TargetInstrInfo.h revision f0e1b8942157f4344cce36e98c7dabb230d52bf8
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/Target/TargetInstrDesc.h"
18#include "llvm/CodeGen/MachineFunction.h"
19
20namespace llvm {
21
22class CalleeSavedInfo;
23class InstrItineraryData;
24class LiveVariables;
25class MCAsmInfo;
26class MachineMemOperand;
27class MDNode;
28class MCInst;
29class SDNode;
30class ScheduleHazardRecognizer;
31class SelectionDAG;
32class TargetRegisterClass;
33class TargetRegisterInfo;
34
35template<class T> class SmallVectorImpl;
36
37
38//---------------------------------------------------------------------------
39///
40/// TargetInstrInfo - Interface to description of machine instruction set
41///
42class TargetInstrInfo {
43  const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
44  unsigned NumOpcodes;                // Number of entries in the desc array
45
46  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
47  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
48public:
49  TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
50  virtual ~TargetInstrInfo();
51
52  unsigned getNumOpcodes() const { return NumOpcodes; }
53
54  /// get - Return the machine instruction descriptor that corresponds to the
55  /// specified instruction opcode.
56  ///
57  const TargetInstrDesc &get(unsigned Opcode) const {
58    assert(Opcode < NumOpcodes && "Invalid opcode!");
59    return Descriptors[Opcode];
60  }
61
62  /// isTriviallyReMaterializable - Return true if the instruction is trivially
63  /// rematerializable, meaning it has no side effects and requires no operands
64  /// that aren't always available.
65  bool isTriviallyReMaterializable(const MachineInstr *MI,
66                                   AliasAnalysis *AA = 0) const {
67    return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
68           (MI->getDesc().isRematerializable() &&
69            (isReallyTriviallyReMaterializable(MI, AA) ||
70             isReallyTriviallyReMaterializableGeneric(MI, AA)));
71  }
72
73protected:
74  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
75  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
76  /// specify whether the instruction is actually trivially rematerializable,
77  /// taking into consideration its operands. This predicate must return false
78  /// if the instruction has any side effects other than producing a value, or
79  /// if it requres any address registers that are not always available.
80  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
81                                                 AliasAnalysis *AA) const {
82    return false;
83  }
84
85private:
86  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
87  /// for which the M_REMATERIALIZABLE flag is set and the target hook
88  /// isReallyTriviallyReMaterializable returns false, this function does
89  /// target-independent tests to determine if the instruction is really
90  /// trivially rematerializable.
91  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
92                                                AliasAnalysis *AA) const;
93
94public:
95  /// isMoveInstr - Return true if the instruction is a register to register
96  /// move and return the source and dest operands and their sub-register
97  /// indices by reference.
98  virtual bool isMoveInstr(const MachineInstr& MI,
99                           unsigned& SrcReg, unsigned& DstReg,
100                           unsigned& SrcSubIdx, unsigned& DstSubIdx) const {
101    return false;
102  }
103
104  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
105  /// extension instruction. That is, it's like a copy where it's legal for the
106  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
107  /// true, then it's expected the pre-extension value is available as a subreg
108  /// of the result register. This also returns the sub-register index in
109  /// SubIdx.
110  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
111                                     unsigned &SrcReg, unsigned &DstReg,
112                                     unsigned &SubIdx) const {
113    return false;
114  }
115
116  /// isIdentityCopy - Return true if the instruction is a copy (or
117  /// extract_subreg, insert_subreg, subreg_to_reg) where the source and
118  /// destination registers are the same.
