TargetInstrInfo.h revision eb81df7d95b8923ea99c0d4741a5aabf82d1c5ab
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/MC/MCInstrInfo.h"
18#include "llvm/CodeGen/DFAPacketizer.h"
19#include "llvm/CodeGen/MachineFunction.h"
20
21namespace llvm {
22
23class InstrItineraryData;
24class LiveVariables;
25class MCAsmInfo;
26class MachineMemOperand;
27class MachineRegisterInfo;
28class MDNode;
29class MCInst;
30class SDNode;
31class ScheduleHazardRecognizer;
32class SelectionDAG;
33class ScheduleDAG;
34class TargetRegisterClass;
35class TargetRegisterInfo;
36class BranchProbability;
37
38template<class T> class SmallVectorImpl;
39
40
41//---------------------------------------------------------------------------
42///
43/// TargetInstrInfo - Interface to description of machine instruction set
44///
45class TargetInstrInfo : public MCInstrInfo {
46  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
47  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
48public:
49  TargetInstrInfo(int CFSetupOpcode = -1, int CFDestroyOpcode = -1)
50    : CallFrameSetupOpcode(CFSetupOpcode),
51      CallFrameDestroyOpcode(CFDestroyOpcode) {
52  }
53
54  virtual ~TargetInstrInfo();
55
56  /// getRegClass - Givem a machine instruction descriptor, returns the register
57  /// class constraint for OpNum, or NULL.
58  const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
59                                         unsigned OpNum,
60                                         const TargetRegisterInfo *TRI,
61                                         const MachineFunction &MF) const;
62
63  /// isTriviallyReMaterializable - Return true if the instruction is trivially
64  /// rematerializable, meaning it has no side effects and requires no operands
65  /// that aren't always available.
66  bool isTriviallyReMaterializable(const MachineInstr *MI,
67                                   AliasAnalysis *AA = 0) const {
68    return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
69           (MI->getDesc().isRematerializable() &&
70            (isReallyTriviallyReMaterializable(MI, AA) ||
71             isReallyTriviallyReMaterializableGeneric(MI, AA)));
72  }
73
74protected:
75  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
76  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
77  /// specify whether the instruction is actually trivially rematerializable,
78  /// taking into consideration its operands. This predicate must return false
79  /// if the instruction has any side effects other than producing a value, or
80  /// if it requres any address registers that are not always available.
81  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
82                                                 AliasAnalysis *AA) const {
83    return false;
84  }
85
86private:
87  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
88  /// for which the M_REMATERIALIZABLE flag is set and the target hook
89  /// isReallyTriviallyReMaterializable returns false, this function does
90  /// target-independent tests to determine if the instruction is really
91  /// trivially rematerializable.
92  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
93                                                AliasAnalysis *AA) const;
94
95public:
96  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
97  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
98  /// targets use pseudo instructions in order to abstract away the difference
99  /// between operating with a frame pointer and operating without, through the
100  /// use of these two instructions.
101  ///
102  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
103  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
104
105  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
106  /// extension instruction. That is, it's like a copy where it's legal for the
107  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
108  /// true, then it's expected the pre-extension value is available as a subreg
109  /// of the result register. This also returns the sub-register index in
110  /// SubIdx.
111  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
112                                     unsigned &SrcReg, unsigned &DstReg,
113                                     unsigned &SubIdx) const {
114    return false;
115  }
116
117  /// isLoadFromStackSlot - If the specified machine instruction is a direct
118  /// load from a stack slot, return the virtual or physical register number of
119  /// the destination along with the FrameIndex of the loaded stack slot.  If
120  /// not, return 0.  This predicate must return 0 if the instruction has
121  /// any side effects other than loading from the stack slot.
122  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
123                                       int &FrameIndex) const {
124    return 0;
125  }
126
127  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
128  /// stack locations as well.  This uses a heuristic so it isn't
129  /// reliable for correctness.
130  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
131                                             int &FrameIndex) const {
132    return 0;
133  }
134
135  /// hasLoadFromStackSlot - If the specified machine instruction has
136  /// a load from a stack slot, return true along with the FrameIndex
137  /// of the loaded stack slot and the machine mem operand containing
138  /// the reference.  If not, return false.  Unlike
139  /// isLoadFromStackSlot, this returns true for any instructions that
140  /// loads from the stack.  This is just a hint, as some cases may be
141  /// missed.
