1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// This file describes how to lower LLVM code to machine code.  This has two
12/// main components:
13///
14///  1. Which ValueTypes are natively supported by the target.
15///  2. Which operations are supported for supported ValueTypes.
16///  3. Cost thresholds for alternative implementations of certain operations.
17///
18/// In addition it has a few other components, like information about FP
19/// immediates.
20///
21//===----------------------------------------------------------------------===//
22
23#ifndef LLVM_TARGET_TARGETLOWERING_H
24#define LLVM_TARGET_TARGETLOWERING_H
25
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/CodeGen/DAGCombine.h"
28#include "llvm/CodeGen/RuntimeLibcalls.h"
29#include "llvm/CodeGen/SelectionDAGNodes.h"
30#include "llvm/IR/Attributes.h"
31#include "llvm/IR/CallSite.h"
32#include "llvm/IR/CallingConv.h"
33#include "llvm/IR/InlineAsm.h"
34#include "llvm/IR/IRBuilder.h"
35#include "llvm/MC/MCRegisterInfo.h"
36#include "llvm/Target/TargetCallingConv.h"
37#include "llvm/Target/TargetMachine.h"
38#include <climits>
39#include <map>
40#include <vector>
41
42namespace llvm {
43  class CallInst;
44  class CCState;
45  class FastISel;
46  class FunctionLoweringInfo;
47  class ImmutableCallSite;
48  class IntrinsicInst;
49  class MachineBasicBlock;
50  class MachineFunction;
51  class MachineInstr;
52  class MachineJumpTableInfo;
53  class Mangler;
54  class MCContext;
55  class MCExpr;
56  class MCSymbol;
57  template<typename T> class SmallVectorImpl;
58  class DataLayout;
59  class TargetRegisterClass;
60  class TargetLibraryInfo;
61  class TargetLoweringObjectFile;
62  class Value;
63
64  namespace Sched {
65    enum Preference {
66      None,             // No preference
67      Source,           // Follow source order.
68      RegPressure,      // Scheduling for lowest register pressure.
69      Hybrid,           // Scheduling for both latency and register pressure.
70      ILP,              // Scheduling for ILP in low register pressure mode.
71      VLIW              // Scheduling for VLIW targets.
72    };
73  }
74
75/// This base class for TargetLowering contains the SelectionDAG-independent
76/// parts that can be used from the rest of CodeGen.
77class TargetLoweringBase {
78  TargetLoweringBase(const TargetLoweringBase&) LLVM_DELETED_FUNCTION;
79  void operator=(const TargetLoweringBase&) LLVM_DELETED_FUNCTION;
80
81public:
82  /// This enum indicates whether operations are valid for a target, and if not,
83  /// what action should be used to make them valid.
84  enum LegalizeAction {
85    Legal,      // The target natively supports this operation.
86    Promote,    // This operation should be executed in a larger type.
87    Expand,     // Try to expand this to other ops, otherwise use a libcall.
88    Custom      // Use the LowerOperation hook to implement custom lowering.
89  };
90
91  /// This enum indicates whether a types are legal for a target, and if not,
92  /// what action should be used to make them valid.
93  enum LegalizeTypeAction {
94    TypeLegal,           // The target natively supports this type.
95    TypePromoteInteger,  // Replace this integer with a larger one.
96    TypeExpandInteger,   // Split this integer into two of half the size.
97    TypeSoftenFloat,     // Convert this float to a same size integer type.
98    TypeExpandFloat,     // Split this float into two of half the size.
99    TypeScalarizeVector, // Replace this one-element vector with its element.
100    TypeSplitVector,     // Split this vector into two of half the size.
101    TypeWidenVector      // This vector should be widened into a larger vector.
102  };
103
104  /// LegalizeKind holds the legalization kind that needs to happen to EVT
105  /// in order to type-legalize it.
106  typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
107
108  /// Enum that describes how the target represents true/false values.
109  enum BooleanContent {
110    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
111    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
112    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
113  };
114
115  /// Enum that describes what type of support for selects the target has.
116  enum SelectSupportKind {
117    ScalarValSelect,      // The target supports scalar selects (ex: cmov).
118    ScalarCondVectorVal,  // The target supports selects with a scalar condition
119                          // and vector values (ex: cmov).
120    VectorMaskSelect      // The target supports vector selects with a vector
121                          // mask (ex: x86 blends).
122  };
123
124  static ISD::NodeType getExtendForContent(BooleanContent Content) {
125    switch (Content) {
126    case UndefinedBooleanContent:
127      // Extend by adding rubbish bits.
128      return ISD::ANY_EXTEND;
129    case ZeroOrOneBooleanContent:
130      // Extend by adding zero bits.
131      return ISD::ZERO_EXTEND;
132    case ZeroOrNegativeOneBooleanContent:
133      // Extend by copying the sign bit.
134      return ISD::SIGN_EXTEND;
135    }
136    llvm_unreachable("Invalid content kind");
137  }
138
139  /// NOTE: The constructor takes ownership of TLOF.
140  explicit TargetLoweringBase(const TargetMachine &TM,
141                              const TargetLoweringObjectFile *TLOF);
142  virtual ~TargetLoweringBase();
143
144protected:
145  /// \brief Initialize all of the actions to default values.
146  void initActions();
147
148public:
149  const TargetMachine &getTargetMachine() const { return TM; }
150  const DataLayout *getDataLayout() const { return DL; }
151  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
152
153  bool isBigEndian() const { return !IsLittleEndian; }
154  bool isLittleEndian() const { return IsLittleEndian; }
155
156  /// Return the pointer type for the given address space, defaults to
157  /// the pointer type from the data layout.
158  /// FIXME: The default needs to be removed once all the code is updated.
159  virtual MVT getPointerTy(uint32_t /*AS*/ = 0) const;
160  unsigned getPointerSizeInBits(uint32_t AS = 0) const;
161  unsigned getPointerTypeSizeInBits(Type *Ty) const;
162  virtual MVT getScalarShiftAmountTy(EVT LHSTy) const;
163
164  EVT getShiftAmountTy(EVT LHSTy) const;
165
166  /// Returns the type to be used for the index operand of:
167  /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
168  /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
169  virtual MVT getVectorIdxTy() const {
170    return getPointerTy();
171  }
172
173  /// Return true if the select operation is expensive for this target.
174  bool isSelectExpensive() const { return SelectIsExpensive; }
175
176  virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
177    return true;
178  }
179
180  /// Return true if multiple condition registers are available.
181  bool hasMultipleConditionRegisters() const {
182    return HasMultipleConditionRegisters;
183  }
184
185  /// Return true if the target has BitExtract instructions.
186  bool hasExtractBitsInsn() const { return HasExtractBitsInsn; }
187
188  /// Return the preferred vector type legalization action.
189  virtual TargetLoweringBase::LegalizeTypeAction
190  getPreferredVectorAction(EVT VT) const {
191    // The default action for one element vectors is to scalarize
192    if (VT.getVectorNumElements() == 1)
193      return TypeScalarizeVector;
194    // The default action for other vectors is to promote
195    return TypePromoteInteger;
196  }
197
198  // There are two general methods for expanding a BUILD_VECTOR node:
199  //  1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
200  //     them together.
201  //  2. Build the vector on the stack and then load it.
202  // If this function returns true, then method (1) will be used, subject to
203  // the constraint that all of the necessary shuffles are legal (as determined
204  // by isShuffleMaskLegal). If this function returns false, then method (2) is
205  // always used. The vector type, and the number of defined values, are
206  // provided.
207  virtual bool
208  shouldExpandBuildVectorWithShuffles(EVT /* VT */,
209                                      unsigned DefinedValues) const {
210    return DefinedValues < 3;
211  }
212
213  /// Return true if integer divide is usually cheaper than a sequence of
214  /// several shifts, adds, and multiplies for this target.
215  bool isIntDivCheap() const { return IntDivIsCheap; }
216
217  /// Returns true if target has indicated at least one type should be bypassed.
218  bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
219
220  /// Returns map of slow types for division or remainder with corresponding
221  /// fast types
222  const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
223    return BypassSlowDivWidths;
224  }
225
226  /// Return true if pow2 div is cheaper than a chain of srl/add/sra.
227  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
228
229  /// Return true if Flow Control is an expensive operation that should be
230  /// avoided.
231  bool isJumpExpensive() const { return JumpIsExpensive; }
232
233  /// Return true if selects are only cheaper than branches if the branch is
234  /// unlikely to be predicted right.
235  bool isPredictableSelectExpensive() const {
236    return PredictableSelectIsExpensive;
237  }
238
239  /// isLoadBitCastBeneficial() - Return true if the following transform
240  /// is beneficial.
241  /// fold (conv (load x)) -> (load (conv*)x)
242  /// On architectures that don't natively support some vector loads efficiently,
243  /// casting the load to a smaller vector of larger types and loading
244  /// is more efficient, however, this can be undone by optimizations in
245  /// dag combiner.
246  virtual bool isLoadBitCastBeneficial(EVT /* Load */, EVT /* Bitcast */) const {
247    return true;
248  }
249
250  /// \brief Return if the target supports combining a
251  /// chain like:
252  /// \code
253  ///   %andResult = and %val1, #imm-with-one-bit-set;
254  ///   %icmpResult = icmp %andResult, 0
255  ///   br i1 %icmpResult, label %dest1, label %dest2
256  /// \endcode
257  /// into a single machine instruction of a form like:
258  /// \code
259  ///   brOnBitSet %register, #bitNumber, dest
260  /// \endcode
261  bool isMaskAndBranchFoldingLegal() const {
262    return MaskAndBranchFoldingIsLegal;
263  }
264
265  /// Return the ValueType of the result of SETCC operations.  Also used to
266  /// obtain the target's preferred type for the condition operand of SELECT and
267  /// BRCOND nodes.  In the case of BRCOND the argument passed is MVT::Other
268  /// since there are no other operands to get a type hint from.
269  virtual EVT getSetCCResultType(LLVMContext &Context, EVT VT) const;
270
271  /// Return the ValueType for comparison libcalls. Comparions libcalls include
272  /// floating point comparion calls, and Ordered/Unordered check calls on
273  /// floating point numbers.
274  virtual
275  MVT::SimpleValueType getCmpLibcallReturnType() const;
276
277  /// For targets without i1 registers, this gives the nature of the high-bits
278  /// of boolean values held in types wider than i1.
