TargetInstrInfo.h revision ed80ef6089ef83bd1c79f1477d7a12a949474af5
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instructions to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/CodeGen/MachineBasicBlock.h"
18#include "llvm/CodeGen/MachineFunction.h"
19#include "llvm/Support/DataTypes.h"
20#include <vector>
21#include <cassert>
22
23namespace llvm {
24
25class MachineInstr;
26class TargetMachine;
27class MachineCodeForInstruction;
28class TargetRegisterClass;
29class LiveVariables;
30
31//---------------------------------------------------------------------------
32// Data types used to define information about a single machine instruction
33//---------------------------------------------------------------------------
34
35typedef short MachineOpCode;
36typedef unsigned InstrSchedClass;
37
38//---------------------------------------------------------------------------
39// struct TargetInstrDescriptor:
40//  Predefined information about each machine instruction.
41//  Designed to initialized statically.
42//
43
44const unsigned M_BRANCH_FLAG           = 1 << 0;
45const unsigned M_CALL_FLAG             = 1 << 1;
46const unsigned M_RET_FLAG              = 1 << 2;
47const unsigned M_BARRIER_FLAG          = 1 << 3;
48const unsigned M_DELAY_SLOT_FLAG       = 1 << 4;
49const unsigned M_LOAD_FLAG             = 1 << 5;
50const unsigned M_STORE_FLAG            = 1 << 6;
51
52// M_CONVERTIBLE_TO_3_ADDR - This is a 2-address instruction which can be
53// changed into a 3-address instruction if the first two operands cannot be
54// assigned to the same register.  The target must implement the
55// TargetInstrInfo::convertToThreeAddress method for this instruction.
56const unsigned M_CONVERTIBLE_TO_3_ADDR = 1 << 7;
57
58// This M_COMMUTABLE - is a 2- or 3-address instruction (of the form X = op Y,
59// Z), which produces the same result if Y and Z are exchanged.
60const unsigned M_COMMUTABLE            = 1 << 8;
61
62// M_TERMINATOR_FLAG - Is this instruction part of the terminator for a basic
63// block?  Typically this is things like return and branch instructions.
64// Various passes use this to insert code into the bottom of a basic block, but
65// before control flow occurs.
66const unsigned M_TERMINATOR_FLAG       = 1 << 9;
67
68// M_USES_CUSTOM_DAG_SCHED_INSERTION - Set if this instruction requires custom
69// insertion support when the DAG scheduler is inserting it into a machine basic
70// block.
71const unsigned M_USES_CUSTOM_DAG_SCHED_INSERTION = 1 << 10;
72
73// M_VARIABLE_OPS - Set if this instruction can have a variable number of extra
74// operands in addition to the minimum number operands specified.
75const unsigned M_VARIABLE_OPS = 1 << 11;
76
77// M_PREDICABLE - Set if this instruction has a predicate operand that
78// controls execution. It may be set to 'always'.
79const unsigned M_PREDICABLE = 1 << 12;
80
81// M_REMATERIALIZIBLE - Set if this instruction can be trivally re-materialized
82// at any time, e.g. constant generation, load from constant pool.
83const unsigned M_REMATERIALIZIBLE = 1 << 13;
84
85// M_NOT_DUPLICABLE - Set if this instruction cannot be safely duplicated.
86// (e.g. instructions with unique labels attached).
87const unsigned M_NOT_DUPLICABLE = 1 << 14;
88
89// M_HAS_OPTIONAL_DEF - Set if this instruction has an optional definition, e.g.
90// ARM instructions which can set condition code if 's' bit is set.
91const unsigned M_HAS_OPTIONAL_DEF = 1 << 15;
92
93// Machine operand flags
94// M_LOOK_UP_PTR_REG_CLASS - Set if this operand is a pointer value and it
95// requires a callback to look up its register class.
96const unsigned M_LOOK_UP_PTR_REG_CLASS = 1 << 0;
97
98/// M_PREDICATE_OPERAND - Set if this is one of the operands that made up of the
99/// predicate operand that controls an M_PREDICATED instruction.
100const unsigned M_PREDICATE_OPERAND = 1 << 1;
101
102/// M_OPTIONAL_DEF_OPERAND - Set if this operand is a optional def.
103///
104const unsigned M_OPTIONAL_DEF_OPERAND = 1 << 2;
105
106namespace TOI {
107  // Operand constraints: only "tied_to" for now.
108  enum OperandConstraint {
109    TIED_TO = 0  // Must be allocated the same register as.
110  };
111}
112
113/// TargetOperandInfo - This holds information about one operand of a machine
114/// instruction, indicating the register class for register operands, etc.
