MI.getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
159         MI.getOpcode() == TargetInstrInfo::SUBREG_TO_REG) &&
160        MI.getOperand(0).getReg() == MI.getOperand(2).getReg())
161      return true;
162    return false;
163  }
164
165  /// isLoadFromStackSlot - If the specified machine instruction is a direct
166  /// load from a stack slot, return the virtual or physical register number of
167  /// the destination along with the FrameIndex of the loaded stack slot.  If
168  /// not, return 0.  This predicate must return 0 if the instruction has
169  /// any side effects other than loading from the stack slot.
170  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
171                                       int &FrameIndex) const {
172    return 0;
173  }
174
175  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
176  /// stack locations as well.  This uses a heuristic so it isn't
177  /// reliable for correctness.
178  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
179                                             int &FrameIndex) const {
180    return 0;
181  }
182
183  /// hasLoadFromStackSlot - If the specified machine instruction has
184  /// a load from a stack slot, return true along with the FrameIndex
185  /// of the loaded stack slot.  If not, return false.  Unlike
186  /// isLoadFromStackSlot, this returns true for any instructions that
187  /// loads from the stack.  This is just a hint, as some cases may be
188  /// missed.
189  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
190                                    int &FrameIndex) const {
191    return 0;
192  }
193
194  /// isStoreToStackSlot - If the specified machine instruction is a direct
195  /// store to a stack slot, return the virtual or physical register number of
196  /// the source reg along with the FrameIndex of the loaded stack slot.  If
197  /// not, return 0.  This predicate must return 0 if the instruction has
198  /// any side effects other than storing to the stack slot.
199  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
200                                      int &FrameIndex) const {
201    return 0;
202  }
203
204  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
205  /// stack locations as well.  This uses a heuristic so it isn't
206  /// reliable for correctness.
207  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
208                                      int &FrameIndex) const {
209    return 0;
210  }
211
212  /// hasStoreToStackSlot - If the specified machine instruction has a
213  /// store to a stack slot, return true along with the FrameIndex of
214  /// the loaded stack slot.  If not, return false.  Unlike
215  /// isStoreToStackSlot, this returns true for any instructions that
216  /// loads from the stack.  This is just a hint, as some cases may be
217  /// missed.
218  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
219                                   int &FrameIndex) const {
220    return 0;
221  }
222
223  /// reMaterialize - Re-issue the specified 'original' instruction at the
224  /// specific location targeting a new destination register.
225  virtual void reMaterialize(MachineBasicBlock &MBB,
226                             MachineBasicBlock::iterator MI,
227                             unsigned DestReg, unsigned SubIdx,
228                             const MachineInstr *Orig,
229                             const TargetRegisterInfo *TRI) const = 0;
230
231  /// convertToThreeAddress - This method must be implemented by targets that
232  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
233  /// may be able to convert a two-address instruction into one or more true
234  /// three-address instructions on demand.  This allows the X86 target (for
235  /// example) to convert ADD and SHL instructions into LEA instructions if they
236  /// would require register copies due to two-addressness.
237  ///
238  /// This method returns a null pointer if the transformation cannot be
239  /// performed, otherwise it returns the last new instruction.
240  ///
241  virtual MachineInstr *
242  convertToThreeAddress(MachineFunction::iterator &MFI,
243                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
244    return 0;
245  }
246
247  /// commuteInstruction - If a target has any instructions that are commutable,
248  /// but require converting to a different instruction or making non-trivial
249  /// changes to commute them, this method can overloaded to do this.  The
250  /// default implementation of this method simply swaps the first two operands
251  /// of MI and returns it.
252  ///
253  /// If a target wants to make more aggressive changes, they can construct and
254  /// return a new machine instruction.  If an instruction cannot commute, it
255  /// can also return null.
256  ///
257  /// If NewMI is true, then a new machine instruction must be created.
