TargetInstrInfo.h revision f2f6a1baf78f3bdf375b258996abd567c20496bc
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instructions to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/CodeGen/MachineBasicBlock.h"
18#include "llvm/CodeGen/MachineFunction.h"
19#include "llvm/Support/DataTypes.h"
20#include <vector>
21#include <cassert>
22
23namespace llvm {
24
25class MachineInstr;
26class TargetMachine;
27class Value;
28class Type;
29class Instruction;
30class Constant;
31class Function;
32class MachineCodeForInstruction;
33class TargetRegisterClass;
34class LiveVariables;
35
36//---------------------------------------------------------------------------
37// Data types used to define information about a single machine instruction
38//---------------------------------------------------------------------------
39
40typedef short MachineOpCode;
41typedef unsigned InstrSchedClass;
42
43//---------------------------------------------------------------------------
44// struct TargetInstrDescriptor:
45//  Predefined information about each machine instruction.
46//  Designed to initialized statically.
47//
48
49const unsigned M_BRANCH_FLAG           = 1 << 0;
50const unsigned M_CALL_FLAG             = 1 << 1;
51const unsigned M_RET_FLAG              = 1 << 2;
52const unsigned M_BARRIER_FLAG          = 1 << 3;
53const unsigned M_DELAY_SLOT_FLAG       = 1 << 4;
54const unsigned M_LOAD_FLAG             = 1 << 5;
55const unsigned M_STORE_FLAG            = 1 << 6;
56
57// M_CONVERTIBLE_TO_3_ADDR - This is a 2-address instruction which can be
58// changed into a 3-address instruction if the first two operands cannot be
59// assigned to the same register.  The target must implement the
60// TargetInstrInfo::convertToThreeAddress method for this instruction.
61const unsigned M_CONVERTIBLE_TO_3_ADDR = 1 << 7;
62
63// This M_COMMUTABLE - is a 2- or 3-address instruction (of the form X = op Y,
64// Z), which produces the same result if Y and Z are exchanged.
65const unsigned M_COMMUTABLE            = 1 << 8;
66
67// M_TERMINATOR_FLAG - Is this instruction part of the terminator for a basic
68// block?  Typically this is things like return and branch instructions.
69// Various passes use this to insert code into the bottom of a basic block, but
70// before control flow occurs.
71const unsigned M_TERMINATOR_FLAG       = 1 << 9;
72
73// M_USES_CUSTOM_DAG_SCHED_INSERTION - Set if this instruction requires custom
74// insertion support when the DAG scheduler is inserting it into a machine basic
75// block.
76const unsigned M_USES_CUSTOM_DAG_SCHED_INSERTION = 1 << 10;
77
78// M_VARIABLE_OPS - Set if this instruction can have a variable number of extra
79// operands in addition to the minimum number operands specified.
80const unsigned M_VARIABLE_OPS = 1 << 11;
81
82// M_PREDICATED - Set if this instruction has a predicate that controls its
83// execution.
84const unsigned M_PREDICATED = 1 << 12;
85
86
87// Machine operand flags
88// M_LOOK_UP_PTR_REG_CLASS - Set if this operand is a pointer value and it
89// requires a callback to look up its register class.
90const unsigned M_LOOK_UP_PTR_REG_CLASS = 1 << 0;
91
92/// M_PREDICATE_OPERAND - Set if this is the first operand of a predicate
93/// operand that controls an M_PREDICATED instruction.
94const unsigned M_PREDICATE_OPERAND = 1 << 1;
95
96namespace TOI {
97  // Operand constraints: only "tied_to" for now.
98  enum OperandConstraint {
99    TIED_TO = 0  // Must be allocated the same register as.
100  };
101}
102
103/// TargetOperandInfo - This holds information about one operand of a machine
104/// instruction, indicating the register class for register operands, etc.
105///
106class TargetOperandInfo {
107public:
108  /// RegClass - This specifies the register class enumeration of the operand
109  /// if the operand is a register.  If not, this contains 0.
110  unsigned short RegClass;
111  unsigned short Flags;
112  /// Lower 16 bits are used to specify which constraints are set. The higher 16
113  /// bits are used to specify the value of constraints (4 bits each).
114  unsigned int Constraints;
115  /// Currently no other information.
116};
117
118
119class TargetInstrDescriptor {
120public:
121  MachineOpCode   Opcode;        // The opcode.
122  unsigned short  numOperands;   // Num of args (may be more if variable_ops).
123  const char *    Name;          // Assembly language mnemonic for the opcode.
124  InstrSchedClass schedClass;    // enum  identifying instr sched class
125  unsigned        Flags;         // flags identifying machine instr class
126  unsigned        TSFlags;       // Target Specific Flag values
127  const unsigned *ImplicitUses;  // Registers implicitly read by this instr
128  const unsigned *ImplicitDefs;  // Registers implicitly defined by this instr
129  const TargetOperandInfo *OpInfo; // 'numOperands' entries about operands.
130
131  /// getOperandConstraint - Returns the value of the specific constraint if
132  /// it is set. Returns -1 if it is not set.