115///
116class TargetOperandInfo {
117public:
118  /// RegClass - This specifies the register class enumeration of the operand
119  /// if the operand is a register.  If not, this contains 0.
120  unsigned short RegClass;
121  unsigned short Flags;
122  /// Lower 16 bits are used to specify which constraints are set. The higher 16
123  /// bits are used to specify the value of constraints (4 bits each).
124  unsigned int Constraints;
125  /// Currently no other information.
126};
127
128
129class TargetInstrDescriptor {
130public:
131  MachineOpCode   Opcode;        // The opcode.
132  unsigned short  numOperands;   // Num of args (may be more if variable_ops).
133  const char *    Name;          // Assembly language mnemonic for the opcode.
134  InstrSchedClass schedClass;    // enum  identifying instr sched class
135  unsigned        Flags;         // flags identifying machine instr class
136  unsigned        TSFlags;       // Target Specific Flag values
137  const unsigned *ImplicitUses;  // Registers implicitly read by this instr
138  const unsigned *ImplicitDefs;  // Registers implicitly defined by this instr
139  const TargetOperandInfo *OpInfo; // 'numOperands' entries about operands.
140
141  /// getOperandConstraint - Returns the value of the specific constraint if
142  /// it is set. Returns -1 if it is not set.
143  int getOperandConstraint(unsigned OpNum,
144                           TOI::OperandConstraint Constraint) const {
145    assert((OpNum < numOperands || (Flags & M_VARIABLE_OPS)) &&
146           "Invalid operand # of TargetInstrInfo");
147    if (OpNum < numOperands &&
148        (OpInfo[OpNum].Constraints & (1 << Constraint))) {
149      unsigned Pos = 16 + Constraint * 4;
150      return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
151    }
152    return -1;
153  }
154
155  /// findTiedToSrcOperand - Returns the operand that is tied to the specified
156  /// dest operand. Returns -1 if there isn't one.
157  int findTiedToSrcOperand(unsigned OpNum) const;
158};
159
160
161//---------------------------------------------------------------------------
162///
163/// TargetInstrInfo - Interface to description of machine instructions
164///
165class TargetInstrInfo {
166  const TargetInstrDescriptor* desc;    // raw array to allow static init'n
167  unsigned NumOpcodes;                  // number of entries in the desc array
168  unsigned numRealOpCodes;              // number of non-dummy op codes
169
170  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
171  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
172public:
173  TargetInstrInfo(const TargetInstrDescriptor *desc, unsigned NumOpcodes);
174  virtual ~TargetInstrInfo();
175
176  // Invariant opcodes: All instruction sets have these as their low opcodes.
177  enum {
178    PHI = 0,
179    INLINEASM = 1,
180    LABEL = 2
181  };
182
183  unsigned getNumOpcodes() const { return NumOpcodes; }
184
185  /// get - Return the machine instruction descriptor that corresponds to the
186  /// specified instruction opcode.
187  ///
188  const TargetInstrDescriptor& get(MachineOpCode Opcode) const {
189    assert((unsigned)Opcode < NumOpcodes);
190    return desc[Opcode];
191  }
192
193  const char *getName(MachineOpCode Opcode) const {
194    return get(Opcode).Name;
195  }
196
197  int getNumOperands(MachineOpCode Opcode) const {
198    return get(Opcode).numOperands;
199  }
200
201  InstrSchedClass getSchedClass(MachineOpCode Opcode) const {
202    return get(Opcode).schedClass;
203  }
204
205  const unsigned *getImplicitUses(MachineOpCode Opcode) const {
206    return get(Opcode).ImplicitUses;
207  }
208
209  const unsigned *getImplicitDefs(MachineOpCode Opcode) const {
210    return get(Opcode).ImplicitDefs;
211  }
212
213
214  //
215  // Query instruction class flags according to the machine-independent
216  // flags listed above.
217  //
218  bool isReturn(MachineOpCode Opcode) const {
219    return get(Opcode).Flags & M_RET_FLAG;
220  }
221
222  bool isCommutableInstr(MachineOpCode Opcode) const {
223    return get(Opcode).Flags & M_COMMUTABLE;
224  }
225  bool isTerminatorInstr(MachineOpCode Opcode) const {
226    return get(Opcode).Flags & M_TERMINATOR_FLAG;
227  }
228
229  bool isBranch(MachineOpCode Opcode) const {
230    return get(Opcode).Flags & M_BRANCH_FLAG;
231  }
232
233  /// isBarrier - Returns true if the specified instruction stops control flow
234  /// from executing the instruction immediately following it.  Examples include
235  /// unconditional branches and return instructions.