258  ///
259  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
260                                           bool NewMI = false) const = 0;
261
262  /// findCommutedOpIndices - If specified MI is commutable, return the two
263  /// operand indices that would swap value. Return true if the instruction
264  /// is not in a form which this routine understands.
265  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
266                                     unsigned &SrcOpIdx2) const = 0;
267
268  /// isIdentical - Return true if two instructions are identical. This differs
269  /// from MachineInstr::isIdenticalTo() in that it does not require the
270  /// virtual destination registers to be the same. This is used by MachineLICM
271  /// and other MI passes to perform CSE.
272  virtual bool isIdentical(const MachineInstr *MI,
273                           const MachineInstr *Other,
274                           const MachineRegisterInfo *MRI) const = 0;
275
276  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
277  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
278  /// implemented for a target).  Upon success, this returns false and returns
279  /// with the following information in various cases:
280  ///
281  /// 1. If this block ends with no branches (it just falls through to its succ)
282  ///    just return false, leaving TBB/FBB null.
283  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
284  ///    the destination block.
285  /// 3. If this block ends with an conditional branch and it falls through to
286  ///    a successor block, it sets TBB to be the branch destination block and
287  ///    a list of operands that evaluate the condition. These
288  ///    operands can be passed to other TargetInstrInfo methods to create new
289  ///    branches.
290  /// 4. If this block ends with a conditional branch followed by an
291  ///    unconditional branch, it returns the 'true' destination in TBB, the
292  ///    'false' destination in FBB, and a list of operands that evaluate the
293  ///    condition.  These operands can be passed to other TargetInstrInfo
294  ///    methods to create new branches.
295  ///
296  /// Note that RemoveBranch and InsertBranch must be implemented to support
297  /// cases where this method returns success.
298  ///
299  /// If AllowModify is true, then this routine is allowed to modify the basic
300  /// block (e.g. delete instructions after the unconditional branch).
301  ///
302  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
303                             MachineBasicBlock *&FBB,
304                             SmallVectorImpl<MachineOperand> &Cond,
305                             bool AllowModify = false) const {
306    return true;
307  }
308
309  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
310  /// This is only invoked in cases where AnalyzeBranch returns success. It
311  /// returns the number of instructions that were removed.
312  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
313    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
314    return 0;
315  }
316
317  /// InsertBranch - Insert branch code into the end of the specified
318  /// MachineBasicBlock.  The operands to this method are the same as those
319  /// returned by AnalyzeBranch.  This is only invoked in cases where
320  /// AnalyzeBranch returns success. It returns the number of instructions
321  /// inserted.
322  ///
323  /// It is also invoked by tail merging to add unconditional branches in
324  /// cases where AnalyzeBranch doesn't apply because there was no original
325  /// branch to analyze.  At least this much must be implemented, else tail
326  /// merging needs to be disabled.
327  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
328                            MachineBasicBlock *FBB,
329                            const SmallVectorImpl<MachineOperand> &Cond) const {
330    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
331    return 0;
332  }
333
334  /// copyRegToReg - Emit instructions to copy between a pair of registers. It
335  /// returns false if the target does not how to copy between the specified
336  /// registers.
337  virtual bool copyRegToReg(MachineBasicBlock &MBB,
338                            MachineBasicBlock::iterator MI,
339                            unsigned DestReg, unsigned SrcReg,
340                            const TargetRegisterClass *DestRC,
341                            const TargetRegisterClass *SrcRC) const {
342    assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!");
343    return false;
344  }
345
346  /// storeRegToStackSlot - Store the specified register of the given register
347  /// class to the specified stack frame index. The store instruction is to be
348  /// added to the given machine basic block before the specified machine
349  /// instruction. If isKill is true, the register operand is the last use and
350  /// must be marked kill.
351  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
352                                   MachineBasicBlock::iterator MI,
353                                   unsigned SrcReg, bool isKill, int FrameIndex,
354                                   const TargetRegisterClass *RC) const {
355    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
356  }
357
358  /// loadRegFromStackSlot - Load the specified register of the given register
359  /// class from the specified stack frame index. The load instruction is to be
360  /// added to the given machine basic block before the specified machine
361  /// instruction.