279  ///
280  /// "Boolean values" are special true/false values produced by nodes like
281  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
282  /// Not to be confused with general values promoted from i1.  Some cpus
283  /// distinguish between vectors of boolean and scalars; the isVec parameter
284  /// selects between the two kinds.  For example on X86 a scalar boolean should
285  /// be zero extended from i1, while the elements of a vector of booleans
286  /// should be sign extended from i1.
287  ///
288  /// Some cpus also treat floating point types the same way as they treat
289  /// vectors instead of the way they treat scalars.
290  BooleanContent getBooleanContents(bool isVec, bool isFloat) const {
291    if (isVec)
292      return BooleanVectorContents;
293    return isFloat ? BooleanFloatContents : BooleanContents;
294  }
295
296  BooleanContent getBooleanContents(EVT Type) const {
297    return getBooleanContents(Type.isVector(), Type.isFloatingPoint());
298  }
299
300  /// Return target scheduling preference.
301  Sched::Preference getSchedulingPreference() const {
302    return SchedPreferenceInfo;
303  }
304
305  /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
306  /// for different nodes. This function returns the preference (or none) for
307  /// the given node.
308  virtual Sched::Preference getSchedulingPreference(SDNode *) const {
309    return Sched::None;
310  }
311
312  /// Return the register class that should be used for the specified value
313  /// type.
314  virtual const TargetRegisterClass *getRegClassFor(MVT VT) const {
315    const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
316    assert(RC && "This value type is not natively supported!");
317    return RC;
318  }
319
320  /// Return the 'representative' register class for the specified value
321  /// type.
322  ///
323  /// The 'representative' register class is the largest legal super-reg
324  /// register class for the register class of the value type.  For example, on
325  /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
326  /// register class is GR64 on x86_64.
327  virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
328    const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
329    return RC;
330  }
331
332  /// Return the cost of the 'representative' register class for the specified
333  /// value type.
334  virtual uint8_t getRepRegClassCostFor(MVT VT) const {
335    return RepRegClassCostForVT[VT.SimpleTy];
336  }
337
338  /// Return true if the target has native support for the specified value type.
339  /// This means that it has a register that directly holds it without
340  /// promotions or expansions.
341  bool isTypeLegal(EVT VT) const {
342    assert(!VT.isSimple() ||
343           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
344    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr;
345  }
346
347  class ValueTypeActionImpl {
348    /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
349    /// that indicates how instruction selection should deal with the type.
350    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
351
352  public:
353    ValueTypeActionImpl() {
354      std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions), 0);
355    }
356
357    LegalizeTypeAction getTypeAction(MVT VT) const {
358      return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
359    }
360
361    void setTypeAction(MVT VT, LegalizeTypeAction Action) {
362      unsigned I = VT.SimpleTy;
363      ValueTypeActions[I] = Action;
364    }
365  };
366
367  const ValueTypeActionImpl &getValueTypeActions() const {
368    return ValueTypeActions;
369  }
370
371  /// Return how we should legalize values of this type, either it is already
372  /// legal (return 'Legal') or we need to promote it to a larger type (return
373  /// 'Promote'), or we need to expand it into multiple registers of smaller
374  /// integer type (return 'Expand').  'Custom' is not an option.
375  LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
376    return getTypeConversion(Context, VT).first;
377  }
378  LegalizeTypeAction getTypeAction(MVT VT) const {
379    return ValueTypeActions.getTypeAction(VT);
380  }
381
382  /// For types supported by the target, this is an identity function.  For
383  /// types that must be promoted to larger types, this returns the larger type
384  /// to promote to.  For integer types that are larger than the largest integer
385  /// register, this contains one step in the expansion to get to the smaller
386  /// register. For illegal floating point types, this returns the integer type
387  /// to transform to.
388  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
389    return getTypeConversion(Context, VT).second;
390  }
391
392  /// For types supported by the target, this is an identity function.  For
393  /// types that must be expanded (i.e. integer types that are larger than the
394  /// largest integer register or illegal floating point types), this returns
395  /// the largest legal type it will be expanded to.
396  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
397    assert(!VT.isVector());
398    while (true) {
399      switch (getTypeAction(Context, VT)) {
400      case TypeLegal:
401        return VT;
402      case TypeExpandInteger:
403        VT = getTypeToTransformTo(Context, VT);
404        break;
405      default:
406        llvm_unreachable("Type is not legal nor is it to be expanded!");
407      }
408    }
409  }
410
411  /// Vector types are broken down into some number of legal first class types.
412  /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
413  /// promoted EVT::f64 values with the X86 FP stack.  Similarly, EVT::v2i64
414  /// turns into 4 EVT::i32 values with both PPC and X86.
415  ///
416  /// This method returns the number of registers needed, and the VT for each
417  /// register.  It also returns the VT and quantity of the intermediate values
418  /// before they are promoted/expanded.
419  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
420                                  EVT &IntermediateVT,
421                                  unsigned &NumIntermediates,
422                                  MVT &RegisterVT) const;
423
424  struct IntrinsicInfo {
425    unsigned     opc;         // target opcode
426    EVT          memVT;       // memory VT
427    const Value* ptrVal;      // value representing memory location
428    int          offset;      // offset off of ptrVal
429    unsigned     align;       // alignment
430    bool         vol;         // is volatile?
431    bool         readMem;     // reads memory?
432    bool         writeMem;    // writes memory?
433  };
434
435  /// Given an intrinsic, checks if on the target the intrinsic will need to map
436  /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
437  /// true and store the intrinsic information into the IntrinsicInfo that was
438  /// passed to the function.
439  virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
440                                  unsigned /*Intrinsic*/) const {
441    return false;
442  }
443
444  /// Returns true if the target can instruction select the specified FP
445  /// immediate natively. If false, the legalizer will materialize the FP
446  /// immediate as a load from a constant pool.
447  virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
448    return false;
449  }
450
451  /// Targets can use this to indicate that they only support *some*
452  /// VECTOR_SHUFFLE operations, those with specific masks.  By default, if a
453  /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
454  /// legal.
455  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
456                                  EVT /*VT*/) const {
457    return true;
458  }
459
460  /// Returns true if the operation can trap for the value type.
461  ///
462  /// VT must be a legal type. By default, we optimistically assume most
463  /// operations don't trap except for divide and remainder.
464  virtual bool canOpTrap(unsigned Op, EVT VT) const;
465
466  /// Similar to isShuffleMaskLegal. This is used by Targets can use this to
467  /// indicate if there is a suitable VECTOR_SHUFFLE that can be used to replace
468  /// a VAND with a constant pool entry.
469  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
470                                      EVT /*VT*/) const {
471    return false;
472  }
473
474  /// Return how this operation should be treated: either it is legal, needs to
475  /// be promoted to a larger size, needs to be expanded to some other code
476  /// sequence, or the target has a custom expander for it.
477  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
478    if (VT.isExtended()) return Expand;
479    // If a target-specific SDNode requires legalization, require the target
480    // to provide custom legalization for it.
481    if (Op > array_lengthof(OpActions[0])) return Custom;
482    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
483    return (LegalizeAction)OpActions[I][Op];
484  }
485
486  /// Return true if the specified operation is legal on this target or can be
487  /// made legal with custom lowering. This is used to help guide high-level
488  /// lowering decisions.
489  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
490    return (VT == MVT::Other || isTypeLegal(VT)) &&
491      (getOperationAction(Op, VT) == Legal ||
492       getOperationAction(Op, VT) == Custom);
493  }
494
495  /// Return true if the specified operation is legal on this target or can be
496  /// made legal using promotion. This is used to help guide high-level lowering
497  /// decisions.
498  bool isOperationLegalOrPromote(unsigned Op, EVT VT) const {
499    return (VT == MVT::Other || isTypeLegal(VT)) &&
500      (getOperationAction(Op, VT) == Legal ||
501       getOperationAction(Op, VT) == Promote);
502  }
503
504  /// Return true if the specified operation is illegal on this target or
505  /// unlikely to be made legal with custom lowering. This is used to help guide
506  /// high-level lowering decisions.
507  bool isOperationExpand(unsigned Op, EVT VT) const {
508    return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
509  }
510
511  /// Return true if the specified operation is legal on this target.
512  bool isOperationLegal(unsigned Op, EVT VT) const {
513    return (VT == MVT::Other || isTypeLegal(VT)) &&
514           getOperationAction(Op, VT) == Legal;
515  }
516
517  /// Return how this load with extension should be treated: either it is legal,
518  /// needs to be promoted to a larger size, needs to be expanded to some other
519  /// code sequence, or the target has a custom expander for it.
520  LegalizeAction getLoadExtAction(unsigned ExtType, MVT VT) const {
521    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
522           "Table isn't big enough!");
523    return (LegalizeAction)LoadExtActions[VT.SimpleTy][ExtType];
524  }
525
526  /// Return true if the specified load with extension is legal on this target.
527  bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
528    return VT.isSimple() &&
529      getLoadExtAction(ExtType, VT.getSimpleVT()) == Legal;
530  }
531
532  /// Return how this store with truncation should be treated: either it is
533  /// legal, needs to be promoted to a larger size, needs to be expanded to some
534  /// other code sequence, or the target has a custom expander for it.
535  LegalizeAction getTruncStoreAction(MVT ValVT, MVT MemVT) const {
536    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
537           "Table isn't big enough!");
538    return (LegalizeAction)TruncStoreActions[ValVT.SimpleTy]
539                                            [MemVT.SimpleTy];
540  }
541
542  /// Return true if the specified store with truncation is legal on this
543  /// target.
544  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
545    return isTypeLegal(ValVT) && MemVT.isSimple() &&
546      getTruncStoreAction(ValVT.getSimpleVT(), MemVT.getSimpleVT()) == Legal;
547  }
548
549  /// Return how the indexed load should be treated: either it is legal, needs
550  /// to be promoted to a larger size, needs to be expanded to some other code
551  /// sequence, or the target has a custom expander for it.
552  LegalizeAction
553  getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
554    assert(IdxMode < ISD::LAST_INDEXED_MODE && VT < MVT::LAST_VALUETYPE &&
555           "Table isn't big enough!");
556    unsigned Ty = (unsigned)VT.SimpleTy;
557    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
558  }
559
560  /// Return true if the specified indexed load is legal on this target.