142  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
143                                    const MachineMemOperand *&MMO,
144                                    int &FrameIndex) const {
145    return 0;
146  }
147
148  /// isStoreToStackSlot - If the specified machine instruction is a direct
149  /// store to a stack slot, return the virtual or physical register number of
150  /// the source reg along with the FrameIndex of the loaded stack slot.  If
151  /// not, return 0.  This predicate must return 0 if the instruction has
152  /// any side effects other than storing to the stack slot.
153  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
154                                      int &FrameIndex) const {
155    return 0;
156  }
157
158  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
159  /// stack locations as well.  This uses a heuristic so it isn't
160  /// reliable for correctness.
161  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
162                                            int &FrameIndex) const {
163    return 0;
164  }
165
166  /// hasStoreToStackSlot - If the specified machine instruction has a
167  /// store to a stack slot, return true along with the FrameIndex of
168  /// the loaded stack slot and the machine mem operand containing the
169  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
170  /// this returns true for any instructions that stores to the
171  /// stack.  This is just a hint, as some cases may be missed.
172  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
173                                   const MachineMemOperand *&MMO,
174                                   int &FrameIndex) const {
175    return 0;
176  }
177
178  /// reMaterialize - Re-issue the specified 'original' instruction at the
179  /// specific location targeting a new destination register.
180  /// The register in Orig->getOperand(0).getReg() will be substituted by
181  /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
182  /// SubIdx.
183  virtual void reMaterialize(MachineBasicBlock &MBB,
184                             MachineBasicBlock::iterator MI,
185                             unsigned DestReg, unsigned SubIdx,
186                             const MachineInstr *Orig,
187                             const TargetRegisterInfo &TRI) const = 0;
188
189  /// scheduleTwoAddrSource - Schedule the copy / re-mat of the source of the
190  /// two-addrss instruction inserted by two-address pass.
191  virtual void scheduleTwoAddrSource(MachineInstr *SrcMI,
192                                     MachineInstr *UseMI,
193                                     const TargetRegisterInfo &TRI) const {
194    // Do nothing.
195  }
196
197  /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
198  /// MachineFunction::CloneMachineInstr(), but the target may update operands
199  /// that are required to be unique.
200  ///
201  /// The instruction must be duplicable as indicated by isNotDuplicable().
202  virtual MachineInstr *duplicate(MachineInstr *Orig,
203                                  MachineFunction &MF) const = 0;
204
205  /// convertToThreeAddress - This method must be implemented by targets that
206  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
207  /// may be able to convert a two-address instruction into one or more true
208  /// three-address instructions on demand.  This allows the X86 target (for
209  /// example) to convert ADD and SHL instructions into LEA instructions if they
210  /// would require register copies due to two-addressness.
211  ///
212  /// This method returns a null pointer if the transformation cannot be
213  /// performed, otherwise it returns the last new instruction.
214  ///
215  virtual MachineInstr *
216  convertToThreeAddress(MachineFunction::iterator &MFI,
217                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
218    return 0;
219  }
220
221  /// commuteInstruction - If a target has any instructions that are
222  /// commutable but require converting to different instructions or making
223  /// non-trivial changes to commute them, this method can overloaded to do
224  /// that.  The default implementation simply swaps the commutable operands.
225  /// If NewMI is false, MI is modified in place and returned; otherwise, a
226  /// new machine instruction is created and returned.  Do not call this
227  /// method for a non-commutable instruction, but there may be some cases
228  /// where this method fails and returns null.
229  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
230                                           bool NewMI = false) const = 0;
231
232  /// findCommutedOpIndices - If specified MI is commutable, return the two
233  /// operand indices that would swap value. Return false if the instruction
234  /// is not in a form which this routine understands.
235  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
236                                     unsigned &SrcOpIdx2) const = 0;
237
238  /// produceSameValue - Return true if two machine instructions would produce
239  /// identical values. By default, this is only true when the two instructions
240  /// are deemed identical except for defs. If this function is called when the
241  /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
242  /// aggressive checks.
243  virtual bool produceSameValue(const MachineInstr *MI0,
244                                const MachineInstr *MI1,
245                                const MachineRegisterInfo *MRI = 0) const = 0;
246
247  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
248  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
249  /// implemented for a target).  Upon success, this returns false and returns
250  /// with the following information in various cases:
251  ///
252  /// 1. If this block ends with no branches (it just falls through to its succ)
253  ///    just return false, leaving TBB/FBB null.
254  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
255  ///    the destination block.
256  /// 3. If this block ends with a conditional branch and it falls through to a
257  ///    successor block, it sets TBB to be the branch destination block and a
258  ///    list of operands that evaluate the condition. These operands can be
259  ///    passed to other TargetInstrInfo methods to create new branches.
