TargetInstrInfo.h revision ffddf97e5dd1fc222cec049c30ca5d9018a741f8
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instructions to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/CodeGen/MachineBasicBlock.h"
18#include "llvm/CodeGen/MachineFunction.h"
19#include "llvm/Support/DataTypes.h"
20#include <vector>
21#include <cassert>
22
23namespace llvm {
24
25class MachineInstr;
26class TargetMachine;
27class MachineCodeForInstruction;
28class TargetRegisterClass;
29class LiveVariables;
30
31//---------------------------------------------------------------------------
32// Data types used to define information about a single machine instruction
33//---------------------------------------------------------------------------
34
35typedef short MachineOpCode;
36typedef unsigned InstrSchedClass;
37
38//---------------------------------------------------------------------------
39// struct TargetInstrDescriptor:
40//  Predefined information about each machine instruction.
41//  Designed to initialized statically.
42//
43
44const unsigned M_BRANCH_FLAG           = 1 << 0;
45const unsigned M_CALL_FLAG             = 1 << 1;
46const unsigned M_RET_FLAG              = 1 << 2;
47const unsigned M_BARRIER_FLAG          = 1 << 3;
48const unsigned M_DELAY_SLOT_FLAG       = 1 << 4;
49const unsigned M_LOAD_FLAG             = 1 << 5;
50const unsigned M_STORE_FLAG            = 1 << 6;
51
52// M_CONVERTIBLE_TO_3_ADDR - This is a 2-address instruction which can be
53// changed into a 3-address instruction if the first two operands cannot be
54// assigned to the same register.  The target must implement the
55// TargetInstrInfo::convertToThreeAddress method for this instruction.
56const unsigned M_CONVERTIBLE_TO_3_ADDR = 1 << 7;
57
58// This M_COMMUTABLE - is a 2- or 3-address instruction (of the form X = op Y,
59// Z), which produces the same result if Y and Z are exchanged.
60const unsigned M_COMMUTABLE            = 1 << 8;
61
62// M_TERMINATOR_FLAG - Is this instruction part of the terminator for a basic
63// block?  Typically this is things like return and branch instructions.
64// Various passes use this to insert code into the bottom of a basic block, but
65// before control flow occurs.
66const unsigned M_TERMINATOR_FLAG       = 1 << 9;
67
68// M_USES_CUSTOM_DAG_SCHED_INSERTION - Set if this instruction requires custom
69// insertion support when the DAG scheduler is inserting it into a machine basic
70// block.
71const unsigned M_USES_CUSTOM_DAG_SCHED_INSERTION = 1 << 10;
72
73// M_VARIABLE_OPS - Set if this instruction can have a variable number of extra
74// operands in addition to the minimum number operands specified.
75const unsigned M_VARIABLE_OPS = 1 << 11;
76
77// M_PREDICABLE - Set if this instruction has a predicate operand that
78// controls execution. It may be set to 'always'.
79const unsigned M_PREDICABLE = 1 << 12;
80
81// M_REMATERIALIZIBLE - Set if this instruction can be trivally re-materialized
82// at any time, e.g. constant generation, load from constant pool.
83const unsigned M_REMATERIALIZIBLE = 1 << 13;
84
85// M_NOT_DUPLICABLE - Set if this instruction cannot be safely duplicated.
86// (e.g. instructions with unique labels attached).
87const unsigned M_NOT_DUPLICABLE = 1 << 14;
88
89// M_HAS_OPTIONAL_DEF - Set if this instruction has an optional definition, e.g.
90// ARM instructions which can set condition code if 's' bit is set.
91const unsigned M_HAS_OPTIONAL_DEF = 1 << 15;
92
93// Machine operand flags
94// M_LOOK_UP_PTR_REG_CLASS - Set if this operand is a pointer value and it
95// requires a callback to look up its register class.
96const unsigned M_LOOK_UP_PTR_REG_CLASS = 1 << 0;
97
98/// M_PREDICATE_OPERAND - Set if this is one of the operands that made up of the
99/// predicate operand that controls an M_PREDICATED instruction.
100const unsigned M_PREDICATE_OPERAND = 1 << 1;
101
102/// M_OPTIONAL_DEF_OPERAND - Set if this operand is a optional def.
103///
104const unsigned M_OPTIONAL_DEF_OPERAND = 1 << 2;
105
106namespace TOI {
107  // Operand constraints: only "tied_to" for now.
108  enum OperandConstraint {
109    TIED_TO = 0  // Must be allocated the same register as.
110  };
111}
112
113/// TargetOperandInfo - This holds information about one operand of a machine
114/// instruction, indicating the register class for register operands, etc.
115///
116class TargetOperandInfo {
117public:
118  /// RegClass - This specifies the register class enumeration of the operand
119  /// if the operand is a register.  If not, this contains 0.