561  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
562    return VT.isSimple() &&
563      (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
564       getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
565  }
566
567  /// Return how the indexed store should be treated: either it is legal, needs
568  /// to be promoted to a larger size, needs to be expanded to some other code
569  /// sequence, or the target has a custom expander for it.
570  LegalizeAction
571  getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
572    assert(IdxMode < ISD::LAST_INDEXED_MODE && VT < MVT::LAST_VALUETYPE &&
573           "Table isn't big enough!");
574    unsigned Ty = (unsigned)VT.SimpleTy;
575    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
576  }
577
578  /// Return true if the specified indexed load is legal on this target.
579  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
580    return VT.isSimple() &&
581      (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
582       getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
583  }
584
585  /// Return how the condition code should be treated: either it is legal, needs
586  /// to be expanded to some other code sequence, or the target has a custom
587  /// expander for it.
588  LegalizeAction
589  getCondCodeAction(ISD::CondCode CC, MVT VT) const {
590    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
591           ((unsigned)VT.SimpleTy >> 4) < array_lengthof(CondCodeActions[0]) &&
592           "Table isn't big enough!");
593    // See setCondCodeAction for how this is encoded.
594    uint32_t Shift = 2 * (VT.SimpleTy & 0xF);
595    uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 4];
596    LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0x3);
597    assert(Action != Promote && "Can't promote condition code!");
598    return Action;
599  }
600
601  /// Return true if the specified condition code is legal on this target.
602  bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
603    return
604      getCondCodeAction(CC, VT) == Legal ||
605      getCondCodeAction(CC, VT) == Custom;
606  }
607
608
609  /// If the action for this operation is to promote, this method returns the
610  /// ValueType to promote to.
611  MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
612    assert(getOperationAction(Op, VT) == Promote &&
613           "This operation isn't promoted!");
614
615    // See if this has an explicit type specified.
616    std::map<std::pair<unsigned, MVT::SimpleValueType>,
617             MVT::SimpleValueType>::const_iterator PTTI =
618      PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
619    if (PTTI != PromoteToType.end()) return PTTI->second;
620
621    assert((VT.isInteger() || VT.isFloatingPoint()) &&
622           "Cannot autopromote this type, add it with AddPromotedToType.");
623
624    MVT NVT = VT;
625    do {
626      NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
627      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
628             "Didn't find type to promote to!");
629    } while (!isTypeLegal(NVT) ||
630              getOperationAction(Op, NVT) == Promote);
631    return NVT;
632  }
633
634  /// Return the EVT corresponding to this LLVM type.  This is fixed by the LLVM
635  /// operations except for the pointer size.  If AllowUnknown is true, this
636  /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
637  /// otherwise it will assert.
638  EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
639    // Lower scalar pointers to native pointer types.
640    if (PointerType *PTy = dyn_cast<PointerType>(Ty))
641      return getPointerTy(PTy->getAddressSpace());
642
643    if (Ty->isVectorTy()) {
644      VectorType *VTy = cast<VectorType>(Ty);
645      Type *Elm = VTy->getElementType();
646      // Lower vectors of pointers to native pointer types.
647      if (PointerType *PT = dyn_cast<PointerType>(Elm)) {
648        EVT PointerTy(getPointerTy(PT->getAddressSpace()));
649        Elm = PointerTy.getTypeForEVT(Ty->getContext());
650      }
651
652      return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
653                       VTy->getNumElements());
654    }
655    return EVT::getEVT(Ty, AllowUnknown);
656  }
657
658  /// Return the MVT corresponding to this LLVM type. See getValueType.
659  MVT getSimpleValueType(Type *Ty, bool AllowUnknown = false) const {
660    return getValueType(Ty, AllowUnknown).getSimpleVT();
661  }
662
663  /// Return the desired alignment for ByVal or InAlloca aggregate function
664  /// arguments in the caller parameter area.  This is the actual alignment, not
665  /// its logarithm.
666  virtual unsigned getByValTypeAlignment(Type *Ty) const;
667
668  /// Return the type of registers that this ValueType will eventually require.
669  MVT getRegisterType(MVT VT) const {
670    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
671    return RegisterTypeForVT[VT.SimpleTy];
672  }
673
674  /// Return the type of registers that this ValueType will eventually require.
675  MVT getRegisterType(LLVMContext &Context, EVT VT) const {
676    if (VT.isSimple()) {
677      assert((unsigned)VT.getSimpleVT().SimpleTy <
678                array_lengthof(RegisterTypeForVT));
679      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
680    }
681    if (VT.isVector()) {
682      EVT VT1;
683      MVT RegisterVT;
684      unsigned NumIntermediates;
685      (void)getVectorTypeBreakdown(Context, VT, VT1,
686                                   NumIntermediates, RegisterVT);
687      return RegisterVT;
688    }
689    if (VT.isInteger()) {
690      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
691    }
692    llvm_unreachable("Unsupported extended type!");
693  }
694
695  /// Return the number of registers that this ValueType will eventually
696  /// require.
697  ///
698  /// This is one for any types promoted to live in larger registers, but may be
699  /// more than one for types (like i64) that are split into pieces.  For types
700  /// like i140, which are first promoted then expanded, it is the number of
701  /// registers needed to hold all the bits of the original type.  For an i140
702  /// on a 32 bit machine this means 5 registers.
703  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
704    if (VT.isSimple()) {
705      assert((unsigned)VT.getSimpleVT().SimpleTy <
706                array_lengthof(NumRegistersForVT));
707      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
708    }
709    if (VT.isVector()) {
710      EVT VT1;
711      MVT VT2;
712      unsigned NumIntermediates;
713      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
714    }
715    if (VT.isInteger()) {
716      unsigned BitWidth = VT.getSizeInBits();
717      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
718      return (BitWidth + RegWidth - 1) / RegWidth;
719    }
720    llvm_unreachable("Unsupported extended type!");
721  }
722
723  /// If true, then instruction selection should seek to shrink the FP constant
724  /// of the specified type to a smaller type in order to save space and / or
725  /// reduce runtime.
726  virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
727
728  /// When splitting a value of the specified type into parts, does the Lo
729  /// or Hi part come first?  This usually follows the endianness, except
730  /// for ppcf128, where the Hi part always comes first.
731  bool hasBigEndianPartOrdering(EVT VT) const {
732    return isBigEndian() || VT == MVT::ppcf128;
733  }
734
735  /// If true, the target has custom DAG combine transformations that it can
736  /// perform for the specified node.
737  bool hasTargetDAGCombine(ISD::NodeType NT) const {
738    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
739    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
740  }
741
742  /// \brief Get maximum # of store operations permitted for llvm.memset
743  ///
744  /// This function returns the maximum number of store operations permitted
745  /// to replace a call to llvm.memset. The value is set by the target at the
746  /// performance threshold for such a replacement. If OptSize is true,
747  /// return the limit for functions that have OptSize attribute.
748  unsigned getMaxStoresPerMemset(bool OptSize) const {
749    return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
750  }
751
752  /// \brief Get maximum # of store operations permitted for llvm.memcpy
753  ///
754  /// This function returns the maximum number of store operations permitted
755  /// to replace a call to llvm.memcpy. The value is set by the target at the
756  /// performance threshold for such a replacement. If OptSize is true,
757  /// return the limit for functions that have OptSize attribute.
758  unsigned getMaxStoresPerMemcpy(bool OptSize) const {
759    return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
760  }
761
762  /// \brief Get maximum # of store operations permitted for llvm.memmove
763  ///
764  /// This function returns the maximum number of store operations permitted
765  /// to replace a call to llvm.memmove. The value is set by the target at the
766  /// performance threshold for such a replacement. If OptSize is true,
767  /// return the limit for functions that have OptSize attribute.
768  unsigned getMaxStoresPerMemmove(bool OptSize) const {
769    return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
770  }
771
772  /// \brief Determine if the target supports unaligned memory accesses.
773  ///
774  /// This function returns true if the target allows unaligned memory accesses
775  /// of the specified type in the given address space. If true, it also returns
776  /// whether the unaligned memory access is "fast" in the third argument by
777  /// reference. This is used, for example, in situations where an array
778  /// copy/move/set is converted to a sequence of store operations. Its use
779  /// helps to ensure that such replacements don't generate code that causes an
780  /// alignment error (trap) on the target machine.
781  virtual bool allowsUnalignedMemoryAccesses(EVT,
782                                             unsigned AddrSpace = 0,
783                                             bool * /*Fast*/ = nullptr) const {
784    return false;
785  }
786
787  /// Returns the target specific optimal type for load and store operations as
788  /// a result of memset, memcpy, and memmove lowering.
789  ///
790  /// If DstAlign is zero that means it's safe to destination alignment can
791  /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
792  /// a need to check it against alignment requirement, probably because the
793  /// source does not need to be loaded. If 'IsMemset' is true, that means it's
794  /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
795  /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
796  /// does not need to be loaded.  It returns EVT::Other if the type should be
797  /// determined using generic target-independent logic.
798  virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
799                                  unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
800                                  bool /*IsMemset*/,
801                                  bool /*ZeroMemset*/,
802                                  bool /*MemcpyStrSrc*/,
803                                  MachineFunction &/*MF*/) const {
804    return MVT::Other;
805  }
806
807  /// Returns true if it's safe to use load / store of the specified type to
808  /// expand memcpy / memset inline.
809  ///
810  /// This is mostly true for all types except for some special cases. For
811  /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
812  /// fstpl which also does type conversion. Note the specified type doesn't
813  /// have to be legal as the hook is used before type legalization.
814  virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
815
816  /// Determine if we should use _setjmp or setjmp to implement llvm.setjmp.
817  bool usesUnderscoreSetJmp() const {
818    return UseUnderscoreSetJmp;
819  }
820
821  /// Determine if we should use _longjmp or longjmp to implement llvm.longjmp.
822  bool usesUnderscoreLongJmp() const {
823    return UseUnderscoreLongJmp;
824  }
825
826  /// Return whether the target can generate code for jump tables.
827  bool supportJumpTables() const {
828    return SupportJumpTables;
829  }
830
831  /// Return integer threshold on number of blocks to use jump tables rather
832  /// than if sequence.
833  int getMinimumJumpTableEntries() const {
834    return MinimumJumpTableEntries;
835  }
836
837  /// If a physical register, this specifies the register that
838  /// llvm.savestack/llvm.restorestack should save and restore.
839  unsigned getStackPointerRegisterToSaveRestore() const {
840    return StackPointerRegisterToSaveRestore;
841  }
842
843  /// If a physical register, this returns the register that receives the
844  /// exception address on entry to a landing pad.