260  /// 4. If this block ends with a conditional branch followed by an
261  ///    unconditional branch, it returns the 'true' destination in TBB, the
262  ///    'false' destination in FBB, and a list of operands that evaluate the
263  ///    condition.  These operands can be passed to other TargetInstrInfo
264  ///    methods to create new branches.
265  ///
266  /// Note that RemoveBranch and InsertBranch must be implemented to support
267  /// cases where this method returns success.
268  ///
269  /// If AllowModify is true, then this routine is allowed to modify the basic
270  /// block (e.g. delete instructions after the unconditional branch).
271  ///
272  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
273                             MachineBasicBlock *&FBB,
274                             SmallVectorImpl<MachineOperand> &Cond,
275                             bool AllowModify = false) const {
276    return true;
277  }
278
279  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
280  /// This is only invoked in cases where AnalyzeBranch returns success. It
281  /// returns the number of instructions that were removed.
282  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
283    llvm_unreachable("Target didn't implement TargetInstrInfo::RemoveBranch!");
284  }
285
286  /// InsertBranch - Insert branch code into the end of the specified
287  /// MachineBasicBlock.  The operands to this method are the same as those
288  /// returned by AnalyzeBranch.  This is only invoked in cases where
289  /// AnalyzeBranch returns success. It returns the number of instructions
290  /// inserted.
291  ///
292  /// It is also invoked by tail merging to add unconditional branches in
293  /// cases where AnalyzeBranch doesn't apply because there was no original
294  /// branch to analyze.  At least this much must be implemented, else tail
295  /// merging needs to be disabled.
296  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
297                                MachineBasicBlock *FBB,
298                                const SmallVectorImpl<MachineOperand> &Cond,
299                                DebugLoc DL) const {
300    llvm_unreachable("Target didn't implement TargetInstrInfo::InsertBranch!");
301  }
302
303  /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
304  /// after it, replacing it with an unconditional branch to NewDest. This is
305  /// used by the tail merging pass.
306  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
307                                       MachineBasicBlock *NewDest) const = 0;
308
309  /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
310  /// block at the specified instruction (i.e. instruction would be the start
311  /// of a new basic block).
312  virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
313                                   MachineBasicBlock::iterator MBBI) const {
314    return true;
315  }
316
317  /// isProfitableToIfCvt - Return true if it's profitable to predicate
318  /// instructions with accumulated instruction latency of "NumCycles"
319  /// of the specified basic block, where the probability of the instructions
320  /// being executed is given by Probability, and Confidence is a measure
321  /// of our confidence that it will be properly predicted.
322  virtual
323  bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCyles,
324                           unsigned ExtraPredCycles,
325                           const BranchProbability &Probability) const {
326    return false;
327  }
328
329  /// isProfitableToIfCvt - Second variant of isProfitableToIfCvt, this one
330  /// checks for the case where two basic blocks from true and false path
331  /// of a if-then-else (diamond) are predicated on mutally exclusive
332  /// predicates, where the probability of the true path being taken is given
333  /// by Probability, and Confidence is a measure of our confidence that it
334  /// will be properly predicted.
335  virtual bool
336  isProfitableToIfCvt(MachineBasicBlock &TMBB,
337                      unsigned NumTCycles, unsigned ExtraTCycles,
338                      MachineBasicBlock &FMBB,
339                      unsigned NumFCycles, unsigned ExtraFCycles,
340                      const BranchProbability &Probability) const {
341    return false;
342  }
343
344  /// isProfitableToDupForIfCvt - Return true if it's profitable for
345  /// if-converter to duplicate instructions of specified accumulated
346  /// instruction latencies in the specified MBB to enable if-conversion.
347  /// The probability of the instructions being executed is given by
348  /// Probability, and Confidence is a measure of our confidence that it
349  /// will be properly predicted.
350  virtual bool
351  isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCyles,
352                            const BranchProbability &Probability) const {
353    return false;
354  }
355
356  /// isProfitableToUnpredicate - Return true if it's profitable to unpredicate
357  /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
358  /// exclusive predicates.
359  /// e.g.
360  ///   subeq  r0, r1, #1
361  ///   addne  r0, r1, #1
362  /// =>
363  ///   sub    r0, r1, #1
364  ///   addne  r0, r1, #1
365  ///
366  /// This may be profitable is conditional instructions are always executed.
367  virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
368                                         MachineBasicBlock &FMBB) const {
369    return false;
370  }
371
372  /// copyPhysReg - Emit instructions to copy a pair of physical registers.