362  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
363                                    MachineBasicBlock::iterator MI,
364                                    unsigned DestReg, int FrameIndex,
365                                    const TargetRegisterClass *RC) const {
366    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
367  }
368
369  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
370  /// saved registers and returns true if it isn't possible / profitable to do
371  /// so by issuing a series of store instructions via
372  /// storeRegToStackSlot(). Returns false otherwise.
373  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
374                                         MachineBasicBlock::iterator MI,
375                                const std::vector<CalleeSavedInfo> &CSI) const {
376    return false;
377  }
378
379  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
380  /// saved registers and returns true if it isn't possible / profitable to do
381  /// so by issuing a series of load instructions via loadRegToStackSlot().
382  /// Returns false otherwise.
383  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
384                                           MachineBasicBlock::iterator MI,
385                                const std::vector<CalleeSavedInfo> &CSI) const {
386    return false;
387  }
388
389  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
390  /// slot into the specified machine instruction for the specified operand(s).
391  /// If this is possible, a new instruction is returned with the specified
392  /// operand folded, otherwise NULL is returned. The client is responsible for
393  /// removing the old instruction and adding the new one in the instruction
394  /// stream.
395  MachineInstr* foldMemoryOperand(MachineFunction &MF,
396                                  MachineInstr* MI,
397                                  const SmallVectorImpl<unsigned> &Ops,
398                                  int FrameIndex) const;
399
400  /// foldMemoryOperand - Same as the previous version except it allows folding
401  /// of any load and store from / to any address, not just from a specific
402  /// stack slot.
403  MachineInstr* foldMemoryOperand(MachineFunction &MF,
404                                  MachineInstr* MI,
405                                  const SmallVectorImpl<unsigned> &Ops,
406                                  MachineInstr* LoadMI) const;
407
408protected:
409  /// foldMemoryOperandImpl - Target-dependent implementation for
410  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
411  /// take care of adding a MachineMemOperand to the newly created instruction.
412  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
413                                          MachineInstr* MI,
414                                          const SmallVectorImpl<unsigned> &Ops,
415                                          int FrameIndex) const {
416    return 0;
417  }
418
419  /// foldMemoryOperandImpl - Target-dependent implementation for
420  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
421  /// take care of adding a MachineMemOperand to the newly created instruction.
422  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
423                                              MachineInstr* MI,
424                                              const SmallVectorImpl<unsigned> &Ops,
425                                              MachineInstr* LoadMI) const {
426    return 0;
427  }
428
429public:
430  /// canFoldMemoryOperand - Returns true for the specified load / store if
431  /// folding is possible.
432  virtual
433  bool canFoldMemoryOperand(const MachineInstr *MI,
434                            const SmallVectorImpl<unsigned> &Ops) const {
435    return false;
436  }
437
438  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
439  /// a store or a load and a store into two or more instruction. If this is
440  /// possible, returns true as well as the new instructions by reference.
441  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
442                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
443                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
444    return false;
445  }
446
447  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
448                                   SmallVectorImpl<SDNode*> &NewNodes) const {
449    return false;
450  }
451
452  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
453  /// instruction after load / store are unfolded from an instruction of the
454  /// specified opcode. It returns zero if the specified unfolding is not
455  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
456  /// index of the operand which will hold the register holding the loaded
457  /// value.
458  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
459                                      bool UnfoldLoad, bool UnfoldStore,
460                                      unsigned *LoadRegIndex = 0) const {
461    return 0;
462  }
463
464  /// BlockHasNoFallThrough - Return true if the specified block does not
465  /// fall-through into its successor block.  This is primarily used when a
466  /// branch is unanalyzable.  It is useful for things like unconditional
467  /// indirect branches (jump tables).