133  int getOperandConstraint(unsigned OpNum,
134                           TOI::OperandConstraint Constraint) const {
135    assert((OpNum < numOperands || (Flags & M_VARIABLE_OPS)) &&
136           "Invalid operand # of TargetInstrInfo");
137    if (OpNum < numOperands &&
138        (OpInfo[OpNum].Constraints & (1 << Constraint))) {
139      unsigned Pos = 16 + Constraint * 4;
140      return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
141    }
142    return -1;
143  }
144
145  /// findTiedToSrcOperand - Returns the operand that is tied to the specified
146  /// dest operand. Returns -1 if there isn't one.
147  int findTiedToSrcOperand(unsigned OpNum) const;
148};
149
150
151//---------------------------------------------------------------------------
152///
153/// TargetInstrInfo - Interface to description of machine instructions
154///
155class TargetInstrInfo {
156  const TargetInstrDescriptor* desc;    // raw array to allow static init'n
157  unsigned NumOpcodes;                  // number of entries in the desc array
158  unsigned numRealOpCodes;              // number of non-dummy op codes
159
160  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
161  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
162public:
163  TargetInstrInfo(const TargetInstrDescriptor *desc, unsigned NumOpcodes);
164  virtual ~TargetInstrInfo();
165
166  // Invariant opcodes: All instruction sets have these as their low opcodes.
167  enum {
168    PHI = 0,
169    INLINEASM = 1
170  };
171
172  unsigned getNumOpcodes() const { return NumOpcodes; }
173
174  /// get - Return the machine instruction descriptor that corresponds to the
175  /// specified instruction opcode.
176  ///
177  const TargetInstrDescriptor& get(MachineOpCode Opcode) const {
178    assert((unsigned)Opcode < NumOpcodes);
179    return desc[Opcode];
180  }
181
182  const char *getName(MachineOpCode Opcode) const {
183    return get(Opcode).Name;
184  }
185
186  int getNumOperands(MachineOpCode Opcode) const {
187    return get(Opcode).numOperands;
188  }
189
190  InstrSchedClass getSchedClass(MachineOpCode Opcode) const {
191    return get(Opcode).schedClass;
192  }
193
194  const unsigned *getImplicitUses(MachineOpCode Opcode) const {
195    return get(Opcode).ImplicitUses;
196  }
197
198  const unsigned *getImplicitDefs(MachineOpCode Opcode) const {
199    return get(Opcode).ImplicitDefs;
200  }
201
202
203  //
204  // Query instruction class flags according to the machine-independent
205  // flags listed above.
206  //
207  bool isReturn(MachineOpCode Opcode) const {
208    return get(Opcode).Flags & M_RET_FLAG;
209  }
210
211  bool isPredicated(MachineOpCode Opcode) const {
212    return get(Opcode).Flags & M_PREDICATED;
213  }
214  bool isCommutableInstr(MachineOpCode Opcode) const {
215    return get(Opcode).Flags & M_COMMUTABLE;
216  }
217  bool isTerminatorInstr(unsigned Opcode) const {
218    return get(Opcode).Flags & M_TERMINATOR_FLAG;
219  }
220
221  bool isBranch(MachineOpCode Opcode) const {
222    return get(Opcode).Flags & M_BRANCH_FLAG;
223  }
224
225  /// isBarrier - Returns true if the specified instruction stops control flow
226  /// from executing the instruction immediately following it.  Examples include
227  /// unconditional branches and return instructions.
228  bool isBarrier(MachineOpCode Opcode) const {
229    return get(Opcode).Flags & M_BARRIER_FLAG;
230  }
231
232  bool isCall(MachineOpCode Opcode) const {
233    return get(Opcode).Flags & M_CALL_FLAG;
234  }
235  bool isLoad(MachineOpCode Opcode) const {
236    return get(Opcode).Flags & M_LOAD_FLAG;
237  }
238  bool isStore(MachineOpCode Opcode) const {
239    return get(Opcode).Flags & M_STORE_FLAG;
240  }
241
242  /// hasDelaySlot - Returns true if the specified instruction has a delay slot
243  /// which must be filled by the code generator.
244  bool hasDelaySlot(unsigned Opcode) const {
245    return get(Opcode).Flags & M_DELAY_SLOT_FLAG;
246  }
247
248  /// usesCustomDAGSchedInsertionHook - Return true if this instruction requires
249  /// custom insertion support when the DAG scheduler is inserting it into a
250  /// machine basic block.
251  bool usesCustomDAGSchedInsertionHook(unsigned Opcode) const {
252    return get(Opcode).Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION;
253  }
254
255  bool hasVariableOperands(MachineOpCode Opcode) const {
256    return get(Opcode).Flags & M_VARIABLE_OPS;
257  }
258
259  /// getOperandConstraint - Returns the value of the specific constraint if
260  /// it is set. Returns -1 if it is not set.
261  int getOperandConstraint(MachineOpCode Opcode, unsigned OpNum,
262                           TOI::OperandConstraint Constraint) const {
263    return get(Opcode).getOperandConstraint(OpNum, Constraint);
264  }
265
266  /// getDWARF_LABELOpcode - Return the opcode of the target's DWARF_LABEL
267  /// instruction if it has one.  This is used by codegen passes that update
268  /// DWARF line number info as they modify the code.