373  virtual void copyPhysReg(MachineBasicBlock &MBB,
374                           MachineBasicBlock::iterator MI, DebugLoc DL,
375                           unsigned DestReg, unsigned SrcReg,
376                           bool KillSrc) const {
377    llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
378  }
379
380  /// storeRegToStackSlot - Store the specified register of the given register
381  /// class to the specified stack frame index. The store instruction is to be
382  /// added to the given machine basic block before the specified machine
383  /// instruction. If isKill is true, the register operand is the last use and
384  /// must be marked kill.
385  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
386                                   MachineBasicBlock::iterator MI,
387                                   unsigned SrcReg, bool isKill, int FrameIndex,
388                                   const TargetRegisterClass *RC,
389                                   const TargetRegisterInfo *TRI) const {
390    llvm_unreachable("Target didn't implement "
391                     "TargetInstrInfo::storeRegToStackSlot!");
392  }
393
394  /// loadRegFromStackSlot - Load the specified register of the given register
395  /// class from the specified stack frame index. The load instruction is to be
396  /// added to the given machine basic block before the specified machine
397  /// instruction.
398  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
399                                    MachineBasicBlock::iterator MI,
400                                    unsigned DestReg, int FrameIndex,
401                                    const TargetRegisterClass *RC,
402                                    const TargetRegisterInfo *TRI) const {
403    llvm_unreachable("Target didn't implement "
404                     "TargetInstrInfo::loadRegFromStackSlot!");
405  }
406
407  /// expandPostRAPseudo - This function is called for all pseudo instructions
408  /// that remain after register allocation. Many pseudo instructions are
409  /// created to help register allocation. This is the place to convert them
410  /// into real instructions. The target can edit MI in place, or it can insert
411  /// new instructions and erase MI. The function should return true if
412  /// anything was changed.
413  virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
414    return false;
415  }
416
417  /// emitFrameIndexDebugValue - Emit a target-dependent form of
418  /// DBG_VALUE encoding the address of a frame index.  Addresses would
419  /// normally be lowered the same way as other addresses on the target,
420  /// e.g. in load instructions.  For targets that do not support this
421  /// the debug info is simply lost.
422  /// If you add this for a target you should handle this DBG_VALUE in the
423  /// target-specific AsmPrinter code as well; you will probably get invalid
424  /// assembly output if you don't.
425  virtual MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
426                                                 int FrameIx,
427                                                 uint64_t Offset,
428                                                 const MDNode *MDPtr,
429                                                 DebugLoc dl) const {
430    return 0;
431  }
432
433  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
434  /// slot into the specified machine instruction for the specified operand(s).
435  /// If this is possible, a new instruction is returned with the specified
436  /// operand folded, otherwise NULL is returned.
437  /// The new instruction is inserted before MI, and the client is responsible
438  /// for removing the old instruction.
439  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
440                                  const SmallVectorImpl<unsigned> &Ops,
441                                  int FrameIndex) const;
442
443  /// foldMemoryOperand - Same as the previous version except it allows folding
444  /// of any load and store from / to any address, not just from a specific
445  /// stack slot.
446  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
447                                  const SmallVectorImpl<unsigned> &Ops,
448                                  MachineInstr* LoadMI) const;
449
450protected:
451  /// foldMemoryOperandImpl - Target-dependent implementation for
452  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
453  /// take care of adding a MachineMemOperand to the newly created instruction.
454  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
455                                          MachineInstr* MI,
456                                          const SmallVectorImpl<unsigned> &Ops,
457                                          int FrameIndex) const {
458    return 0;
459  }
460
461  /// foldMemoryOperandImpl - Target-dependent implementation for
462  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
463  /// take care of adding a MachineMemOperand to the newly created instruction.
464  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
465                                              MachineInstr* MI,
466                                          const SmallVectorImpl<unsigned> &Ops,
467                                              MachineInstr* LoadMI) const {
468    return 0;
469  }
470
471public:
472  /// canFoldMemoryOperand - Returns true for the specified load / store if
473  /// folding is possible.
474  virtual
475  bool canFoldMemoryOperand(const MachineInstr *MI,
476                            const SmallVectorImpl<unsigned> &Ops) const =0;
477
478  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
479  /// a store or a load and a store into two or more instruction. If this is
480  /// possible, returns true as well as the new instructions by reference.
481  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
482                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
483                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
484    return false;
485  }
486
487  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
488                                   SmallVectorImpl<SDNode*> &NewNodes) const {
489    return false;
490  }
491
492  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
493  /// instruction after load / store are unfolded from an instruction of the
494  /// specified opcode. It returns zero if the specified unfolding is not
495  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
496  /// index of the operand which will hold the register holding the loaded
497  /// value.