468  virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
469    return false;
470  }
471
472  /// ReverseBranchCondition - Reverses the branch condition of the specified
473  /// condition list, returning false on success and true if it cannot be
474  /// reversed.
475  virtual
476  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
477    return true;
478  }
479
480  /// insertNoop - Insert a noop into the instruction stream at the specified
481  /// point.
482  virtual void insertNoop(MachineBasicBlock &MBB,
483                          MachineBasicBlock::iterator MI) const;
484
485  /// isPredicated - Returns true if the instruction is already predicated.
486  ///
487  virtual bool isPredicated(const MachineInstr *MI) const {
488    return false;
489  }
490
491  /// isUnpredicatedTerminator - Returns true if the instruction is a
492  /// terminator instruction that has not been predicated.
493  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
494
495  /// PredicateInstruction - Convert the instruction into a predicated
496  /// instruction. It returns true if the operation was successful.
497  virtual
498  bool PredicateInstruction(MachineInstr *MI,
499                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
500
501  /// SubsumesPredicate - Returns true if the first specified predicate
502  /// subsumes the second, e.g. GE subsumes GT.
503  virtual
504  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
505                         const SmallVectorImpl<MachineOperand> &Pred2) const {
506    return false;
507  }
508
509  /// DefinesPredicate - If the specified instruction defines any predicate
510  /// or condition code register(s) used for predication, returns true as well
511  /// as the definition predicate(s) by reference.
512  virtual bool DefinesPredicate(MachineInstr *MI,
513                                std::vector<MachineOperand> &Pred) const {
514    return false;
515  }
516
517  /// isPredicable - Return true if the specified instruction can be predicated.
518  /// By default, this returns true for every instruction with a
519  /// PredicateOperand.
520  virtual bool isPredicable(MachineInstr *MI) const {
521    return MI->getDesc().isPredicable();
522  }
523
524  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
525  /// instruction that defines the specified register class.
526  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
527    return true;
528  }
529
530  /// GetInstSize - Returns the size of the specified Instruction.
531  ///
532  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const {
533    assert(0 && "Target didn't implement TargetInstrInfo::GetInstSize!");
534    return 0;
535  }
536
537  /// GetFunctionSizeInBytes - Returns the size of the specified
538  /// MachineFunction.
539  ///
540  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const = 0;
541
542  /// Measure the specified inline asm to determine an approximation of its
543  /// length.
544  virtual unsigned getInlineAsmLength(const char *Str,
545                                      const MCAsmInfo &MAI) const;
546
547  /// TailDuplicationLimit - Returns the limit on the number of instructions
548  /// in basic block MBB beyond which it will not be tail-duplicated.
549  virtual unsigned TailDuplicationLimit(const MachineBasicBlock &MBB,
550                                        unsigned DefaultLimit) const {
551    return DefaultLimit;
552  }
553};
554
555/// TargetInstrInfoImpl - This is the default implementation of
556/// TargetInstrInfo, which just provides a couple of default implementations
557/// for various methods.  This separated out because it is implemented in
558/// libcodegen, not in libtarget.
559class TargetInstrInfoImpl : public TargetInstrInfo {
560protected:
561  TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
562  : TargetInstrInfo(desc, NumOpcodes) {}
563public:
564  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
565                                           bool NewMI = false) const;
566  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
567                                     unsigned &SrcOpIdx2) const;
568  virtual bool PredicateInstruction(MachineInstr *MI,
569                            const SmallVectorImpl<MachineOperand> &Pred) const;
570  virtual void reMaterialize(MachineBasicBlock &MBB,
571                             MachineBasicBlock::iterator MI,
572                             unsigned DestReg, unsigned SubReg,
573                             const MachineInstr *Orig,
574                             const TargetRegisterInfo *TRI) const;
575  virtual bool isIdentical(const MachineInstr *MI,
576                           const MachineInstr *Other,
577                           const MachineRegisterInfo *MRI) const;
578
579  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const;
580};
581
582} // End llvm namespace
583
584#endif
585