119  bool isIdentityCopy(const MachineInstr &MI) const {
120    unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
121    if (isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
122        SrcReg == DstReg)
123      return true;
124
125    if (MI.getOpcode() == TargetOpcode::EXTRACT_SUBREG &&
126        MI.getOperand(0).getReg() == MI.getOperand(1).getReg())
127    return true;
128
129    if ((MI.getOpcode() == TargetOpcode::INSERT_SUBREG ||
130         MI.getOpcode() == TargetOpcode::SUBREG_TO_REG) &&
131        MI.getOperand(0).getReg() == MI.getOperand(2).getReg())
132      return true;
133    return false;
134  }
135
136  /// isLoadFromStackSlot - If the specified machine instruction is a direct
137  /// load from a stack slot, return the virtual or physical register number of
138  /// the destination along with the FrameIndex of the loaded stack slot.  If
139  /// not, return 0.  This predicate must return 0 if the instruction has
140  /// any side effects other than loading from the stack slot.
141  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
142                                       int &FrameIndex) const {
143    return 0;
144  }
145
146  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
147  /// stack locations as well.  This uses a heuristic so it isn't
148  /// reliable for correctness.
149  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
150                                             int &FrameIndex) const {
151    return 0;
152  }
153
154  /// hasLoadFromStackSlot - If the specified machine instruction has
155  /// a load from a stack slot, return true along with the FrameIndex
156  /// of the loaded stack slot and the machine mem operand containing
157  /// the reference.  If not, return false.  Unlike
158  /// isLoadFromStackSlot, this returns true for any instructions that
159  /// loads from the stack.  This is just a hint, as some cases may be
160  /// missed.
161  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
162                                    const MachineMemOperand *&MMO,
163                                    int &FrameIndex) const {
164    return 0;
165  }
166
167  /// isStoreToStackSlot - If the specified machine instruction is a direct
168  /// store to a stack slot, return the virtual or physical register number of
169  /// the source reg along with the FrameIndex of the loaded stack slot.  If
170  /// not, return 0.  This predicate must return 0 if the instruction has
171  /// any side effects other than storing to the stack slot.
172  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
173                                      int &FrameIndex) const {
174    return 0;
175  }
176
177  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
178  /// stack locations as well.  This uses a heuristic so it isn't
179  /// reliable for correctness.
180  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
181                                            int &FrameIndex) const {
182    return 0;
183  }
184
185  /// hasStoreToStackSlot - If the specified machine instruction has a
186  /// store to a stack slot, return true along with the FrameIndex of
187  /// the loaded stack slot and the machine mem operand containing the
188  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
189  /// this returns true for any instructions that stores to the
190  /// stack.  This is just a hint, as some cases may be missed.
191  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
192                                   const MachineMemOperand *&MMO,
193                                   int &FrameIndex) const {
194    return 0;
195  }
196
197  /// reMaterialize - Re-issue the specified 'original' instruction at the
198  /// specific location targeting a new destination register.
199  /// The register in Orig->getOperand(0).getReg() will be substituted by
200  /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
201  /// SubIdx.
202  virtual void reMaterialize(MachineBasicBlock &MBB,
203                             MachineBasicBlock::iterator MI,
204                             unsigned DestReg, unsigned SubIdx,
205                             const MachineInstr *Orig,
206                             const TargetRegisterInfo &TRI) const = 0;
207
208  /// scheduleTwoAddrSource - Schedule the copy / re-mat of the source of the
209  /// two-addrss instruction inserted by two-address pass.
210  virtual void scheduleTwoAddrSource(MachineInstr *SrcMI,
211                                     MachineInstr *UseMI,
212                                     const TargetRegisterInfo &TRI) const {
213    // Do nothing.
214  }
215
216  /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
217  /// MachineFunction::CloneMachineInstr(), but the target may update operands
218  /// that are required to be unique.
219  ///
220  /// The instruction must be duplicable as indicated by isNotDuplicable().
221  virtual MachineInstr *duplicate(MachineInstr *Orig,
222                                  MachineFunction &MF) const = 0;
223
224  /// convertToThreeAddress - This method must be implemented by targets that
225  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
226  /// may be able to convert a two-address instruction into one or more true
227  /// three-address instructions on demand.  This allows the X86 target (for
228  /// example) to convert ADD and SHL instructions into LEA instructions if they
229  /// would require register copies due to two-addressness.