498  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
499                                      bool UnfoldLoad, bool UnfoldStore,
500                                      unsigned *LoadRegIndex = 0) const {
501    return 0;
502  }
503
504  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
505  /// to determine if two loads are loading from the same base address. It
506  /// should only return true if the base pointers are the same and the
507  /// only differences between the two addresses are the offset. It also returns
508  /// the offsets by reference.
509  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
510                                    int64_t &Offset1, int64_t &Offset2) const {
511    return false;
512  }
513
514  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
515  /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
516  /// be scheduled togther. On some targets if two loads are loading from
517  /// addresses in the same cache line, it's better if they are scheduled
518  /// together. This function takes two integers that represent the load offsets
519  /// from the common base address. It returns true if it decides it's desirable
520  /// to schedule the two loads together. "NumLoads" is the number of loads that
521  /// have already been scheduled after Load1.
522  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
523                                       int64_t Offset1, int64_t Offset2,
524                                       unsigned NumLoads) const {
525    return false;
526  }
527
528  /// ReverseBranchCondition - Reverses the branch condition of the specified
529  /// condition list, returning false on success and true if it cannot be
530  /// reversed.
531  virtual
532  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
533    return true;
534  }
535
536  /// insertNoop - Insert a noop into the instruction stream at the specified
537  /// point.
538  virtual void insertNoop(MachineBasicBlock &MBB,
539                          MachineBasicBlock::iterator MI) const;
540
541
542  /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
543  virtual void getNoopForMachoTarget(MCInst &NopInst) const {
544    // Default to just using 'nop' string.
545  }
546
547
548  /// isPredicated - Returns true if the instruction is already predicated.
549  ///
550  virtual bool isPredicated(const MachineInstr *MI) const {
551    return false;
552  }
553
554  /// isUnpredicatedTerminator - Returns true if the instruction is a
555  /// terminator instruction that has not been predicated.
556  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const = 0;
557
558  /// PredicateInstruction - Convert the instruction into a predicated
559  /// instruction. It returns true if the operation was successful.
560  virtual
561  bool PredicateInstruction(MachineInstr *MI,
562                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
563
564  /// SubsumesPredicate - Returns true if the first specified predicate
565  /// subsumes the second, e.g. GE subsumes GT.
566  virtual
567  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
568                         const SmallVectorImpl<MachineOperand> &Pred2) const {
569    return false;
570  }
571
572  /// DefinesPredicate - If the specified instruction defines any predicate
573  /// or condition code register(s) used for predication, returns true as well
574  /// as the definition predicate(s) by reference.
575  virtual bool DefinesPredicate(MachineInstr *MI,
576                                std::vector<MachineOperand> &Pred) const {
577    return false;
578  }
579
580  /// isPredicable - Return true if the specified instruction can be predicated.
581  /// By default, this returns true for every instruction with a
582  /// PredicateOperand.
583  virtual bool isPredicable(MachineInstr *MI) const {
584    return MI->getDesc().isPredicable();
585  }
586
587  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
588  /// instruction that defines the specified register class.
589  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
590    return true;
591  }
592
593  /// isSchedulingBoundary - Test if the given instruction should be
594  /// considered a scheduling boundary. This primarily includes labels and
595  /// terminators.
596  virtual bool isSchedulingBoundary(const MachineInstr *MI,
597                                    const MachineBasicBlock *MBB,
598                                    const MachineFunction &MF) const = 0;
599
600  /// Measure the specified inline asm to determine an approximation of its
601  /// length.
602  virtual unsigned getInlineAsmLength(const char *Str,
603                                      const MCAsmInfo &MAI) const;
604
605  /// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer to
606  /// use for this target when scheduling the machine instructions before
607  /// register allocation.
608  virtual ScheduleHazardRecognizer*
609  CreateTargetHazardRecognizer(const TargetMachine *TM,
610                               const ScheduleDAG *DAG) const = 0;
611
612  /// CreateTargetMIHazardRecognizer - Allocate and return a hazard recognizer
613  /// to use for this target when scheduling the machine instructions before
614  /// register allocation.
615  virtual ScheduleHazardRecognizer*
616  CreateTargetMIHazardRecognizer(const InstrItineraryData*,
617                                 const ScheduleDAG *DAG) const = 0;
618
619  /// CreateTargetPostRAHazardRecognizer - Allocate and return a hazard
620  /// recognizer to use for this target when scheduling the machine instructions
621  /// after register allocation.
622  virtual ScheduleHazardRecognizer*
623  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
624                                     const ScheduleDAG *DAG) const = 0;
625
626  /// AnalyzeCompare - For a comparison instruction, return the source register
627  /// in SrcReg and the value it compares against in CmpValue. Return true if
628  /// the comparison instruction can be analyzed.