236  bool isBarrier(MachineOpCode Opcode) const {
237    return get(Opcode).Flags & M_BARRIER_FLAG;
238  }
239
240  bool isCall(MachineOpCode Opcode) const {
241    return get(Opcode).Flags & M_CALL_FLAG;
242  }
243  bool isLoad(MachineOpCode Opcode) const {
244    return get(Opcode).Flags & M_LOAD_FLAG;
245  }
246  bool isStore(MachineOpCode Opcode) const {
247    return get(Opcode).Flags & M_STORE_FLAG;
248  }
249
250  /// hasDelaySlot - Returns true if the specified instruction has a delay slot
251  /// which must be filled by the code generator.
252  bool hasDelaySlot(MachineOpCode Opcode) const {
253    return get(Opcode).Flags & M_DELAY_SLOT_FLAG;
254  }
255
256  /// usesCustomDAGSchedInsertionHook - Return true if this instruction requires
257  /// custom insertion support when the DAG scheduler is inserting it into a
258  /// machine basic block.
259  bool usesCustomDAGSchedInsertionHook(MachineOpCode Opcode) const {
260    return get(Opcode).Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION;
261  }
262
263  bool hasVariableOperands(MachineOpCode Opcode) const {
264    return get(Opcode).Flags & M_VARIABLE_OPS;
265  }
266
267  bool isPredicable(MachineOpCode Opcode) const {
268    return get(Opcode).Flags & M_PREDICABLE;
269  }
270
271  bool isNotDuplicable(MachineOpCode Opcode) const {
272    return get(Opcode).Flags & M_NOT_DUPLICABLE;
273  }
274
275  bool hasOptionalDef(MachineOpCode Opcode) const {
276    return get(Opcode).Flags & M_HAS_OPTIONAL_DEF;
277  }
278
279  /// isTriviallyReMaterializable - Return true if the instruction is trivially
280  /// rematerializable, meaning it has no side effects and requires no operands
281  /// that aren't always available.
282  bool isTriviallyReMaterializable(MachineInstr *MI) const {
283    return (MI->getInstrDescriptor()->Flags & M_REMATERIALIZIBLE) &&
284           isReallyTriviallyReMaterializable(MI);
285  }
286
287protected:
288  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
289  /// which the M_REMATERIALIZABLE flag is set, this function tests whether the
290  /// instruction itself is actually trivially rematerializable, considering
291  /// its operands.  This is used for targets that have instructions that are
292  /// only trivially rematerializable for specific uses.  This predicate must
293  /// return false if the instruction has any side effects other than
294  /// producing a value, or if it requres any address registers that are not
295  /// always available.
296  virtual bool isReallyTriviallyReMaterializable(MachineInstr *MI) const {
297    return true;
298  }
299
300public:
301  /// getOperandConstraint - Returns the value of the specific constraint if
302  /// it is set. Returns -1 if it is not set.
303  int getOperandConstraint(MachineOpCode Opcode, unsigned OpNum,
304                           TOI::OperandConstraint Constraint) const {
305    return get(Opcode).getOperandConstraint(OpNum, Constraint);
306  }
307
308  /// Return true if the instruction is a register to register move
309  /// and leave the source and dest operands in the passed parameters.
310  virtual bool isMoveInstr(const MachineInstr& MI,
311                           unsigned& sourceReg,
312                           unsigned& destReg) const {
313    return false;
314  }
315
316  /// isLoadFromStackSlot - If the specified machine instruction is a direct
317  /// load from a stack slot, return the virtual or physical register number of
318  /// the destination along with the FrameIndex of the loaded stack slot.  If
319  /// not, return 0.  This predicate must return 0 if the instruction has
320  /// any side effects other than loading from the stack slot.
321  virtual unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const{
322    return 0;
323  }
324
325  /// isStoreToStackSlot - If the specified machine instruction is a direct
326  /// store to a stack slot, return the virtual or physical register number of
327  /// the source reg along with the FrameIndex of the loaded stack slot.  If
328  /// not, return 0.  This predicate must return 0 if the instruction has
329  /// any side effects other than storing to the stack slot.
330  virtual unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const {
331    return 0;
332  }
333
334  /// convertToThreeAddress - This method must be implemented by targets that
335  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
336  /// may be able to convert a two-address instruction into one or more true
337  /// three-address instructions on demand.  This allows the X86 target (for
338  /// example) to convert ADD and SHL instructions into LEA instructions if they
339  /// would require register copies due to two-addressness.
340  ///
341  /// This method returns a null pointer if the transformation cannot be
342  /// performed, otherwise it returns the last new instruction.