230  ///
231  /// This method returns a null pointer if the transformation cannot be
232  /// performed, otherwise it returns the last new instruction.
233  ///
234  virtual MachineInstr *
235  convertToThreeAddress(MachineFunction::iterator &MFI,
236                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
237    return 0;
238  }
239
240  /// commuteInstruction - If a target has any instructions that are
241  /// commutable but require converting to different instructions or making
242  /// non-trivial changes to commute them, this method can overloaded to do
243  /// that.  The default implementation simply swaps the commutable operands.
244  /// If NewMI is false, MI is modified in place and returned; otherwise, a
245  /// new machine instruction is created and returned.  Do not call this
246  /// method for a non-commutable instruction, but there may be some cases
247  /// where this method fails and returns null.
248  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
249                                           bool NewMI = false) const = 0;
250
251  /// findCommutedOpIndices - If specified MI is commutable, return the two
252  /// operand indices that would swap value. Return false if the instruction
253  /// is not in a form which this routine understands.
254  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
255                                     unsigned &SrcOpIdx2) const = 0;
256
257  /// produceSameValue - Return true if two machine instructions would produce
258  /// identical values. By default, this is only true when the two instructions
259  /// are deemed identical except for defs.
260  virtual bool produceSameValue(const MachineInstr *MI0,
261                                const MachineInstr *MI1) const = 0;
262
263  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
264  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
265  /// implemented for a target).  Upon success, this returns false and returns
266  /// with the following information in various cases:
267  ///
268  /// 1. If this block ends with no branches (it just falls through to its succ)
269  ///    just return false, leaving TBB/FBB null.
270  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
271  ///    the destination block.
272  /// 3. If this block ends with a conditional branch and it falls through to a
273  ///    successor block, it sets TBB to be the branch destination block and a
274  ///    list of operands that evaluate the condition. These operands can be
275  ///    passed to other TargetInstrInfo methods to create new branches.
276  /// 4. If this block ends with a conditional branch followed by an
277  ///    unconditional branch, it returns the 'true' destination in TBB, the
278  ///    'false' destination in FBB, and a list of operands that evaluate the
279  ///    condition.  These operands can be passed to other TargetInstrInfo
280  ///    methods to create new branches.
281  ///
282  /// Note that RemoveBranch and InsertBranch must be implemented to support
283  /// cases where this method returns success.
284  ///
285  /// If AllowModify is true, then this routine is allowed to modify the basic
286  /// block (e.g. delete instructions after the unconditional branch).
287  ///
288  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
289                             MachineBasicBlock *&FBB,
290                             SmallVectorImpl<MachineOperand> &Cond,
291                             bool AllowModify = false) const {
292    return true;
293  }
294
295  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
296  /// This is only invoked in cases where AnalyzeBranch returns success. It
297  /// returns the number of instructions that were removed.
298  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
299    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
300    return 0;
301  }
302
303  /// InsertBranch - Insert branch code into the end of the specified
304  /// MachineBasicBlock.  The operands to this method are the same as those
305  /// returned by AnalyzeBranch.  This is only invoked in cases where
306  /// AnalyzeBranch returns success. It returns the number of instructions
307  /// inserted.
308  ///
309  /// It is also invoked by tail merging to add unconditional branches in
310  /// cases where AnalyzeBranch doesn't apply because there was no original
311  /// branch to analyze.  At least this much must be implemented, else tail
312  /// merging needs to be disabled.
313  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
314                                MachineBasicBlock *FBB,
315                                const SmallVectorImpl<MachineOperand> &Cond,
316                                DebugLoc DL) const {
317    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
318    return 0;
319  }
320
321  /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
322  /// after it, replacing it with an unconditional branch to NewDest. This is
323  /// used by the tail merging pass.
