TargetInstrInfo.h revision f7fb31ea33c78f1bc46c23d9edbf9580b7756bbe
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instructions to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/CodeGen/MachineBasicBlock.h"
18#include "llvm/Support/DataTypes.h"
19#include <vector>
20#include <cassert>
21
22namespace llvm {
23
24class MachineInstr;
25class TargetMachine;
26class Value;
27class Type;
28class Instruction;
29class Constant;
30class Function;
31class MachineCodeForInstruction;
32class TargetRegisterClass;
33
34//---------------------------------------------------------------------------
35// Data types used to define information about a single machine instruction
36//---------------------------------------------------------------------------
37
38typedef short MachineOpCode;
39typedef unsigned InstrSchedClass;
40
41//---------------------------------------------------------------------------
42// struct TargetInstrDescriptor:
43//  Predefined information about each machine instruction.
44//  Designed to initialized statically.
45//
46
47const unsigned M_BRANCH_FLAG           = 1 << 0;
48const unsigned M_CALL_FLAG             = 1 << 1;
49const unsigned M_RET_FLAG              = 1 << 2;
50const unsigned M_BARRIER_FLAG          = 1 << 3;
51const unsigned M_DELAY_SLOT_FLAG       = 1 << 4;
52const unsigned M_LOAD_FLAG             = 1 << 5;
53const unsigned M_STORE_FLAG            = 1 << 6;
54
55// M_2_ADDR_FLAG - 3-addr instructions which really work like 2-addr ones.
56const unsigned M_2_ADDR_FLAG           = 1 << 7;
57
58// M_CONVERTIBLE_TO_3_ADDR - This is a M_2_ADDR_FLAG instruction which can be
59// changed into a 3-address instruction if the first two operands cannot be
60// assigned to the same register.  The target must implement the
61// TargetInstrInfo::convertToThreeAddress method for this instruction.
62const unsigned M_CONVERTIBLE_TO_3_ADDR = 1 << 8;
63
64// This M_COMMUTABLE - is a 2- or 3-address instruction (of the form X = op Y,
65// Z), which produces the same result if Y and Z are exchanged.
66const unsigned M_COMMUTABLE            = 1 << 9;
67
68// M_TERMINATOR_FLAG - Is this instruction part of the terminator for a basic
69// block?  Typically this is things like return and branch instructions.
70// Various passes use this to insert code into the bottom of a basic block, but
71// before control flow occurs.
72const unsigned M_TERMINATOR_FLAG       = 1 << 10;
73
74// M_USES_CUSTOM_DAG_SCHED_INSERTION - Set if this instruction requires custom
75// insertion support when the DAG scheduler is inserting it into a machine basic
76// block.
77const unsigned M_USES_CUSTOM_DAG_SCHED_INSERTION = 1 << 11;
78
79/// TargetOperandInfo - This holds information about one operand of a machine
80/// instruction, indicating the register class for register operands, etc.
81///
82class TargetOperandInfo {
83public:
84  /// RegClass - This specifies the register class of the operand if the
85  /// operand is a register.  If not, this contains null.
86  const TargetRegisterClass *RegClass;
87
88  /// Currently no other information.
89};
90
91
92class TargetInstrDescriptor {
93public:
94  const char *    Name;          // Assembly language mnemonic for the opcode.
95  int             numOperands;   // Number of args; -1 if variable #args
96  InstrSchedClass schedClass;    // enum  identifying instr sched class
97  unsigned        Flags;         // flags identifying machine instr class
98  unsigned        TSFlags;       // Target Specific Flag values
99  const unsigned *ImplicitUses;  // Registers implicitly read by this instr
100  const unsigned *ImplicitDefs;  // Registers implicitly defined by this instr
101  const TargetOperandInfo *OpInfo; // 'numOperands' entries about operands.
102};
103
104
105//---------------------------------------------------------------------------
106///
107/// TargetInstrInfo - Interface to description of machine instructions
108///
109class TargetInstrInfo {
110  const TargetInstrDescriptor* desc;    // raw array to allow static init'n
111  unsigned NumOpcodes;                  // number of entries in the desc array
112  unsigned numRealOpCodes;              // number of non-dummy op codes
113
114  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
115  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
116public:
117  TargetInstrInfo(const TargetInstrDescriptor *desc, unsigned NumOpcodes);
118  virtual ~TargetInstrInfo();
119
120  // Invariant opcodes: All instruction sets have these as their low opcodes.
121  enum {
122    PHI = 0,
123    INLINEASM = 1
124  };
125
126  unsigned getNumOpcodes() const { return NumOpcodes; }
127
128  /// get - Return the machine instruction descriptor that corresponds to the
129  /// specified instruction opcode.
130  ///
131  const TargetInstrDescriptor& get(MachineOpCode Opcode) const {
132    assert((unsigned)Opcode < NumOpcodes);
133    return desc[Opcode];
134  }
135
136  const char *getName(MachineOpCode Opcode) const {
137    return get(Opcode).Name;
138  }
139
140  int getNumOperands(MachineOpCode Opcode) const {
141    return get(Opcode).numOperands;
142  }
143
144  InstrSchedClass getSchedClass(MachineOpCode Opcode) const {
145    return get(Opcode).schedClass;
146  }
147
148  const unsigned *getImplicitUses(MachineOpCode Opcode) const {
149    return get(Opcode).ImplicitUses;
150  }
151
152  const unsigned *getImplicitDefs(MachineOpCode Opcode) const {
153    return get(Opcode).ImplicitDefs;
154  }
155
156
157  //
158  // Query instruction class flags according to the machine-independent
159  // flags listed above.