629  virtual bool AnalyzeCompare(const MachineInstr *MI,
630                              unsigned &SrcReg, int &Mask, int &Value) const {
631    return false;
632  }
633
634  /// OptimizeCompareInstr - See if the comparison instruction can be converted
635  /// into something more efficient. E.g., on ARM most instructions can set the
636  /// flags register, obviating the need for a separate CMP.
637  virtual bool OptimizeCompareInstr(MachineInstr *CmpInstr,
638                                    unsigned SrcReg, int Mask, int Value,
639                                    const MachineRegisterInfo *MRI) const {
640    return false;
641  }
642
643  /// FoldImmediate - 'Reg' is known to be defined by a move immediate
644  /// instruction, try to fold the immediate into the use instruction.
645  virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
646                             unsigned Reg, MachineRegisterInfo *MRI) const {
647    return false;
648  }
649
650  /// getNumMicroOps - Return the number of u-operations the given machine
651  /// instruction will be decoded to on the target cpu.
652  virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
653                                  const MachineInstr *MI) const = 0;
654
655  /// isZeroCost - Return true for pseudo instructions that don't consume any
656  /// machine resources in their current form. These are common cases that the
657  /// scheduler should consider free, rather than conservatively handling them
658  /// as instructions with no itinerary.
659  bool isZeroCost(unsigned Opcode) const {
660    return Opcode <= TargetOpcode::COPY;
661  }
662
663  virtual int getOperandLatency(const InstrItineraryData *ItinData,
664                                SDNode *DefNode, unsigned DefIdx,
665                                SDNode *UseNode, unsigned UseIdx) const = 0;
666
667  /// getOperandLatency - Compute and return the use operand latency of a given
668  /// pair of def and use.
669  /// In most cases, the static scheduling itinerary was enough to determine the
670  /// operand latency. But it may not be possible for instructions with variable
671  /// number of defs / uses.
672  ///
673  /// This is a raw interface to the itinerary that may be directly overriden by
674  /// a target. Use computeOperandLatency to get the best estimate of latency.
675  virtual int getOperandLatency(const InstrItineraryData *ItinData,
676                                const MachineInstr *DefMI, unsigned DefIdx,
677                                const MachineInstr *UseMI,
678                                unsigned UseIdx) const = 0;
679
680  /// computeOperandLatency - Compute and return the latency of the given data
681  /// dependent def and use when the operand indices are already known.
682  ///
683  /// FindMin may be set to get the minimum vs. expected latency.
684  unsigned computeOperandLatency(const InstrItineraryData *ItinData,
685                                 const MachineInstr *DefMI, unsigned DefIdx,
686                                 const MachineInstr *UseMI, unsigned UseIdx,
687                                 bool FindMin = false) const;
688
689  /// computeOperandLatency - Compute and return the latency of the given data
690  /// dependent def and use. DefMI must be a valid def. UseMI may be NULL for
691  /// an unknown use. If the subtarget allows, this may or may not need to call
692  /// getOperandLatency().
693  ///
694  /// FindMin may be set to get the minimum vs. expected latency. Minimum
695  /// latency is used for scheduling groups, while expected latency is for
696  /// instruction cost and critical path.
697  unsigned computeOperandLatency(const InstrItineraryData *ItinData,
698                                 const TargetRegisterInfo *TRI,
699                                 const MachineInstr *DefMI,
700                                 const MachineInstr *UseMI,
701                                 unsigned Reg, bool FindMin) const;
702
703  /// getOutputLatency - Compute and return the output dependency latency of a
704  /// a given pair of defs which both target the same register. This is usually
705  /// one.
706  virtual unsigned getOutputLatency(const InstrItineraryData *ItinData,
707                                    const MachineInstr *DefMI, unsigned DefIdx,
708                                    const MachineInstr *DepMI) const {
709    return 1;
710  }
711
712  /// getInstrLatency - Compute the instruction latency of a given instruction.
713  /// If the instruction has higher cost when predicated, it's returned via
714  /// PredCost.
715  virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
716                                   const MachineInstr *MI,
717                                   unsigned *PredCost = 0) const = 0;
718
719  virtual int getInstrLatency(const InstrItineraryData *ItinData,
720                              SDNode *Node) const = 0;
721
722  /// Return the default expected latency for a def based on it's opcode.
723  unsigned defaultDefLatency(const InstrItineraryData *ItinData,
724                             const MachineInstr *DefMI) const;
725
726  /// isHighLatencyDef - Return true if this opcode has high latency to its
727  /// result.