324  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
325                                       MachineBasicBlock *NewDest) const = 0;
326
327  /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
328  /// block at the specified instruction (i.e. instruction would be the start
329  /// of a new basic block).
330  virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
331                                   MachineBasicBlock::iterator MBBI) const {
332    return true;
333  }
334
335  /// copyRegToReg - Emit instructions to copy between a pair of registers. It
336  /// returns false if the target does not how to copy between the specified
337  /// registers.
338  virtual bool copyRegToReg(MachineBasicBlock &MBB,
339                            MachineBasicBlock::iterator MI,
340                            unsigned DestReg, unsigned SrcReg,
341                            const TargetRegisterClass *DestRC,
342                            const TargetRegisterClass *SrcRC,
343                            DebugLoc DL) const {
344    assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!");
345    return false;
346  }
347
348  /// storeRegToStackSlot - Store the specified register of the given register
349  /// class to the specified stack frame index. The store instruction is to be
350  /// added to the given machine basic block before the specified machine
351  /// instruction. If isKill is true, the register operand is the last use and
352  /// must be marked kill.
353  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
354                                   MachineBasicBlock::iterator MI,
355                                   unsigned SrcReg, bool isKill, int FrameIndex,
356                                   const TargetRegisterClass *RC,
357                                   const TargetRegisterInfo *TRI) const {
358    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
359  }
360
361  /// loadRegFromStackSlot - Load the specified register of the given register
362  /// class from the specified stack frame index. The load instruction is to be
363  /// added to the given machine basic block before the specified machine
364  /// instruction.
365  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
366                                    MachineBasicBlock::iterator MI,
367                                    unsigned DestReg, int FrameIndex,
368                                    const TargetRegisterClass *RC,
369                                    const TargetRegisterInfo *TRI) const {
370    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
371  }
372
373  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
374  /// saved registers and returns true if it isn't possible / profitable to do
375  /// so by issuing a series of store instructions via
376  /// storeRegToStackSlot(). Returns false otherwise.
377  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
378                                         MachineBasicBlock::iterator MI,
379                                         const std::vector<CalleeSavedInfo> &CSI,
380                                         const TargetRegisterInfo *TRI) const {
381    return false;
382  }
383
384  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
385  /// saved registers and returns true if it isn't possible / profitable to do
386  /// so by issuing a series of load instructions via loadRegToStackSlot().
387  /// Returns false otherwise.
388  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
389                                           MachineBasicBlock::iterator MI,
390                                        const std::vector<CalleeSavedInfo> &CSI,
391                                        const TargetRegisterInfo *TRI) const {
392    return false;
393  }
394
395  /// emitFrameIndexDebugValue - Emit a target-dependent form of
396  /// DBG_VALUE encoding the address of a frame index.  Addresses would
397  /// normally be lowered the same way as other addresses on the target,
398  /// e.g. in load instructions.  For targets that do not support this
399  /// the debug info is simply lost.
400  /// If you add this for a target you should handle this DBG_VALUE in the
401  /// target-specific AsmPrinter code as well; you will probably get invalid
402  /// assembly output if you don't.
403  virtual MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
404                                                 int FrameIx,
405                                                 uint64_t Offset,
406                                                 const MDNode *MDPtr,
407                                                 DebugLoc dl) const {
408    return 0;
409  }
410
411  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
412  /// slot into the specified machine instruction for the specified operand(s).
413  /// If this is possible, a new instruction is returned with the specified
414  /// operand folded, otherwise NULL is returned. The client is responsible for
415  /// removing the old instruction and adding the new one in the instruction
416  /// stream.
417  MachineInstr* foldMemoryOperand(MachineFunction &MF,
418                                  MachineInstr* MI,
419                                  const SmallVectorImpl<unsigned> &Ops,
420                                  int FrameIndex) const;
421
422  /// foldMemoryOperand - Same as the previous version except it allows folding
423  /// of any load and store from / to any address, not just from a specific
424  /// stack slot.