343  ///
344  virtual MachineInstr *
345  convertToThreeAddress(MachineFunction::iterator &MFI,
346                   MachineBasicBlock::iterator &MBBI, LiveVariables &LV) const {
347    return 0;
348  }
349
350  /// commuteInstruction - If a target has any instructions that are commutable,
351  /// but require converting to a different instruction or making non-trivial
352  /// changes to commute them, this method can overloaded to do this.  The
353  /// default implementation of this method simply swaps the first two operands
354  /// of MI and returns it.
355  ///
356  /// If a target wants to make more aggressive changes, they can construct and
357  /// return a new machine instruction.  If an instruction cannot commute, it
358  /// can also return null.
359  ///
360  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
361
362  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
363  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
364  /// implemented for a target).  Upon success, this returns false and returns
365  /// with the following information in various cases:
366  ///
367  /// 1. If this block ends with no branches (it just falls through to its succ)
368  ///    just return false, leaving TBB/FBB null.
369  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
370  ///    the destination block.
371  /// 3. If this block ends with an conditional branch and it falls through to
372  ///    an successor block, it sets TBB to be the branch destination block and a
373  ///    list of operands that evaluate the condition. These
374  ///    operands can be passed to other TargetInstrInfo methods to create new
375  ///    branches.
376  /// 4. If this block ends with an conditional branch and an unconditional
377  ///    block, it returns the 'true' destination in TBB, the 'false' destination
378  ///    in FBB, and a list of operands that evaluate the condition. These
379  ///    operands can be passed to other TargetInstrInfo methods to create new
380  ///    branches.
381  ///
382  /// Note that RemoveBranch and InsertBranch must be implemented to support
383  /// cases where this method returns success.
384  ///
385  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
386                             MachineBasicBlock *&FBB,
387                             std::vector<MachineOperand> &Cond) const {
388    return true;
389  }
390
391  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
392  /// this is only invoked in cases where AnalyzeBranch returns success. It
393  /// returns the number of instructions that were removed.
394  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
395    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
396    return 0;
397  }
398
399  /// InsertBranch - Insert a branch into the end of the specified
400  /// MachineBasicBlock.  This operands to this method are the same as those
401  /// returned by AnalyzeBranch.  This is invoked in cases where AnalyzeBranch
402  /// returns success and when an unconditional branch (TBB is non-null, FBB is
403  /// null, Cond is empty) needs to be inserted. It returns the number of
404  /// instructions inserted.
405  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
406                            MachineBasicBlock *FBB,
407                            const std::vector<MachineOperand> &Cond) const {
408    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
409    return 0;
410  }
411
412  /// BlockHasNoFallThrough - Return true if the specified block does not
413  /// fall-through into its successor block.  This is primarily used when a
414  /// branch is unanalyzable.  It is useful for things like unconditional
415  /// indirect branches (jump tables).
416  virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
417    return false;
418  }
419
420  /// ReverseBranchCondition - Reverses the branch condition of the specified
421  /// condition list, returning false on success and true if it cannot be
422  /// reversed.
423  virtual bool ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
424    return true;
425  }
426
427  /// insertNoop - Insert a noop into the instruction stream at the specified
428  /// point.
429  virtual void insertNoop(MachineBasicBlock &MBB,
430                          MachineBasicBlock::iterator MI) const {
431    assert(0 && "Target didn't implement insertNoop!");
432    abort();
433  }
434
435  /// isPredicated - Returns true if the instruction is already predicated.
436  ///
437  virtual bool isPredicated(const MachineInstr *MI) const {
438    return false;
439  }
440
441  /// isUnpredicatedTerminator - Returns true if the instruction is a
442  /// terminator instruction that has not been predicated.
443  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
444
445  /// PredicateInstruction - Convert the instruction into a predicated
446  /// instruction. It returns true if the operation was successful.
447  virtual
448  bool PredicateInstruction(MachineInstr *MI,
449                            const std::vector<MachineOperand> &Pred) const;
450
451  /// SubsumesPredicate - Returns true if the first specified predicate
452  /// subsumes the second, e.g. GE subsumes GT.
453  virtual
454  bool SubsumesPredicate(const std::vector<MachineOperand> &Pred1,
455                         const std::vector<MachineOperand> &Pred2) const {
456    return false;
457  }
458
459  /// DefinesPredicate - If the specified instruction defines any predicate
460  /// or condition code register(s) used for predication, returns true as well
461  /// as the definition predicate(s) by reference.
462  virtual bool DefinesPredicate(MachineInstr *MI,
463                                std::vector<MachineOperand> &Pred) const {
464    return false;
465  }
466
467  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
468  /// values.
469  virtual const TargetRegisterClass *getPointerRegClass() const {
470    assert(0 && "Target didn't implement getPointerRegClass!");
471    abort();
472    return 0; // Must return a value in order to compile with VS 2005
473  }
474};
475
476} // End llvm namespace
477
478#endif
479