728  virtual bool isHighLatencyDef(int opc) const { return false; }
729
730  /// hasHighOperandLatency - Compute operand latency between a def of 'Reg'
731  /// and an use in the current loop, return true if the target considered
732  /// it 'high'. This is used by optimization passes such as machine LICM to
733  /// determine whether it makes sense to hoist an instruction out even in
734  /// high register pressure situation.
735  virtual
736  bool hasHighOperandLatency(const InstrItineraryData *ItinData,
737                             const MachineRegisterInfo *MRI,
738                             const MachineInstr *DefMI, unsigned DefIdx,
739                             const MachineInstr *UseMI, unsigned UseIdx) const {
740    return false;
741  }
742
743  /// hasLowDefLatency - Compute operand latency of a def of 'Reg', return true
744  /// if the target considered it 'low'.
745  virtual
746  bool hasLowDefLatency(const InstrItineraryData *ItinData,
747                        const MachineInstr *DefMI, unsigned DefIdx) const = 0;
748
749  /// verifyInstruction - Perform target specific instruction verification.
750  virtual
751  bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const {
752    return true;
753  }
754
755  /// getExecutionDomain - Return the current execution domain and bit mask of
756  /// possible domains for instruction.
757  ///
758  /// Some micro-architectures have multiple execution domains, and multiple
759  /// opcodes that perform the same operation in different domains.  For
760  /// example, the x86 architecture provides the por, orps, and orpd
761  /// instructions that all do the same thing.  There is a latency penalty if a
762  /// register is written in one domain and read in another.
763  ///
764  /// This function returns a pair (domain, mask) containing the execution
765  /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
766  /// function can be used to change the opcode to one of the domains in the
767  /// bit mask.  Instructions whose execution domain can't be changed should
768  /// return a 0 mask.
769  ///
770  /// The execution domain numbers don't have any special meaning except domain
771  /// 0 is used for instructions that are not associated with any interesting
772  /// execution domain.
773  ///
774  virtual std::pair<uint16_t, uint16_t>
775  getExecutionDomain(const MachineInstr *MI) const {
776    return std::make_pair(0, 0);
777  }
778
779  /// setExecutionDomain - Change the opcode of MI to execute in Domain.
780  ///
781  /// The bit (1 << Domain) must be set in the mask returned from
782  /// getExecutionDomain(MI).
783  ///
784  virtual void setExecutionDomain(MachineInstr *MI, unsigned Domain) const {}
785
786
787  /// getPartialRegUpdateClearance - Returns the preferred minimum clearance
788  /// before an instruction with an unwanted partial register update.
789  ///
790  /// Some instructions only write part of a register, and implicitly need to
791  /// read the other parts of the register.  This may cause unwanted stalls
792  /// preventing otherwise unrelated instructions from executing in parallel in
793  /// an out-of-order CPU.
794  ///
795  /// For example, the x86 instruction cvtsi2ss writes its result to bits
796  /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
797  /// the instruction needs to wait for the old value of the register to become
798  /// available:
799  ///
800  ///   addps %xmm1, %xmm0
801  ///   movaps %xmm0, (%rax)
802  ///   cvtsi2ss %rbx, %xmm0
803  ///
804  /// In the code above, the cvtsi2ss instruction needs to wait for the addps
805  /// instruction before it can issue, even though the high bits of %xmm0
806  /// probably aren't needed.
807  ///
808  /// This hook returns the preferred clearance before MI, measured in
809  /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
810  /// instructions before MI.  It should only return a positive value for
811  /// unwanted dependencies.  If the old bits of the defined register have
812  /// useful values, or if MI is determined to otherwise read the dependency,
813  /// the hook should return 0.
814  ///
815  /// The unwanted dependency may be handled by:
816  ///
817  /// 1. Allocating the same register for an MI def and use.  That makes the
818  ///    unwanted dependency identical to a required dependency.
819  ///
820  /// 2. Allocating a register for the def that has no defs in the previous N
821  ///    instructions.
822  ///
823  /// 3. Calling breakPartialRegDependency() with the same arguments.  This
824  ///    allows the target to insert a dependency breaking instruction.
825  ///
826  virtual unsigned
827  getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
828                               const TargetRegisterInfo *TRI) const {
829    // The default implementation returns 0 for no partial register dependency.
830    return 0;
831  }
832
833  /// breakPartialRegDependency - Insert a dependency-breaking instruction
834  /// before MI to eliminate an unwanted dependency on OpNum.