425  MachineInstr* foldMemoryOperand(MachineFunction &MF,
426                                  MachineInstr* MI,
427                                  const SmallVectorImpl<unsigned> &Ops,
428                                  MachineInstr* LoadMI) const;
429
430protected:
431  /// foldMemoryOperandImpl - Target-dependent implementation for
432  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
433  /// take care of adding a MachineMemOperand to the newly created instruction.
434  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
435                                          MachineInstr* MI,
436                                          const SmallVectorImpl<unsigned> &Ops,
437                                          int FrameIndex) const {
438    return 0;
439  }
440
441  /// foldMemoryOperandImpl - Target-dependent implementation for
442  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
443  /// take care of adding a MachineMemOperand to the newly created instruction.
444  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
445                                              MachineInstr* MI,
446                                              const SmallVectorImpl<unsigned> &Ops,
447                                              MachineInstr* LoadMI) const {
448    return 0;
449  }
450
451public:
452  /// canFoldMemoryOperand - Returns true for the specified load / store if
453  /// folding is possible.
454  virtual
455  bool canFoldMemoryOperand(const MachineInstr *MI,
456                            const SmallVectorImpl<unsigned> &Ops) const {
457    return false;
458  }
459
460  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
461  /// a store or a load and a store into two or more instruction. If this is
462  /// possible, returns true as well as the new instructions by reference.
463  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
464                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
465                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
466    return false;
467  }
468
469  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
470                                   SmallVectorImpl<SDNode*> &NewNodes) const {
471    return false;
472  }
473
474  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
475  /// instruction after load / store are unfolded from an instruction of the
476  /// specified opcode. It returns zero if the specified unfolding is not
477  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
478  /// index of the operand which will hold the register holding the loaded
479  /// value.
480  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
481                                      bool UnfoldLoad, bool UnfoldStore,
482                                      unsigned *LoadRegIndex = 0) const {
483    return 0;
484  }
485
486  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
487  /// to determine if two loads are loading from the same base address. It
488  /// should only return true if the base pointers are the same and the
489  /// only differences between the two addresses are the offset. It also returns
490  /// the offsets by reference.
491  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
492                                       int64_t &Offset1, int64_t &Offset2) const {
493    return false;
494  }
495
496  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
497  /// determine (in conjuction with areLoadsFromSameBasePtr) if two loads should
498  /// be scheduled togther. On some targets if two loads are loading from
499  /// addresses in the same cache line, it's better if they are scheduled
500  /// together. This function takes two integers that represent the load offsets
501  /// from the common base address. It returns true if it decides it's desirable
502  /// to schedule the two loads together. "NumLoads" is the number of loads that
503  /// have already been scheduled after Load1.
504  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
505                                       int64_t Offset1, int64_t Offset2,
506                                       unsigned NumLoads) const {
507    return false;
508  }
509
510  /// ReverseBranchCondition - Reverses the branch condition of the specified
511  /// condition list, returning false on success and true if it cannot be
512  /// reversed.
513  virtual
514  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
515    return true;
516  }
517
518  /// insertNoop - Insert a noop into the instruction stream at the specified
519  /// point.
520  virtual void insertNoop(MachineBasicBlock &MBB,
521                          MachineBasicBlock::iterator MI) const;
522
523
524  /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
525  virtual void getNoopForMachoTarget(MCInst &NopInst) const {
526    // Default to just using 'nop' string.
527  }
528
529
530  /// isPredicated - Returns true if the instruction is already predicated.
531  ///
532  virtual bool isPredicated(const MachineInstr *MI) const {
533    return false;
534  }
535
536  /// isUnpredicatedTerminator - Returns true if the instruction is a
537  /// terminator instruction that has not been predicated.
538  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
539
540  /// PredicateInstruction - Convert the instruction into a predicated
541  /// instruction. It returns true if the operation was successful.