845  unsigned getExceptionPointerRegister() const {
846    return ExceptionPointerRegister;
847  }
848
849  /// If a physical register, this returns the register that receives the
850  /// exception typeid on entry to a landing pad.
851  unsigned getExceptionSelectorRegister() const {
852    return ExceptionSelectorRegister;
853  }
854
855  /// Returns the target's jmp_buf size in bytes (if never set, the default is
856  /// 200)
857  unsigned getJumpBufSize() const {
858    return JumpBufSize;
859  }
860
861  /// Returns the target's jmp_buf alignment in bytes (if never set, the default
862  /// is 0)
863  unsigned getJumpBufAlignment() const {
864    return JumpBufAlignment;
865  }
866
867  /// Return the minimum stack alignment of an argument.
868  unsigned getMinStackArgumentAlignment() const {
869    return MinStackArgumentAlignment;
870  }
871
872  /// Return the minimum function alignment.
873  unsigned getMinFunctionAlignment() const {
874    return MinFunctionAlignment;
875  }
876
877  /// Return the preferred function alignment.
878  unsigned getPrefFunctionAlignment() const {
879    return PrefFunctionAlignment;
880  }
881
882  /// Return the preferred loop alignment.
883  unsigned getPrefLoopAlignment() const {
884    return PrefLoopAlignment;
885  }
886
887  /// Return whether the DAG builder should automatically insert fences and
888  /// reduce ordering for atomics.
889  bool getInsertFencesForAtomic() const {
890    return InsertFencesForAtomic;
891  }
892
893  /// Return true if the target stores stack protector cookies at a fixed offset
894  /// in some non-standard address space, and populates the address space and
895  /// offset as appropriate.
896  virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
897                                      unsigned &/*Offset*/) const {
898    return false;
899  }
900
901  /// Returns the maximal possible offset which can be used for loads / stores
902  /// from the global.
903  virtual unsigned getMaximalGlobalOffset() const {
904    return 0;
905  }
906
907  /// Returns true if a cast between SrcAS and DestAS is a noop.
908  virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
909    return false;
910  }
911
912  //===--------------------------------------------------------------------===//
913  /// \name Helpers for TargetTransformInfo implementations
914  /// @{
915
916  /// Get the ISD node that corresponds to the Instruction class opcode.
917  int InstructionOpcodeToISD(unsigned Opcode) const;
918
919  /// Estimate the cost of type-legalization and the legalized type.
920  std::pair<unsigned, MVT> getTypeLegalizationCost(Type *Ty) const;
921
922  /// @}
923
924  //===--------------------------------------------------------------------===//
925  /// \name Helpers for load-linked/store-conditional atomic expansion.
926  /// @{
927
928  /// Perform a load-linked operation on Addr, returning a "Value *" with the
929  /// corresponding pointee type. This may entail some non-trivial operations to
930  /// truncate or reconstruct types that will be illegal in the backend. See
931  /// ARMISelLowering for an example implementation.
932  virtual Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
933                                AtomicOrdering Ord) const {
934    llvm_unreachable("Load linked unimplemented on this target");
935  }
936
937  /// Perform a store-conditional operation to Addr. Return the status of the
938  /// store. This should be 0 if the store succeeded, non-zero otherwise.
939  virtual Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
940                                      Value *Addr, AtomicOrdering Ord) const {
941    llvm_unreachable("Store conditional unimplemented on this target");
942  }
943
944  /// Return true if the given (atomic) instruction should be expanded by the
945  /// IR-level AtomicExpandLoadLinked pass into a loop involving
946  /// load-linked/store-conditional pairs. Atomic stores will be expanded in the
947  /// same way as "atomic xchg" operations which ignore their output if needed.
948  virtual bool shouldExpandAtomicInIR(Instruction *Inst) const {
949    return false;
950  }
951
952
953  //===--------------------------------------------------------------------===//
954  // TargetLowering Configuration Methods - These methods should be invoked by
955  // the derived class constructor to configure this object for the target.
956  //
957
958  /// \brief Reset the operation actions based on target options.
959  virtual void resetOperationActions() {}
960
961protected:
962  /// Specify how the target extends the result of integer and floating point
963  /// boolean values from i1 to a wider type.  See getBooleanContents.
964  void setBooleanContents(BooleanContent Ty) {
965    BooleanContents = Ty;
966    BooleanFloatContents = Ty;
967  }
968
969  /// Specify how the target extends the result of integer and floating point
970  /// boolean values from i1 to a wider type.  See getBooleanContents.
971  void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy) {
972    BooleanContents = IntTy;
973    BooleanFloatContents = FloatTy;
974  }
975
976  /// Specify how the target extends the result of a vector boolean value from a
977  /// vector of i1 to a wider type.  See getBooleanContents.
978  void setBooleanVectorContents(BooleanContent Ty) {
979    BooleanVectorContents = Ty;
980  }
981
982  /// Specify the target scheduling preference.
983  void setSchedulingPreference(Sched::Preference Pref) {
984    SchedPreferenceInfo = Pref;
985  }
986
987  /// Indicate whether this target prefers to use _setjmp to implement
988  /// llvm.setjmp or the version without _.  Defaults to false.
989  void setUseUnderscoreSetJmp(bool Val) {
990    UseUnderscoreSetJmp = Val;
991  }
992
993  /// Indicate whether this target prefers to use _longjmp to implement
994  /// llvm.longjmp or the version without _.  Defaults to false.
995  void setUseUnderscoreLongJmp(bool Val) {
996    UseUnderscoreLongJmp = Val;
997  }
998
999  /// Indicate whether the target can generate code for jump tables.
1000  void setSupportJumpTables(bool Val) {
1001    SupportJumpTables = Val;
1002  }
1003
1004  /// Indicate the number of blocks to generate jump tables rather than if
1005  /// sequence.
1006  void setMinimumJumpTableEntries(int Val) {
1007    MinimumJumpTableEntries = Val;
1008  }
1009
1010  /// If set to a physical register, this specifies the register that
1011  /// llvm.savestack/llvm.restorestack should save and restore.
1012  void setStackPointerRegisterToSaveRestore(unsigned R) {
1013    StackPointerRegisterToSaveRestore = R;
1014  }
1015
1016  /// If set to a physical register, this sets the register that receives the
1017  /// exception address on entry to a landing pad.
1018  void setExceptionPointerRegister(unsigned R) {
1019    ExceptionPointerRegister = R;
1020  }
1021
1022  /// If set to a physical register, this sets the register that receives the
1023  /// exception typeid on entry to a landing pad.
1024  void setExceptionSelectorRegister(unsigned R) {
1025    ExceptionSelectorRegister = R;
1026  }
1027
1028  /// Tells the code generator not to expand operations into sequences that use
1029  /// the select operations if possible.
1030  void setSelectIsExpensive(bool isExpensive = true) {
1031    SelectIsExpensive = isExpensive;
1032  }
1033
1034  /// Tells the code generator that the target has multiple (allocatable)
1035  /// condition registers that can be used to store the results of comparisons
1036  /// for use by selects and conditional branches. With multiple condition
1037  /// registers, the code generator will not aggressively sink comparisons into
1038  /// the blocks of their users.
1039  void setHasMultipleConditionRegisters(bool hasManyRegs = true) {
1040    HasMultipleConditionRegisters = hasManyRegs;
1041  }
1042
1043  /// Tells the code generator that the target has BitExtract instructions.
1044  /// The code generator will aggressively sink "shift"s into the blocks of
1045  /// their users if the users will generate "and" instructions which can be
1046  /// combined with "shift" to BitExtract instructions.
1047  void setHasExtractBitsInsn(bool hasExtractInsn = true) {
1048    HasExtractBitsInsn = hasExtractInsn;
1049  }
1050
1051  /// Tells the code generator not to expand sequence of operations into a
1052  /// separate sequences that increases the amount of flow control.
1053  void setJumpIsExpensive(bool isExpensive = true) {
1054    JumpIsExpensive = isExpensive;
1055  }
1056
1057  /// Tells the code generator that integer divide is expensive, and if
1058  /// possible, should be replaced by an alternate sequence of instructions not
1059  /// containing an integer divide.
1060  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
1061
1062  /// Tells the code generator which bitwidths to bypass.
1063  void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
1064    BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
1065  }
1066
1067  /// Tells the code generator that it shouldn't generate srl/add/sra for a
1068  /// signed divide by power of two, and let the target handle it.
1069  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
1070
1071  /// Add the specified register class as an available regclass for the
1072  /// specified value type. This indicates the selector can handle values of
1073  /// that class natively.
1074  void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
1075    assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
1076    AvailableRegClasses.push_back(std::make_pair(VT, RC));
1077    RegClassForVT[VT.SimpleTy] = RC;
1078  }
1079
1080  /// Remove all register classes.
1081  void clearRegisterClasses() {
1082    memset(RegClassForVT, 0,MVT::LAST_VALUETYPE * sizeof(TargetRegisterClass*));
1083
1084    AvailableRegClasses.clear();
1085  }
1086
1087  /// \brief Remove all operation actions.
1088  void clearOperationActions() {
1089  }
1090
1091  /// Return the largest legal super-reg register class of the register class
1092  /// for the specified type and its associated "cost".
1093  virtual std::pair<const TargetRegisterClass*, uint8_t>
1094  findRepresentativeClass(MVT VT) const;
1095
1096  /// Once all of the register classes are added, this allows us to compute
1097  /// derived properties we expose.
1098  void computeRegisterProperties();
1099
1100  /// Indicate that the specified operation does not work with the specified
1101  /// type and indicate what to do about it.
1102  void setOperationAction(unsigned Op, MVT VT,
1103                          LegalizeAction Action) {
1104    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
1105    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
1106  }
1107
1108  /// Indicate that the specified load with extension does not work with the
1109  /// specified type and indicate what to do about it.
1110  void setLoadExtAction(unsigned ExtType, MVT VT,
1111                        LegalizeAction Action) {
1112    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
1113           "Table isn't big enough!");
1114    LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
1115  }
1116
1117  /// Indicate that the specified truncating store does not work with the
1118  /// specified type and indicate what to do about it.
1119  void setTruncStoreAction(MVT ValVT, MVT MemVT,
1120                           LegalizeAction Action) {
1121    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
1122           "Table isn't big enough!");
1123    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
1124  }
1125
1126  /// Indicate that the specified indexed load does or does not work with the
1127  /// specified type and indicate what to do abort it.