835  ///
836  /// If it wasn't possible to avoid a def in the last N instructions before MI
837  /// (see getPartialRegUpdateClearance), this hook will be called to break the
838  /// unwanted dependency.
839  ///
840  /// On x86, an xorps instruction can be used as a dependency breaker:
841  ///
842  ///   addps %xmm1, %xmm0
843  ///   movaps %xmm0, (%rax)
844  ///   xorps %xmm0, %xmm0
845  ///   cvtsi2ss %rbx, %xmm0
846  ///
847  /// An <imp-kill> operand should be added to MI if an instruction was
848  /// inserted.  This ties the instructions together in the post-ra scheduler.
849  ///
850  virtual void
851  breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
852                            const TargetRegisterInfo *TRI) const {}
853
854  /// Create machine specific model for scheduling.
855  virtual DFAPacketizer*
856    CreateTargetScheduleState(const TargetMachine*, const ScheduleDAG*) const {
857    return NULL;
858  }
859
860private:
861  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
862};
863
864/// TargetInstrInfoImpl - This is the default implementation of
865/// TargetInstrInfo, which just provides a couple of default implementations
866/// for various methods.  This separated out because it is implemented in
867/// libcodegen, not in libtarget.
868class TargetInstrInfoImpl : public TargetInstrInfo {
869protected:
870  TargetInstrInfoImpl(int CallFrameSetupOpcode = -1,
871                      int CallFrameDestroyOpcode = -1)
872    : TargetInstrInfo(CallFrameSetupOpcode, CallFrameDestroyOpcode) {}
873public:
874  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
875                                       MachineBasicBlock *NewDest) const;
876  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
877                                           bool NewMI = false) const;
878  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
879                                     unsigned &SrcOpIdx2) const;
880  virtual bool canFoldMemoryOperand(const MachineInstr *MI,
881                                    const SmallVectorImpl<unsigned> &Ops) const;
882  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
883                                    const MachineMemOperand *&MMO,
884                                    int &FrameIndex) const;
885  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
886                                   const MachineMemOperand *&MMO,
887                                   int &FrameIndex) const;
888  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
889  virtual bool PredicateInstruction(MachineInstr *MI,
890                            const SmallVectorImpl<MachineOperand> &Pred) const;
891  virtual void reMaterialize(MachineBasicBlock &MBB,
892                             MachineBasicBlock::iterator MI,
893                             unsigned DestReg, unsigned SubReg,
894                             const MachineInstr *Orig,
895                             const TargetRegisterInfo &TRI) const;
896  virtual MachineInstr *duplicate(MachineInstr *Orig,
897                                  MachineFunction &MF) const;
898  virtual bool produceSameValue(const MachineInstr *MI0,
899                                const MachineInstr *MI1,
900                                const MachineRegisterInfo *MRI) const;
901  virtual bool isSchedulingBoundary(const MachineInstr *MI,
902                                    const MachineBasicBlock *MBB,
903                                    const MachineFunction &MF) const;
904
905  virtual int getOperandLatency(const InstrItineraryData *ItinData,
906                                SDNode *DefNode, unsigned DefIdx,
907                                SDNode *UseNode, unsigned UseIdx) const;
908
909  virtual int getInstrLatency(const InstrItineraryData *ItinData,
910                              SDNode *Node) const;
911
912  using TargetInstrInfo::getNumMicroOps;
913  virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
914                                  const MachineInstr *MI) const;
915
916  using TargetInstrInfo::getInstrLatency;
917  virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
918                                   const MachineInstr *MI,
919                                   unsigned *PredCost = 0) const;
920
921  using TargetInstrInfo::hasLowDefLatency;
922  virtual
923  bool hasLowDefLatency(const InstrItineraryData *ItinData,
924                        const MachineInstr *DefMI, unsigned DefIdx) const;
925
926  using TargetInstrInfo::getOperandLatency;
927  virtual int getOperandLatency(const InstrItineraryData *ItinData,
928                                const MachineInstr *DefMI, unsigned DefIdx,
929                                const MachineInstr *UseMI,
930                                unsigned UseIdx) const;
931
932  bool usePreRAHazardRecognizer() const;
933
934  virtual ScheduleHazardRecognizer *
935  CreateTargetHazardRecognizer(const TargetMachine*, const ScheduleDAG*) const;
936
937  virtual ScheduleHazardRecognizer *
938  CreateTargetMIHazardRecognizer(const InstrItineraryData*,
939                                 const ScheduleDAG*) const;
940
941  virtual ScheduleHazardRecognizer *
942  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
943                                     const ScheduleDAG*) const;
944};
945
946} // End llvm namespace
947
948#endif
949