269  virtual unsigned getDWARF_LABELOpcode() const {
270    return 0;
271  }
272
273  /// Return true if the instruction is a register to register move
274  /// and leave the source and dest operands in the passed parameters.
275  virtual bool isMoveInstr(const MachineInstr& MI,
276                           unsigned& sourceReg,
277                           unsigned& destReg) const {
278    return false;
279  }
280
281  /// isLoadFromStackSlot - If the specified machine instruction is a direct
282  /// load from a stack slot, return the virtual or physical register number of
283  /// the destination along with the FrameIndex of the loaded stack slot.  If
284  /// not, return 0.  This predicate must return 0 if the instruction has
285  /// any side effects other than loading from the stack slot.
286  virtual unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const{
287    return 0;
288  }
289
290  /// isStoreToStackSlot - If the specified machine instruction is a direct
291  /// store to a stack slot, return the virtual or physical register number of
292  /// the source reg along with the FrameIndex of the loaded stack slot.  If
293  /// not, return 0.  This predicate must return 0 if the instruction has
294  /// any side effects other than storing to the stack slot.
295  virtual unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const {
296    return 0;
297  }
298
299  /// convertToThreeAddress - This method must be implemented by targets that
300  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
301  /// may be able to convert a two-address instruction into one or moretrue
302  /// three-address instructions on demand.  This allows the X86 target (for
303  /// example) to convert ADD and SHL instructions into LEA instructions if they
304  /// would require register copies due to two-addressness.
305  ///
306  /// This method returns a null pointer if the transformation cannot be
307  /// performed, otherwise it returns the last new instruction.
308  ///
309  virtual MachineInstr *
310  convertToThreeAddress(MachineFunction::iterator &MFI,
311                   MachineBasicBlock::iterator &MBBI, LiveVariables &LV) const {
312    return 0;
313  }
314
315  /// commuteInstruction - If a target has any instructions that are commutable,
316  /// but require converting to a different instruction or making non-trivial
317  /// changes to commute them, this method can overloaded to do this.  The
318  /// default implementation of this method simply swaps the first two operands
319  /// of MI and returns it.
320  ///
321  /// If a target wants to make more aggressive changes, they can construct and
322  /// return a new machine instruction.  If an instruction cannot commute, it
323  /// can also return null.
324  ///
325  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
326
327  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
328  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
329  /// implemented for a target).  Upon success, this returns false and returns
330  /// with the following information in various cases:
331  ///
332  /// 1. If this block ends with no branches (it just falls through to its succ)
333  ///    just return false, leaving TBB/FBB null.
334  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
335  ///    the destination block.
336  /// 3. If this block ends with an conditional branch, it returns the 'true'
337  ///    destination in TBB, the 'false' destination in FBB, and a list of
338  ///    operands that evaluate the condition.  These operands can be passed to
339  ///    other TargetInstrInfo methods to create new branches.
340  ///
341  /// Note that RemoveBranch and InsertBranch must be implemented to support
342  /// cases where this method returns success.
343  ///
344  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
345                             MachineBasicBlock *&FBB,
346                             std::vector<MachineOperand> &Cond) const {
347    return true;
348  }
349
350  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
351  /// this is only invoked in cases where AnalyzeBranch returns success.
352  virtual void RemoveBranch(MachineBasicBlock &MBB) const {
353    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
354  }
355
356  /// InsertBranch - Insert a branch into the end of the specified
357  /// MachineBasicBlock.  This operands to this method are the same as those
358  /// returned by AnalyzeBranch.  This is invoked in cases where AnalyzeBranch
359  /// returns success and when an unconditional branch (TBB is non-null, FBB is
360  /// null, Cond is empty) needs to be inserted.
361  virtual void InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
362                            MachineBasicBlock *FBB,
363                            const std::vector<MachineOperand> &Cond) const {
364    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
365  }
366
367  /// BlockHasNoFallThrough - Return true if the specified block does not
368  /// fall-through into its successor block.  This is primarily used when a
369  /// branch is unanalyzable.  It is useful for things like unconditional
370  /// indirect branches (jump tables).
371  virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
372    return false;
373  }
374
375  /// ReverseBranchCondition - Reverses the branch condition of the specified
376  /// condition list, returning false on success and true if it cannot be
377  /// reversed.
378  virtual bool ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
379    return true;
380  }
381
382  /// insertNoop - Insert a noop into the instruction stream at the specified
383  /// point.
384  virtual void insertNoop(MachineBasicBlock &MBB,
385                          MachineBasicBlock::iterator MI) const {
386    assert(0 && "Target didn't implement insertNoop!");
387    abort();
388  }
389
390  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
391  /// values.
392  virtual const TargetRegisterClass *getPointerRegClass() const {
393    assert(0 && "Target didn't implement getPointerRegClass!");
394    abort();
395  }
396};
397
398} // End llvm namespace
399
400#endif
401