1128  ///
1129  /// NOTE: All indexed mode loads are initialized to Expand in
1130  /// TargetLowering.cpp
1131  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1132                            LegalizeAction Action) {
1133    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1134           (unsigned)Action < 0xf && "Table isn't big enough!");
1135    // Load action are kept in the upper half.
1136    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1137    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1138  }
1139
1140  /// Indicate that the specified indexed store does or does not work with the
1141  /// specified type and indicate what to do about it.
1142  ///
1143  /// NOTE: All indexed mode stores are initialized to Expand in
1144  /// TargetLowering.cpp
1145  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1146                             LegalizeAction Action) {
1147    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1148           (unsigned)Action < 0xf && "Table isn't big enough!");
1149    // Store action are kept in the lower half.
1150    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1151    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1152  }
1153
1154  /// Indicate that the specified condition code is or isn't supported on the
1155  /// target and indicate what to do about it.
1156  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1157                         LegalizeAction Action) {
1158    assert(VT < MVT::LAST_VALUETYPE &&
1159           (unsigned)CC < array_lengthof(CondCodeActions) &&
1160           "Table isn't big enough!");
1161    /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 32-bit
1162    /// value and the upper 27 bits index into the second dimension of the array
1163    /// to select what 32-bit value to use.
1164    uint32_t Shift = 2 * (VT.SimpleTy & 0xF);
1165    CondCodeActions[CC][VT.SimpleTy >> 4] &= ~((uint32_t)0x3 << Shift);
1166    CondCodeActions[CC][VT.SimpleTy >> 4] |= (uint32_t)Action << Shift;
1167  }
1168
1169  /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
1170  /// to trying a larger integer/fp until it can find one that works. If that
1171  /// default is insufficient, this method can be used by the target to override
1172  /// the default.
1173  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1174    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1175  }
1176
1177  /// Targets should invoke this method for each target independent node that
1178  /// they want to provide a custom DAG combiner for by implementing the
1179  /// PerformDAGCombine virtual method.
1180  void setTargetDAGCombine(ISD::NodeType NT) {
1181    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1182    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1183  }
1184
1185  /// Set the target's required jmp_buf buffer size (in bytes); default is 200
1186  void setJumpBufSize(unsigned Size) {
1187    JumpBufSize = Size;
1188  }
1189
1190  /// Set the target's required jmp_buf buffer alignment (in bytes); default is
1191  /// 0
1192  void setJumpBufAlignment(unsigned Align) {
1193    JumpBufAlignment = Align;
1194  }
1195
1196  /// Set the target's minimum function alignment (in log2(bytes))
1197  void setMinFunctionAlignment(unsigned Align) {
1198    MinFunctionAlignment = Align;
1199  }
1200
1201  /// Set the target's preferred function alignment.  This should be set if
1202  /// there is a performance benefit to higher-than-minimum alignment (in
1203  /// log2(bytes))
1204  void setPrefFunctionAlignment(unsigned Align) {
1205    PrefFunctionAlignment = Align;
1206  }
1207
1208  /// Set the target's preferred loop alignment. Default alignment is zero, it
1209  /// means the target does not care about loop alignment.  The alignment is
1210  /// specified in log2(bytes).
1211  void setPrefLoopAlignment(unsigned Align) {
1212    PrefLoopAlignment = Align;
1213  }
1214
1215  /// Set the minimum stack alignment of an argument (in log2(bytes)).
1216  void setMinStackArgumentAlignment(unsigned Align) {
1217    MinStackArgumentAlignment = Align;
1218  }
1219
1220  /// Set if the DAG builder should automatically insert fences and reduce the
1221  /// order of atomic memory operations to Monotonic.
1222  void setInsertFencesForAtomic(bool fence) {
1223    InsertFencesForAtomic = fence;
1224  }
1225
1226public:
1227  //===--------------------------------------------------------------------===//
1228  // Addressing mode description hooks (used by LSR etc).
1229  //
1230
1231  /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
1232  /// instructions reading the address. This allows as much computation as
1233  /// possible to be done in the address mode for that operand. This hook lets
1234  /// targets also pass back when this should be done on intrinsics which
1235  /// load/store.
1236  virtual bool GetAddrModeArguments(IntrinsicInst * /*I*/,
1237                                    SmallVectorImpl<Value*> &/*Ops*/,
1238                                    Type *&/*AccessTy*/) const {
1239    return false;
1240  }
1241
1242  /// This represents an addressing mode of:
1243  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1244  /// If BaseGV is null,  there is no BaseGV.
1245  /// If BaseOffs is zero, there is no base offset.
1246  /// If HasBaseReg is false, there is no base register.
1247  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1248  /// no scale.
1249  struct AddrMode {
1250    GlobalValue *BaseGV;
1251    int64_t      BaseOffs;
1252    bool         HasBaseReg;
1253    int64_t      Scale;
1254    AddrMode() : BaseGV(nullptr), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1255  };
1256
1257  /// Return true if the addressing mode represented by AM is legal for this
1258  /// target, for a load/store of the specified type.
1259  ///
1260  /// The type may be VoidTy, in which case only return true if the addressing
1261  /// mode is legal for a load/store of any legal type.  TODO: Handle
1262  /// pre/postinc as well.
1263  virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
1264
1265  /// \brief Return the cost of the scaling factor used in the addressing mode
1266  /// represented by AM for this target, for a load/store of the specified type.
1267  ///
1268  /// If the AM is supported, the return value must be >= 0.
1269  /// If the AM is not supported, it returns a negative value.
1270  /// TODO: Handle pre/postinc as well.
1271  virtual int getScalingFactorCost(const AddrMode &AM, Type *Ty) const {
1272    // Default: assume that any scaling factor used in a legal AM is free.
1273    if (isLegalAddressingMode(AM, Ty)) return 0;
1274    return -1;
1275  }
1276
1277  /// Return true if the specified immediate is legal icmp immediate, that is
1278  /// the target has icmp instructions which can compare a register against the
1279  /// immediate without having to materialize the immediate into a register.
1280  virtual bool isLegalICmpImmediate(int64_t) const {
1281    return true;
1282  }
1283
1284  /// Return true if the specified immediate is legal add immediate, that is the
1285  /// target has add instructions which can add a register with the immediate
1286  /// without having to materialize the immediate into a register.
1287  virtual bool isLegalAddImmediate(int64_t) const {
1288    return true;
1289  }
1290
1291  /// Return true if it's significantly cheaper to shift a vector by a uniform
1292  /// scalar than by an amount which will vary across each lane. On x86, for
1293  /// example, there is a "psllw" instruction for the former case, but no simple
1294  /// instruction for a general "a << b" operation on vectors.
1295  virtual bool isVectorShiftByScalarCheap(Type *Ty) const {
1296    return false;
1297  }
1298
1299  /// Return true if it's free to truncate a value of type Ty1 to type
1300  /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
1301  /// by referencing its sub-register AX.
1302  virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1303    return false;
1304  }
1305
1306  /// Return true if a truncation from Ty1 to Ty2 is permitted when deciding
1307  /// whether a call is in tail position. Typically this means that both results
1308  /// would be assigned to the same register or stack slot, but it could mean
1309  /// the target performs adequate checks of its own before proceeding with the
1310  /// tail call.
1311  virtual bool allowTruncateForTailCall(Type * /*Ty1*/, Type * /*Ty2*/) const {
1312    return false;
1313  }
1314
1315  virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const {
1316    return false;
1317  }
1318
1319  /// Return true if any actual instruction that defines a value of type Ty1
1320  /// implicitly zero-extends the value to Ty2 in the result register.
1321  ///
1322  /// This does not necessarily include registers defined in unknown ways, such
1323  /// as incoming arguments, or copies from unknown virtual registers. Also, if
1324  /// isTruncateFree(Ty2, Ty1) is true, this does not necessarily apply to
1325  /// truncate instructions. e.g. on x86-64, all instructions that define 32-bit
1326  /// values implicit zero-extend the result out to 64 bits.
1327  virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1328    return false;
1329  }
1330
1331  virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const {
1332    return false;
1333  }
1334
1335  /// Return true if the target supplies and combines to a paired load
1336  /// two loaded values of type LoadedType next to each other in memory.
1337  /// RequiredAlignment gives the minimal alignment constraints that must be met
1338  /// to be able to select this paired load.
1339  ///
1340  /// This information is *not* used to generate actual paired loads, but it is
1341  /// used to generate a sequence of loads that is easier to combine into a
1342  /// paired load.
1343  /// For instance, something like this:
1344  /// a = load i64* addr
1345  /// b = trunc i64 a to i32
1346  /// c = lshr i64 a, 32
1347  /// d = trunc i64 c to i32
1348  /// will be optimized into:
1349  /// b = load i32* addr1
1350  /// d = load i32* addr2
1351  /// Where addr1 = addr2 +/- sizeof(i32).
1352  ///
1353  /// In other words, unless the target performs a post-isel load combining,
1354  /// this information should not be provided because it will generate more
1355  /// loads.
1356  virtual bool hasPairedLoad(Type * /*LoadedType*/,
1357                             unsigned & /*RequiredAligment*/) const {
1358    return false;
1359  }
1360
1361  virtual bool hasPairedLoad(EVT /*LoadedType*/,
1362                             unsigned & /*RequiredAligment*/) const {
1363    return false;
1364  }
1365
1366  /// Return true if zero-extending the specific node Val to type VT2 is free
1367  /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
1368  /// because it's folded such as X86 zero-extending loads).
1369  virtual bool isZExtFree(SDValue Val, EVT VT2) const {
1370    return isZExtFree(Val.getValueType(), VT2);
1371  }
1372
1373  /// Return true if an fneg operation is free to the point where it is never
1374  /// worthwhile to replace it with a bitwise operation.
1375  virtual bool isFNegFree(EVT VT) const {
1376    assert(VT.isFloatingPoint());
1377    return false;
1378  }
1379
1380  /// Return true if an fabs operation is free to the point where it is never
1381  /// worthwhile to replace it with a bitwise operation.
1382  virtual bool isFAbsFree(EVT VT) const {
1383    assert(VT.isFloatingPoint());
1384    return false;
1385  }
1386
1387  /// Return true if an FMA operation is faster than a pair of fmul and fadd
1388  /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
1389  /// returns true, otherwise fmuladd is expanded to fmul + fadd.