120  unsigned short RegClass;
121  unsigned short Flags;
122  /// Lower 16 bits are used to specify which constraints are set. The higher 16
123  /// bits are used to specify the value of constraints (4 bits each).
124  unsigned int Constraints;
125  /// Currently no other information.
126};
127
128
129class TargetInstrDescriptor {
130public:
131  MachineOpCode   Opcode;        // The opcode.
132  unsigned short  numOperands;   // Num of args (may be more if variable_ops).
133  unsigned short  numDefs;       // Num of args that are definitions.
134  const char *    Name;          // Assembly language mnemonic for the opcode.
135  InstrSchedClass schedClass;    // enum  identifying instr sched class
136  unsigned        Flags;         // flags identifying machine instr class
137  unsigned        TSFlags;       // Target Specific Flag values
138  const unsigned *ImplicitUses;  // Registers implicitly read by this instr
139  const unsigned *ImplicitDefs;  // Registers implicitly defined by this instr
140  const TargetOperandInfo *OpInfo; // 'numOperands' entries about operands.
141
142  /// getOperandConstraint - Returns the value of the specific constraint if
143  /// it is set. Returns -1 if it is not set.
144  int getOperandConstraint(unsigned OpNum,
145                           TOI::OperandConstraint Constraint) const {
146    assert((OpNum < numOperands || (Flags & M_VARIABLE_OPS)) &&
147           "Invalid operand # of TargetInstrInfo");
148    if (OpNum < numOperands &&
149        (OpInfo[OpNum].Constraints & (1 << Constraint))) {
150      unsigned Pos = 16 + Constraint * 4;
151      return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
152    }
153    return -1;
154  }
155
156  /// findTiedToSrcOperand - Returns the operand that is tied to the specified
157  /// dest operand. Returns -1 if there isn't one.
158  int findTiedToSrcOperand(unsigned OpNum) const;
159};
160
161
162//---------------------------------------------------------------------------
163///
164/// TargetInstrInfo - Interface to description of machine instructions
165///
166class TargetInstrInfo {
167  const TargetInstrDescriptor* desc;    // raw array to allow static init'n
168  unsigned NumOpcodes;                  // number of entries in the desc array
169  unsigned numRealOpCodes;              // number of non-dummy op codes
170
171  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
172  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
173public:
174  TargetInstrInfo(const TargetInstrDescriptor *desc, unsigned NumOpcodes);
175  virtual ~TargetInstrInfo();
176
177  // Invariant opcodes: All instruction sets have these as their low opcodes.
178  enum {
179    PHI = 0,
180    INLINEASM = 1,
181    LABEL = 2,
182    EXTRACT_SUBREG = 3,
183    INSERT_SUBREG = 4
184  };
185
186  unsigned getNumOpcodes() const { return NumOpcodes; }
187
188  /// get - Return the machine instruction descriptor that corresponds to the
189  /// specified instruction opcode.
190  ///
191  const TargetInstrDescriptor& get(MachineOpCode Opcode) const {
192    assert((unsigned)Opcode < NumOpcodes);
193    return desc[Opcode];
194  }
195
196  const char *getName(MachineOpCode Opcode) const {
197    return get(Opcode).Name;
198  }
199
200  int getNumOperands(MachineOpCode Opcode) const {
201    return get(Opcode).numOperands;
202  }
203
204  int getNumDefs(MachineOpCode Opcode) const {
205    return get(Opcode).numDefs;
206  }
207
208  InstrSchedClass getSchedClass(MachineOpCode Opcode) const {
209    return get(Opcode).schedClass;
210  }
211
212  const unsigned *getImplicitUses(MachineOpCode Opcode) const {
213    return get(Opcode).ImplicitUses;
214  }
215
216  const unsigned *getImplicitDefs(MachineOpCode Opcode) const {
217    return get(Opcode).ImplicitDefs;
218  }
219
220
221  //
222  // Query instruction class flags according to the machine-independent
223  // flags listed above.
224  //
225  bool isReturn(MachineOpCode Opcode) const {
226    return get(Opcode).Flags & M_RET_FLAG;
227  }
228
229  bool isCommutableInstr(MachineOpCode Opcode) const {
230    return get(Opcode).Flags & M_COMMUTABLE;
231  }
232  bool isTerminatorInstr(MachineOpCode Opcode) const {
233    return get(Opcode).Flags & M_TERMINATOR_FLAG;
234  }
235
236  bool isBranch(MachineOpCode Opcode) const {
237    return get(Opcode).Flags & M_BRANCH_FLAG;
238  }
239
240  /// isBarrier - Returns true if the specified instruction stops control flow
241  /// from executing the instruction immediately following it.  Examples include
242  /// unconditional branches and return instructions.