542  virtual
543  bool PredicateInstruction(MachineInstr *MI,
544                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
545
546  /// SubsumesPredicate - Returns true if the first specified predicate
547  /// subsumes the second, e.g. GE subsumes GT.
548  virtual
549  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
550                         const SmallVectorImpl<MachineOperand> &Pred2) const {
551    return false;
552  }
553
554  /// DefinesPredicate - If the specified instruction defines any predicate
555  /// or condition code register(s) used for predication, returns true as well
556  /// as the definition predicate(s) by reference.
557  virtual bool DefinesPredicate(MachineInstr *MI,
558                                std::vector<MachineOperand> &Pred) const {
559    return false;
560  }
561
562  /// isPredicable - Return true if the specified instruction can be predicated.
563  /// By default, this returns true for every instruction with a
564  /// PredicateOperand.
565  virtual bool isPredicable(MachineInstr *MI) const {
566    return MI->getDesc().isPredicable();
567  }
568
569  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
570  /// instruction that defines the specified register class.
571  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
572    return true;
573  }
574
575  /// isSchedulingBoundary - Test if the given instruction should be
576  /// considered a scheduling boundary. This primarily includes labels and
577  /// terminators.
578  virtual bool isSchedulingBoundary(const MachineInstr *MI,
579                                    const MachineBasicBlock *MBB,
580                                    const MachineFunction &MF) const = 0;
581
582  /// GetInstSize - Returns the size of the specified Instruction.
583  ///
584  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const {
585    assert(0 && "Target didn't implement TargetInstrInfo::GetInstSize!");
586    return 0;
587  }
588
589  /// GetFunctionSizeInBytes - Returns the size of the specified
590  /// MachineFunction.
591  ///
592  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const = 0;
593
594  /// Measure the specified inline asm to determine an approximation of its
595  /// length.
596  virtual unsigned getInlineAsmLength(const char *Str,
597                                      const MCAsmInfo &MAI) const;
598
599  /// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer
600  /// to use for this target when scheduling the machine instructions after
601  /// register allocation.
602  virtual ScheduleHazardRecognizer*
603  CreateTargetPostRAHazardRecognizer(const InstrItineraryData&) const = 0;
604};
605
606/// TargetInstrInfoImpl - This is the default implementation of
607/// TargetInstrInfo, which just provides a couple of default implementations
608/// for various methods.  This separated out because it is implemented in
609/// libcodegen, not in libtarget.
610class TargetInstrInfoImpl : public TargetInstrInfo {
611protected:
612  TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
613  : TargetInstrInfo(desc, NumOpcodes) {}
614public:
615  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
616                                       MachineBasicBlock *NewDest) const;
617  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
618                                           bool NewMI = false) const;
619  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
620                                     unsigned &SrcOpIdx2) const;
621  virtual bool PredicateInstruction(MachineInstr *MI,
622                            const SmallVectorImpl<MachineOperand> &Pred) const;
623  virtual void reMaterialize(MachineBasicBlock &MBB,
624                             MachineBasicBlock::iterator MI,
625                             unsigned DestReg, unsigned SubReg,
626                             const MachineInstr *Orig,
627                             const TargetRegisterInfo &TRI) const;
628  virtual MachineInstr *duplicate(MachineInstr *Orig,
629                                  MachineFunction &MF) const;
630  virtual bool produceSameValue(const MachineInstr *MI0,
631                                const MachineInstr *MI1) const;
632  virtual bool isSchedulingBoundary(const MachineInstr *MI,
633                                    const MachineBasicBlock *MBB,
634                                    const MachineFunction &MF) const;
635  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const;
636
637  virtual ScheduleHazardRecognizer *
638  CreateTargetPostRAHazardRecognizer(const InstrItineraryData&) const;
639};
640
641} // End llvm namespace
642
643#endif
644