1390  ///
1391  /// NOTE: This may be called before legalization on types for which FMAs are
1392  /// not legal, but should return true if those types will eventually legalize
1393  /// to types that support FMAs. After legalization, it will only be called on
1394  /// types that support FMAs (via Legal or Custom actions)
1395  virtual bool isFMAFasterThanFMulAndFAdd(EVT) const {
1396    return false;
1397  }
1398
1399  /// Return true if it's profitable to narrow operations of type VT1 to
1400  /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
1401  /// i32 to i16.
1402  virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
1403    return false;
1404  }
1405
1406  /// \brief Return true if it is beneficial to convert a load of a constant to
1407  /// just the constant itself.
1408  /// On some targets it might be more efficient to use a combination of
1409  /// arithmetic instructions to materialize the constant instead of loading it
1410  /// from a constant pool.
1411  virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
1412                                                 Type *Ty) const {
1413    return false;
1414  }
1415  //===--------------------------------------------------------------------===//
1416  // Runtime Library hooks
1417  //
1418
1419  /// Rename the default libcall routine name for the specified libcall.
1420  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1421    LibcallRoutineNames[Call] = Name;
1422  }
1423
1424  /// Get the libcall routine name for the specified libcall.
1425  const char *getLibcallName(RTLIB::Libcall Call) const {
1426    return LibcallRoutineNames[Call];
1427  }
1428
1429  /// Override the default CondCode to be used to test the result of the
1430  /// comparison libcall against zero.
1431  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1432    CmpLibcallCCs[Call] = CC;
1433  }
1434
1435  /// Get the CondCode that's to be used to test the result of the comparison
1436  /// libcall against zero.
1437  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1438    return CmpLibcallCCs[Call];
1439  }
1440
1441  /// Set the CallingConv that should be used for the specified libcall.
1442  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1443    LibcallCallingConvs[Call] = CC;
1444  }
1445
1446  /// Get the CallingConv that should be used for the specified libcall.
1447  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1448    return LibcallCallingConvs[Call];
1449  }
1450
1451private:
1452  const TargetMachine &TM;
1453  const DataLayout *DL;
1454  const TargetLoweringObjectFile &TLOF;
1455
1456  /// True if this is a little endian target.
1457  bool IsLittleEndian;
1458
1459  /// Tells the code generator not to expand operations into sequences that use
1460  /// the select operations if possible.
1461  bool SelectIsExpensive;
1462
1463  /// Tells the code generator that the target has multiple (allocatable)
1464  /// condition registers that can be used to store the results of comparisons
1465  /// for use by selects and conditional branches. With multiple condition
1466  /// registers, the code generator will not aggressively sink comparisons into
1467  /// the blocks of their users.
1468  bool HasMultipleConditionRegisters;
1469
1470  /// Tells the code generator that the target has BitExtract instructions.
1471  /// The code generator will aggressively sink "shift"s into the blocks of
1472  /// their users if the users will generate "and" instructions which can be
1473  /// combined with "shift" to BitExtract instructions.
1474  bool HasExtractBitsInsn;
1475
1476  /// Tells the code generator not to expand integer divides by constants into a
1477  /// sequence of muls, adds, and shifts.  This is a hack until a real cost
1478  /// model is in place.  If we ever optimize for size, this will be set to true
1479  /// unconditionally.
1480  bool IntDivIsCheap;
1481
1482  /// Tells the code generator to bypass slow divide or remainder
1483  /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
1484  /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
1485  /// div/rem when the operands are positive and less than 256.
1486  DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
1487
1488  /// Tells the code generator that it shouldn't generate srl/add/sra for a
1489  /// signed divide by power of two, and let the target handle it.
1490  bool Pow2DivIsCheap;
1491
1492  /// Tells the code generator that it shouldn't generate extra flow control
1493  /// instructions and should attempt to combine flow control instructions via
1494  /// predication.
1495  bool JumpIsExpensive;
1496
1497  /// This target prefers to use _setjmp to implement llvm.setjmp.
1498  ///
1499  /// Defaults to false.
1500  bool UseUnderscoreSetJmp;
1501
1502  /// This target prefers to use _longjmp to implement llvm.longjmp.
1503  ///
1504  /// Defaults to false.
1505  bool UseUnderscoreLongJmp;
1506
1507  /// Whether the target can generate code for jumptables.  If it's not true,
1508  /// then each jumptable must be lowered into if-then-else's.
1509  bool SupportJumpTables;
1510
1511  /// Number of blocks threshold to use jump tables.
1512  int MinimumJumpTableEntries;
1513
1514  /// Information about the contents of the high-bits in boolean values held in
1515  /// a type wider than i1. See getBooleanContents.
1516  BooleanContent BooleanContents;
1517
1518  /// Information about the contents of the high-bits in boolean values held in
1519  /// a type wider than i1. See getBooleanContents.
1520  BooleanContent BooleanFloatContents;
1521
1522  /// Information about the contents of the high-bits in boolean vector values
1523  /// when the element type is wider than i1. See getBooleanContents.
1524  BooleanContent BooleanVectorContents;
1525
1526  /// The target scheduling preference: shortest possible total cycles or lowest
1527  /// register usage.
1528  Sched::Preference SchedPreferenceInfo;
1529
1530  /// The size, in bytes, of the target's jmp_buf buffers
1531  unsigned JumpBufSize;
1532
1533  /// The alignment, in bytes, of the target's jmp_buf buffers
1534  unsigned JumpBufAlignment;
1535
1536  /// The minimum alignment that any argument on the stack needs to have.
1537  unsigned MinStackArgumentAlignment;
1538
1539  /// The minimum function alignment (used when optimizing for size, and to
1540  /// prevent explicitly provided alignment from leading to incorrect code).
1541  unsigned MinFunctionAlignment;
1542
1543  /// The preferred function alignment (used when alignment unspecified and
1544  /// optimizing for speed).
1545  unsigned PrefFunctionAlignment;
1546
1547  /// The preferred loop alignment.
1548  unsigned PrefLoopAlignment;
1549
1550  /// Whether the DAG builder should automatically insert fences and reduce
1551  /// ordering for atomics.  (This will be set for for most architectures with
1552  /// weak memory ordering.)
1553  bool InsertFencesForAtomic;
1554
1555  /// If set to a physical register, this specifies the register that
1556  /// llvm.savestack/llvm.restorestack should save and restore.
1557  unsigned StackPointerRegisterToSaveRestore;
1558
1559  /// If set to a physical register, this specifies the register that receives
1560  /// the exception address on entry to a landing pad.
1561  unsigned ExceptionPointerRegister;
1562
1563  /// If set to a physical register, this specifies the register that receives
1564  /// the exception typeid on entry to a landing pad.
1565  unsigned ExceptionSelectorRegister;
1566
1567  /// This indicates the default register class to use for each ValueType the
1568  /// target supports natively.
1569  const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1570  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1571  MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1572
1573  /// This indicates the "representative" register class to use for each
1574  /// ValueType the target supports natively. This information is used by the
1575  /// scheduler to track register pressure. By default, the representative
1576  /// register class is the largest legal super-reg register class of the
1577  /// register class of the specified type. e.g. On x86, i8, i16, and i32's
1578  /// representative class would be GR32.
1579  const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1580
1581  /// This indicates the "cost" of the "representative" register class for each
1582  /// ValueType. The cost is used by the scheduler to approximate register
1583  /// pressure.
1584  uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1585
1586  /// For any value types we are promoting or expanding, this contains the value
1587  /// type that we are changing to.  For Expanded types, this contains one step
1588  /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
1589  /// (e.g. i64 -> i16).  For types natively supported by the system, this holds
1590  /// the same type (e.g. i32 -> i32).
1591  MVT TransformToType[MVT::LAST_VALUETYPE];
1592
1593  /// For each operation and each value type, keep a LegalizeAction that
1594  /// indicates how instruction selection should deal with the operation.  Most
1595  /// operations are Legal (aka, supported natively by the target), but
1596  /// operations that are not should be described.  Note that operations on
1597  /// non-legal value types are not described here.
1598  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1599
1600  /// For each load extension type and each value type, keep a LegalizeAction
1601  /// that indicates how instruction selection should deal with a load of a
1602  /// specific value type and extension type.
1603  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
1604
1605  /// For each value type pair keep a LegalizeAction that indicates whether a
1606  /// truncating store of a specific value type and truncating type is legal.
1607  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1608
1609  /// For each indexed mode and each value type, keep a pair of LegalizeAction
1610  /// that indicates how instruction selection should deal with the load /
1611  /// store.
1612  ///
1613  /// The first dimension is the value_type for the reference. The second
1614  /// dimension represents the various modes for load store.
1615  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1616
1617  /// For each condition code (ISD::CondCode) keep a LegalizeAction that
1618  /// indicates how instruction selection should deal with the condition code.
1619  ///
1620  /// Because each CC action takes up 2 bits, we need to have the array size be
1621  /// large enough to fit all of the value types. This can be done by rounding
1622  /// up the MVT::LAST_VALUETYPE value to the next multiple of 16.
1623  uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE + 15) / 16];
1624
1625  ValueTypeActionImpl ValueTypeActions;
1626
1627public:
1628  LegalizeKind
1629  getTypeConversion(LLVMContext &Context, EVT VT) const {
1630    // If this is a simple type, use the ComputeRegisterProp mechanism.
1631    if (VT.isSimple()) {
1632      MVT SVT = VT.getSimpleVT();
1633      assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
1634      MVT NVT = TransformToType[SVT.SimpleTy];
1635      LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
1636
1637      assert(
1638        (LA == TypeLegal ||
1639         ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)
1640         && "Promote may not follow Expand or Promote");
1641
1642      if (LA == TypeSplitVector)
1643        return LegalizeKind(LA, EVT::getVectorVT(Context,
1644                                                 SVT.getVectorElementType(),
1645                                                 SVT.getVectorNumElements()/2));
1646      if (LA == TypeScalarizeVector)
1647        return LegalizeKind(LA, SVT.getVectorElementType());
1648      return LegalizeKind(LA, NVT);
1649    }
1650
1651    // Handle Extended Scalar Types.
1652    if (!VT.isVector()) {
1653      assert(VT.isInteger() && "Float types must be simple");
1654      unsigned BitSize = VT.getSizeInBits();
1655      // First promote to a power-of-two size, then expand if necessary.