243  bool isBarrier(MachineOpCode Opcode) const {
244    return get(Opcode).Flags & M_BARRIER_FLAG;
245  }
246
247  bool isCall(MachineOpCode Opcode) const {
248    return get(Opcode).Flags & M_CALL_FLAG;
249  }
250  bool isLoad(MachineOpCode Opcode) const {
251    return get(Opcode).Flags & M_LOAD_FLAG;
252  }
253  bool isStore(MachineOpCode Opcode) const {
254    return get(Opcode).Flags & M_STORE_FLAG;
255  }
256
257  /// hasDelaySlot - Returns true if the specified instruction has a delay slot
258  /// which must be filled by the code generator.
259  bool hasDelaySlot(MachineOpCode Opcode) const {
260    return get(Opcode).Flags & M_DELAY_SLOT_FLAG;
261  }
262
263  /// usesCustomDAGSchedInsertionHook - Return true if this instruction requires
264  /// custom insertion support when the DAG scheduler is inserting it into a
265  /// machine basic block.
266  bool usesCustomDAGSchedInsertionHook(MachineOpCode Opcode) const {
267    return get(Opcode).Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION;
268  }
269
270  bool hasVariableOperands(MachineOpCode Opcode) const {
271    return get(Opcode).Flags & M_VARIABLE_OPS;
272  }
273
274  bool isPredicable(MachineOpCode Opcode) const {
275    return get(Opcode).Flags & M_PREDICABLE;
276  }
277
278  bool isNotDuplicable(MachineOpCode Opcode) const {
279    return get(Opcode).Flags & M_NOT_DUPLICABLE;
280  }
281
282  bool hasOptionalDef(MachineOpCode Opcode) const {
283    return get(Opcode).Flags & M_HAS_OPTIONAL_DEF;
284  }
285
286  /// isTriviallyReMaterializable - Return true if the instruction is trivially
287  /// rematerializable, meaning it has no side effects and requires no operands
288  /// that aren't always available.
289  bool isTriviallyReMaterializable(MachineInstr *MI) const {
290    return (MI->getInstrDescriptor()->Flags & M_REMATERIALIZIBLE) &&
291           isReallyTriviallyReMaterializable(MI);
292  }
293
294protected:
295  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
296  /// which the M_REMATERIALIZABLE flag is set, this function tests whether the
297  /// instruction itself is actually trivially rematerializable, considering
298  /// its operands.  This is used for targets that have instructions that are
299  /// only trivially rematerializable for specific uses.  This predicate must
300  /// return false if the instruction has any side effects other than
301  /// producing a value, or if it requres any address registers that are not
302  /// always available.
303  virtual bool isReallyTriviallyReMaterializable(MachineInstr *MI) const {
304    return true;
305  }
306
307public:
308  /// getOperandConstraint - Returns the value of the specific constraint if
309  /// it is set. Returns -1 if it is not set.
310  int getOperandConstraint(MachineOpCode Opcode, unsigned OpNum,
311                           TOI::OperandConstraint Constraint) const {
312    return get(Opcode).getOperandConstraint(OpNum, Constraint);
313  }
314
315  /// Return true if the instruction is a register to register move
316  /// and leave the source and dest operands in the passed parameters.
317  virtual bool isMoveInstr(const MachineInstr& MI,
318                           unsigned& sourceReg,
319                           unsigned& destReg) const {
320    return false;
321  }
322
323  /// isLoadFromStackSlot - If the specified machine instruction is a direct
324  /// load from a stack slot, return the virtual or physical register number of
325  /// the destination along with the FrameIndex of the loaded stack slot.  If
326  /// not, return 0.  This predicate must return 0 if the instruction has
327  /// any side effects other than loading from the stack slot.
328  virtual unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const{
329    return 0;
330  }
331
332  /// isStoreToStackSlot - If the specified machine instruction is a direct
333  /// store to a stack slot, return the virtual or physical register number of
334  /// the source reg along with the FrameIndex of the loaded stack slot.  If
335  /// not, return 0.  This predicate must return 0 if the instruction has
336  /// any side effects other than storing to the stack slot.
337  virtual unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const {
338    return 0;
339  }
340
341  /// convertToThreeAddress - This method must be implemented by targets that
342  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
343  /// may be able to convert a two-address instruction into one or more true
344  /// three-address instructions on demand.  This allows the X86 target (for
345  /// example) to convert ADD and SHL instructions into LEA instructions if they
346  /// would require register copies due to two-addressness.
347  ///
348  /// This method returns a null pointer if the transformation cannot be
349  /// performed, otherwise it returns the last new instruction.