160  //
161  bool isReturn(MachineOpCode Opcode) const {
162    return get(Opcode).Flags & M_RET_FLAG;
163  }
164
165  bool isTwoAddrInstr(MachineOpCode Opcode) const {
166    return get(Opcode).Flags & M_2_ADDR_FLAG;
167  }
168  bool isTerminatorInstr(unsigned Opcode) const {
169    return get(Opcode).Flags & M_TERMINATOR_FLAG;
170  }
171
172  bool isBranch(MachineOpCode Opcode) const {
173    return get(Opcode).Flags & M_BRANCH_FLAG;
174  }
175
176  /// isBarrier - Returns true if the specified instruction stops control flow
177  /// from executing the instruction immediately following it.  Examples include
178  /// unconditional branches and return instructions.
179  bool isBarrier(MachineOpCode Opcode) const {
180    return get(Opcode).Flags & M_BARRIER_FLAG;
181  }
182
183  bool isCall(MachineOpCode Opcode) const {
184    return get(Opcode).Flags & M_CALL_FLAG;
185  }
186  bool isLoad(MachineOpCode Opcode) const {
187    return get(Opcode).Flags & M_LOAD_FLAG;
188  }
189  bool isStore(MachineOpCode Opcode) const {
190    return get(Opcode).Flags & M_STORE_FLAG;
191  }
192
193  /// usesCustomDAGSchedInsertionHook - Return true if this instruction requires
194  /// custom insertion support when the DAG scheduler is inserting it into a
195  /// machine basic block.
196  bool usesCustomDAGSchedInsertionHook(unsigned Opcode) const {
197    return get(Opcode).Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION;
198  }
199
200  /// Return true if the instruction is a register to register move
201  /// and leave the source and dest operands in the passed parameters.
202  virtual bool isMoveInstr(const MachineInstr& MI,
203                           unsigned& sourceReg,
204                           unsigned& destReg) const {
205    return false;
206  }
207
208  /// isLoadFromStackSlot - If the specified machine instruction is a direct
209  /// load from a stack slot, return the virtual or physical register number of
210  /// the destination along with the FrameIndex of the loaded stack slot.  If
211  /// not, return 0.  This predicate must return 0 if the instruction has
212  /// any side effects other than loading from the stack slot.
213  virtual unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const{
214    return 0;
215  }
216
217  /// isStoreToStackSlot - If the specified machine instruction is a direct
218  /// store to a stack slot, return the virtual or physical register number of
219  /// the source reg along with the FrameIndex of the loaded stack slot.  If
220  /// not, return 0.  This predicate must return 0 if the instruction has
221  /// any side effects other than storing to the stack slot.
222  virtual unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const {
223    return 0;
224  }
225
226  /// convertToThreeAddress - This method must be implemented by targets that
227  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
228  /// may be able to convert a two-address instruction into a true
229  /// three-address instruction on demand.  This allows the X86 target (for
230  /// example) to convert ADD and SHL instructions into LEA instructions if they
231  /// would require register copies due to two-addressness.
232  ///
233  /// This method returns a null pointer if the transformation cannot be
234  /// performed, otherwise it returns the new instruction.
235  ///
236  virtual MachineInstr *convertToThreeAddress(MachineInstr *TA) const {
237    return 0;
238  }
239
240  /// commuteInstruction - If a target has any instructions that are commutable,
241  /// but require converting to a different instruction or making non-trivial
242  /// changes to commute them, this method can overloaded to do this.  The
243  /// default implementation of this method simply swaps the first two operands
244  /// of MI and returns it.
245  ///
246  /// If a target wants to make more aggressive changes, they can construct and
247  /// return a new machine instruction.  If an instruction cannot commute, it
248  /// can also return null.
249  ///
250  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
251
252  /// Insert a goto (unconditional branch) sequence to TMBB, at the
253  /// end of MBB
254  virtual void insertGoto(MachineBasicBlock& MBB,
255                          MachineBasicBlock& TMBB) const {
256    assert(0 && "Target didn't implement insertGoto!");
257  }
258
259  /// Reverses the branch condition of the MachineInstr pointed by
260  /// MI. The instruction is replaced and the new MI is returned.
261  virtual MachineBasicBlock::iterator
262  reverseBranchCondition(MachineBasicBlock::iterator MI) const {
263    assert(0 && "Target didn't implement reverseBranchCondition!");
264    abort();
265    return MI;
266  }
267
268  /// insertNoop - Insert a noop into the instruction stream at the specified
269  /// point.
270  virtual void insertNoop(MachineBasicBlock &MBB,
271                          MachineBasicBlock::iterator MI) const {
272    assert(0 && "Target didn't implement insertNoop!");
273    abort();
274  }
275
276  /// hasDelaySlot - Returns true if the specified instruction has a delay slot
277  /// which must be filled by the code generator.
278  bool hasDelaySlot(unsigned Opcode) const {
279    return get(Opcode).Flags & M_DELAY_SLOT_FLAG;
280  }
281};
282
283} // End llvm namespace
284
285#endif
286