1656      if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1657        EVT NVT = VT.getRoundIntegerType(Context);
1658        assert(NVT != VT && "Unable to round integer VT");
1659        LegalizeKind NextStep = getTypeConversion(Context, NVT);
1660        // Avoid multi-step promotion.
1661        if (NextStep.first == TypePromoteInteger) return NextStep;
1662        // Return rounded integer type.
1663        return LegalizeKind(TypePromoteInteger, NVT);
1664      }
1665
1666      return LegalizeKind(TypeExpandInteger,
1667                          EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
1668    }
1669
1670    // Handle vector types.
1671    unsigned NumElts = VT.getVectorNumElements();
1672    EVT EltVT = VT.getVectorElementType();
1673
1674    // Vectors with only one element are always scalarized.
1675    if (NumElts == 1)
1676      return LegalizeKind(TypeScalarizeVector, EltVT);
1677
1678    // Try to widen vector elements until the element type is a power of two and
1679    // promote it to a legal type later on, for example:
1680    // <3 x i8> -> <4 x i8> -> <4 x i32>
1681    if (EltVT.isInteger()) {
1682      // Vectors with a number of elements that is not a power of two are always
1683      // widened, for example <3 x i8> -> <4 x i8>.
1684      if (!VT.isPow2VectorType()) {
1685        NumElts = (unsigned)NextPowerOf2(NumElts);
1686        EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1687        return LegalizeKind(TypeWidenVector, NVT);
1688      }
1689
1690      // Examine the element type.
1691      LegalizeKind LK = getTypeConversion(Context, EltVT);
1692
1693      // If type is to be expanded, split the vector.
1694      //  <4 x i140> -> <2 x i140>
1695      if (LK.first == TypeExpandInteger)
1696        return LegalizeKind(TypeSplitVector,
1697                            EVT::getVectorVT(Context, EltVT, NumElts / 2));
1698
1699      // Promote the integer element types until a legal vector type is found
1700      // or until the element integer type is too big. If a legal type was not
1701      // found, fallback to the usual mechanism of widening/splitting the
1702      // vector.
1703      EVT OldEltVT = EltVT;
1704      while (1) {
1705        // Increase the bitwidth of the element to the next pow-of-two
1706        // (which is greater than 8 bits).
1707        EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
1708                                 ).getRoundIntegerType(Context);
1709
1710        // Stop trying when getting a non-simple element type.
1711        // Note that vector elements may be greater than legal vector element
1712        // types. Example: X86 XMM registers hold 64bit element on 32bit
1713        // systems.
1714        if (!EltVT.isSimple()) break;
1715
1716        // Build a new vector type and check if it is legal.
1717        MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1718        // Found a legal promoted vector type.
1719        if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1720          return LegalizeKind(TypePromoteInteger,
1721                              EVT::getVectorVT(Context, EltVT, NumElts));
1722      }
1723
1724      // Reset the type to the unexpanded type if we did not find a legal vector
1725      // type with a promoted vector element type.
1726      EltVT = OldEltVT;
1727    }
1728
1729    // Try to widen the vector until a legal type is found.
1730    // If there is no wider legal type, split the vector.
1731    while (1) {
1732      // Round up to the next power of 2.
1733      NumElts = (unsigned)NextPowerOf2(NumElts);
1734
1735      // If there is no simple vector type with this many elements then there
1736      // cannot be a larger legal vector type.  Note that this assumes that
1737      // there are no skipped intermediate vector types in the simple types.
1738      if (!EltVT.isSimple()) break;
1739      MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1740      if (LargerVector == MVT()) break;
1741
1742      // If this type is legal then widen the vector.
1743      if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1744        return LegalizeKind(TypeWidenVector, LargerVector);
1745    }
1746
1747    // Widen odd vectors to next power of two.
1748    if (!VT.isPow2VectorType()) {
1749      EVT NVT = VT.getPow2VectorType(Context);
1750      return LegalizeKind(TypeWidenVector, NVT);
1751    }
1752
1753    // Vectors with illegal element types are expanded.
1754    EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
1755    return LegalizeKind(TypeSplitVector, NVT);
1756  }
1757
1758private:
1759  std::vector<std::pair<MVT, const TargetRegisterClass*> > AvailableRegClasses;
1760
1761  /// Targets can specify ISD nodes that they would like PerformDAGCombine
1762  /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
1763  /// array.
1764  unsigned char
1765  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1766
1767  /// For operations that must be promoted to a specific type, this holds the
1768  /// destination type.  This map should be sparse, so don't hold it as an
1769  /// array.
1770  ///
1771  /// Targets add entries to this map with AddPromotedToType(..), clients access
1772  /// this with getTypeToPromoteTo(..).
1773  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1774    PromoteToType;
1775
1776  /// Stores the name each libcall.
1777  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1778
1779  /// The ISD::CondCode that should be used to test the result of each of the
1780  /// comparison libcall against zero.
1781  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1782
1783  /// Stores the CallingConv that should be used for each libcall.
1784  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1785
1786protected:
1787  /// \brief Specify maximum number of store instructions per memset call.
1788  ///
1789  /// When lowering \@llvm.memset this field specifies the maximum number of
1790  /// store operations that may be substituted for the call to memset. Targets
1791  /// must set this value based on the cost threshold for that target. Targets
1792  /// should assume that the memset will be done using as many of the largest
1793  /// store operations first, followed by smaller ones, if necessary, per
1794  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1795  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1796  /// store.  This only applies to setting a constant array of a constant size.
1797  unsigned MaxStoresPerMemset;
1798
1799  /// Maximum number of stores operations that may be substituted for the call
1800  /// to memset, used for functions with OptSize attribute.
1801  unsigned MaxStoresPerMemsetOptSize;
1802
1803  /// \brief Specify maximum bytes of store instructions per memcpy call.
1804  ///
1805  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1806  /// store operations that may be substituted for a call to memcpy. Targets
1807  /// must set this value based on the cost threshold for that target. Targets
1808  /// should assume that the memcpy will be done using as many of the largest
1809  /// store operations first, followed by smaller ones, if necessary, per
1810  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1811  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1812  /// and one 1-byte store. This only applies to copying a constant array of
1813  /// constant size.
1814  unsigned MaxStoresPerMemcpy;
1815
1816  /// Maximum number of store operations that may be substituted for a call to
1817  /// memcpy, used for functions with OptSize attribute.
1818  unsigned MaxStoresPerMemcpyOptSize;
1819
1820  /// \brief Specify maximum bytes of store instructions per memmove call.
1821  ///
1822  /// When lowering \@llvm.memmove this field specifies the maximum number of
1823  /// store instructions that may be substituted for a call to memmove. Targets
1824  /// must set this value based on the cost threshold for that target. Targets
1825  /// should assume that the memmove will be done using as many of the largest
1826  /// store operations first, followed by smaller ones, if necessary, per
1827  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1828  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1829  /// applies to copying a constant array of constant size.
1830  unsigned MaxStoresPerMemmove;
1831
1832  /// Maximum number of store instructions that may be substituted for a call to
1833  /// memmove, used for functions with OpSize attribute.
1834  unsigned MaxStoresPerMemmoveOptSize;
1835
1836  /// Tells the code generator that select is more expensive than a branch if
1837  /// the branch is usually predicted right.
1838  bool PredictableSelectIsExpensive;
1839
1840  /// MaskAndBranchFoldingIsLegal - Indicates if the target supports folding
1841  /// a mask of a single bit, a compare, and a branch into a single instruction.
1842  bool MaskAndBranchFoldingIsLegal;
1843
1844protected:
1845  /// Return true if the value types that can be represented by the specified
1846  /// register class are all legal.
1847  bool isLegalRC(const TargetRegisterClass *RC) const;
1848
1849  /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1850  /// sequence of memory operands that is recognized by PrologEpilogInserter.
1851  MachineBasicBlock *emitPatchPoint(MachineInstr *MI, MachineBasicBlock *MBB) const;
1852};
1853
1854/// This class defines information used to lower LLVM code to legal SelectionDAG
1855/// operators that the target instruction selector can accept natively.
1856///
1857/// This class also defines callbacks that targets must implement to lower
1858/// target-specific constructs to SelectionDAG operators.
1859class TargetLowering : public TargetLoweringBase {
1860  TargetLowering(const TargetLowering&) LLVM_DELETED_FUNCTION;
1861  void operator=(const TargetLowering&) LLVM_DELETED_FUNCTION;
1862
1863public:
1864  /// NOTE: The constructor takes ownership of TLOF.
1865  explicit TargetLowering(const TargetMachine &TM,
1866                          const TargetLoweringObjectFile *TLOF);
1867
1868  /// Returns true by value, base pointer and offset pointer and addressing mode
1869  /// by reference if the node's address can be legally represented as
1870  /// pre-indexed load / store address.
1871  virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
1872                                         SDValue &/*Offset*/,
1873                                         ISD::MemIndexedMode &/*AM*/,
1874                                         SelectionDAG &/*DAG*/) const {
1875    return false;
1876  }
1877
1878  /// Returns true by value, base pointer and offset pointer and addressing mode
1879  /// by reference if this node can be combined with a load / store to form a
1880  /// post-indexed load / store.
1881  virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
1882                                          SDValue &/*Base*/,
1883                                          SDValue &/*Offset*/,
1884                                          ISD::MemIndexedMode &/*AM*/,
1885                                          SelectionDAG &/*DAG*/) const {
1886    return false;
1887  }
1888
1889  /// Return the entry encoding for a jump table in the current function.  The
1890  /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
1891  virtual unsigned getJumpTableEncoding() const;
1892
1893  virtual const MCExpr *
1894  LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
1895                            const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
1896                            MCContext &/*Ctx*/) const {
1897    llvm_unreachable("Need to implement this hook if target has custom JTIs");
1898  }
1899
1900  /// Returns relocation base for the given PIC jumptable.
1901  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
1902                                           SelectionDAG &DAG) const;
1903
1904  /// This returns the relocation base for the given PIC jumptable, the same as
1905  /// getPICJumpTableRelocBase, but as an MCExpr.
1906  virtual const MCExpr *
1907  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1908                               unsigned JTI, MCContext &Ctx) const;
1909
1910  /// Return true if folding a constant offset with the given GlobalAddress is
1911  /// legal.  It is frequently not legal in PIC relocation models.