350  ///
351  virtual MachineInstr *
352  convertToThreeAddress(MachineFunction::iterator &MFI,
353                   MachineBasicBlock::iterator &MBBI, LiveVariables &LV) const {
354    return 0;
355  }
356
357  /// commuteInstruction - If a target has any instructions that are commutable,
358  /// but require converting to a different instruction or making non-trivial
359  /// changes to commute them, this method can overloaded to do this.  The
360  /// default implementation of this method simply swaps the first two operands
361  /// of MI and returns it.
362  ///
363  /// If a target wants to make more aggressive changes, they can construct and
364  /// return a new machine instruction.  If an instruction cannot commute, it
365  /// can also return null.
366  ///
367  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
368
369  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
370  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
371  /// implemented for a target).  Upon success, this returns false and returns
372  /// with the following information in various cases:
373  ///
374  /// 1. If this block ends with no branches (it just falls through to its succ)
375  ///    just return false, leaving TBB/FBB null.
376  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
377  ///    the destination block.
378  /// 3. If this block ends with an conditional branch and it falls through to
379  ///    an successor block, it sets TBB to be the branch destination block and a
380  ///    list of operands that evaluate the condition. These
381  ///    operands can be passed to other TargetInstrInfo methods to create new
382  ///    branches.
383  /// 4. If this block ends with an conditional branch and an unconditional
384  ///    block, it returns the 'true' destination in TBB, the 'false' destination
385  ///    in FBB, and a list of operands that evaluate the condition. These
386  ///    operands can be passed to other TargetInstrInfo methods to create new
387  ///    branches.
388  ///
389  /// Note that RemoveBranch and InsertBranch must be implemented to support
390  /// cases where this method returns success.
391  ///
392  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
393                             MachineBasicBlock *&FBB,
394                             std::vector<MachineOperand> &Cond) const {
395    return true;
396  }
397
398  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
399  /// this is only invoked in cases where AnalyzeBranch returns success. It
400  /// returns the number of instructions that were removed.
401  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
402    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
403    return 0;
404  }
405
406  /// InsertBranch - Insert a branch into the end of the specified
407  /// MachineBasicBlock.  This operands to this method are the same as those
408  /// returned by AnalyzeBranch.  This is invoked in cases where AnalyzeBranch
409  /// returns success and when an unconditional branch (TBB is non-null, FBB is
410  /// null, Cond is empty) needs to be inserted. It returns the number of
411  /// instructions inserted.
412  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
413                            MachineBasicBlock *FBB,
414                            const std::vector<MachineOperand> &Cond) const {
415    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
416    return 0;
417  }
418
419  /// BlockHasNoFallThrough - Return true if the specified block does not
420  /// fall-through into its successor block.  This is primarily used when a
421  /// branch is unanalyzable.  It is useful for things like unconditional
422  /// indirect branches (jump tables).
423  virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
424    return false;
425  }
426
427  /// ReverseBranchCondition - Reverses the branch condition of the specified
428  /// condition list, returning false on success and true if it cannot be
429  /// reversed.
430  virtual bool ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
431    return true;
432  }
433
434  /// insertNoop - Insert a noop into the instruction stream at the specified
435  /// point.
436  virtual void insertNoop(MachineBasicBlock &MBB,
437                          MachineBasicBlock::iterator MI) const {
438    assert(0 && "Target didn't implement insertNoop!");
439    abort();
440  }
441
442  /// isPredicated - Returns true if the instruction is already predicated.
443  ///
444  virtual bool isPredicated(const MachineInstr *MI) const {
445    return false;
446  }
447
448  /// isUnpredicatedTerminator - Returns true if the instruction is a
449  /// terminator instruction that has not been predicated.
450  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
451
452  /// PredicateInstruction - Convert the instruction into a predicated
453  /// instruction. It returns true if the operation was successful.
454  virtual
455  bool PredicateInstruction(MachineInstr *MI,
456                            const std::vector<MachineOperand> &Pred) const;
457
458  /// SubsumesPredicate - Returns true if the first specified predicate
459  /// subsumes the second, e.g. GE subsumes GT.
460  virtual
461  bool SubsumesPredicate(const std::vector<MachineOperand> &Pred1,
462                         const std::vector<MachineOperand> &Pred2) const {
463    return false;
464  }
465
466  /// DefinesPredicate - If the specified instruction defines any predicate
467  /// or condition code register(s) used for predication, returns true as well
468  /// as the definition predicate(s) by reference.
469  virtual bool DefinesPredicate(MachineInstr *MI,
470                                std::vector<MachineOperand> &Pred) const {
471    return false;
472  }
473
474  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
475  /// values.
476  virtual const TargetRegisterClass *getPointerRegClass() const {
477    assert(0 && "Target didn't implement getPointerRegClass!");
478    abort();
479    return 0; // Must return a value in order to compile with VS 2005
480  }
481};
482
483} // End llvm namespace
484
485#endif
486