1912  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
1913
1914  bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
1915                            SDValue &Chain) const;
1916
1917  void softenSetCCOperands(SelectionDAG &DAG, EVT VT,
1918                           SDValue &NewLHS, SDValue &NewRHS,
1919                           ISD::CondCode &CCCode, SDLoc DL) const;
1920
1921  /// Returns a pair of (return value, chain).
1922  std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
1923                                          EVT RetVT, const SDValue *Ops,
1924                                          unsigned NumOps, bool isSigned,
1925                                          SDLoc dl, bool doesNotReturn = false,
1926                                          bool isReturnValueUsed = true) const;
1927
1928  //===--------------------------------------------------------------------===//
1929  // TargetLowering Optimization Methods
1930  //
1931
1932  /// A convenience struct that encapsulates a DAG, and two SDValues for
1933  /// returning information from TargetLowering to its clients that want to
1934  /// combine.
1935  struct TargetLoweringOpt {
1936    SelectionDAG &DAG;
1937    bool LegalTys;
1938    bool LegalOps;
1939    SDValue Old;
1940    SDValue New;
1941
1942    explicit TargetLoweringOpt(SelectionDAG &InDAG,
1943                               bool LT, bool LO) :
1944      DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
1945
1946    bool LegalTypes() const { return LegalTys; }
1947    bool LegalOperations() const { return LegalOps; }
1948
1949    bool CombineTo(SDValue O, SDValue N) {
1950      Old = O;
1951      New = N;
1952      return true;
1953    }
1954
1955    /// Check to see if the specified operand of the specified instruction is a
1956    /// constant integer.  If so, check to see if there are any bits set in the
1957    /// constant that are not demanded.  If so, shrink the constant and return
1958    /// true.
1959    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
1960
1961    /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.  This
1962    /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
1963    /// generalized for targets with other types of implicit widening casts.
1964    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
1965                          SDLoc dl);
1966  };
1967
1968  /// Look at Op.  At this point, we know that only the DemandedMask bits of the
1969  /// result of Op are ever used downstream.  If we can use this information to
1970  /// simplify Op, create a new simplified DAG node and return true, returning
1971  /// the original and new nodes in Old and New.  Otherwise, analyze the
1972  /// expression and return a mask of KnownOne and KnownZero bits for the
1973  /// expression (used to simplify the caller).  The KnownZero/One bits may only
1974  /// be accurate for those bits in the DemandedMask.
1975  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
1976                            APInt &KnownZero, APInt &KnownOne,
1977                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
1978
1979  /// Determine which of the bits specified in Mask are known to be either zero
1980  /// or one and return them in the KnownZero/KnownOne bitsets.
1981  virtual void computeKnownBitsForTargetNode(const SDValue Op,
1982                                             APInt &KnownZero,
1983                                             APInt &KnownOne,
1984                                             const SelectionDAG &DAG,
1985                                             unsigned Depth = 0) const;
1986
1987  /// This method can be implemented by targets that want to expose additional
1988  /// information about sign bits to the DAG Combiner.
1989  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
1990                                                   const SelectionDAG &DAG,
1991                                                   unsigned Depth = 0) const;
1992
1993  struct DAGCombinerInfo {
1994    void *DC;  // The DAG Combiner object.
1995    CombineLevel Level;
1996    bool CalledByLegalizer;
1997  public:
1998    SelectionDAG &DAG;
1999
2000    DAGCombinerInfo(SelectionDAG &dag, CombineLevel level,  bool cl, void *dc)
2001      : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
2002
2003    bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
2004    bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
2005    bool isAfterLegalizeVectorOps() const {
2006      return Level == AfterLegalizeDAG;
2007    }
2008    CombineLevel getDAGCombineLevel() { return Level; }
2009    bool isCalledByLegalizer() const { return CalledByLegalizer; }
2010
2011    void AddToWorklist(SDNode *N);
2012    void RemoveFromWorklist(SDNode *N);
2013    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
2014                      bool AddTo = true);
2015    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
2016    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
2017
2018    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
2019  };
2020
2021  /// Return if the N is a constant or constant vector equal to the true value
2022  /// from getBooleanContents().
2023  bool isConstTrueVal(const SDNode *N) const;
2024
2025  /// Return if the N is a constant or constant vector equal to the false value
2026  /// from getBooleanContents().
2027  bool isConstFalseVal(const SDNode *N) const;
2028
2029  /// Try to simplify a setcc built with the specified operands and cc. If it is
2030  /// unable to simplify it, return a null SDValue.
2031  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
2032                          ISD::CondCode Cond, bool foldBooleans,
2033                          DAGCombinerInfo &DCI, SDLoc dl) const;
2034
2035  /// Returns true (and the GlobalValue and the offset) if the node is a
2036  /// GlobalAddress + offset.
2037  virtual bool
2038  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
2039
2040  /// This method will be invoked for all target nodes and for any
2041  /// target-independent nodes that the target has registered with invoke it
2042  /// for.
2043  ///
2044  /// The semantics are as follows:
2045  /// Return Value:
2046  ///   SDValue.Val == 0   - No change was made
2047  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
2048  ///   otherwise          - N should be replaced by the returned Operand.
2049  ///
2050  /// In addition, methods provided by DAGCombinerInfo may be used to perform
2051  /// more complex transformations.
2052  ///
2053  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
2054
2055  /// Return true if it is profitable to move a following shift through this
2056  //  node, adjusting any immediate operands as necessary to preserve semantics.
2057  //  This transformation may not be desirable if it disrupts a particularly
2058  //  auspicious target-specific tree (e.g. bitfield extraction in AArch64).
2059  //  By default, it returns true.
2060  virtual bool isDesirableToCommuteWithShift(const SDNode *N /*Op*/) const {
2061    return true;
2062  }
2063
2064  /// Return true if the target has native support for the specified value type
2065  /// and it is 'desirable' to use the type for the given node type. e.g. On x86
2066  /// i16 is legal, but undesirable since i16 instruction encodings are longer
2067  /// and some i16 instructions are slow.
2068  virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
2069    // By default, assume all legal types are desirable.
2070    return isTypeLegal(VT);
2071  }
2072
2073  /// Return true if it is profitable for dag combiner to transform a floating
2074  /// point op of specified opcode to a equivalent op of an integer
2075  /// type. e.g. f32 load -> i32 load can be profitable on ARM.
2076  virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
2077                                                 EVT /*VT*/) const {
2078    return false;
2079  }
2080
2081  /// This method query the target whether it is beneficial for dag combiner to
2082  /// promote the specified node. If true, it should return the desired
2083  /// promotion type by reference.
2084  virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
2085    return false;
2086  }
2087
2088  //===--------------------------------------------------------------------===//
2089  // Lowering methods - These methods must be implemented by targets so that
2090  // the SelectionDAGBuilder code knows how to lower these.
2091  //
2092
2093  /// This hook must be implemented to lower the incoming (formal) arguments,
2094  /// described by the Ins array, into the specified DAG. The implementation
2095  /// should fill in the InVals array with legal-type argument values, and
2096  /// return the resulting token chain value.
2097  ///
2098  virtual SDValue
2099    LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
2100                         bool /*isVarArg*/,
2101                         const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
2102                         SDLoc /*dl*/, SelectionDAG &/*DAG*/,
2103                         SmallVectorImpl<SDValue> &/*InVals*/) const {
2104    llvm_unreachable("Not Implemented");
2105  }
2106
2107  struct ArgListEntry {
2108    SDValue Node;
2109    Type* Ty;
2110    bool isSExt     : 1;
2111    bool isZExt     : 1;
2112    bool isInReg    : 1;
2113    bool isSRet     : 1;
2114    bool isNest     : 1;
2115    bool isByVal    : 1;
2116    bool isInAlloca : 1;
2117    bool isReturned : 1;
2118    uint16_t Alignment;
2119
2120    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
2121      isSRet(false), isNest(false), isByVal(false), isInAlloca(false),
2122      isReturned(false), Alignment(0) { }
2123
2124    void setAttributes(ImmutableCallSite *CS, unsigned AttrIdx);
2125  };
2126  typedef std::vector<ArgListEntry> ArgListTy;
2127
2128  /// This structure contains all information that is necessary for lowering
2129  /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
2130  /// needs to lower a call, and targets will see this struct in their LowerCall
2131  /// implementation.
2132  struct CallLoweringInfo {
2133    SDValue Chain;
2134    Type *RetTy;
2135    bool RetSExt           : 1;
2136    bool RetZExt           : 1;
2137    bool IsVarArg          : 1;
2138    bool IsInReg           : 1;
2139    bool DoesNotReturn     : 1;
2140    bool IsReturnValueUsed : 1;
2141
2142    // IsTailCall should be modified by implementations of
2143    // TargetLowering::LowerCall that perform tail call conversions.
2144    bool IsTailCall;
2145
2146    unsigned NumFixedArgs;
2147    CallingConv::ID CallConv;
2148    SDValue Callee;
2149    ArgListTy Args;
2150    SelectionDAG &DAG;
2151    SDLoc DL;
2152    ImmutableCallSite *CS;
2153    SmallVector<ISD::OutputArg, 32> Outs;
2154    SmallVector<SDValue, 32> OutVals;
2155    SmallVector<ISD::InputArg, 32> Ins;
2156
2157    CallLoweringInfo(SelectionDAG &DAG)
2158      : RetTy(nullptr), RetSExt(false), RetZExt(false), IsVarArg(false),
2159        IsInReg(false), DoesNotReturn(false), IsReturnValueUsed(true),
2160        IsTailCall(false), NumFixedArgs(-1), CallConv(CallingConv::C),
2161        DAG(DAG), CS(nullptr) {}
2162
2163    CallLoweringInfo &setDebugLoc(SDLoc dl) {
2164      DL = dl;
2165      return *this;
2166    }
2167
2168    CallLoweringInfo &setChain(SDValue InChain) {
2169      Chain = InChain;
2170      return *this;
2171    }
2172
2173    CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultType,
2174                                SDValue Target, ArgListTy &&ArgsList,
2175                                unsigned FixedArgs = -1) {
2176      RetTy = ResultType;
2177      Callee = Target;
2178      CallConv = CC;
2179      NumFixedArgs =
2180        (FixedArgs == static_cast<unsigned>(-1) ? Args.size() : FixedArgs);
2181      Args = std::move(ArgsList);
2182      return *this;
2183    }
2184
2185    CallLoweringInfo &setCallee(Type *ResultType, FunctionType *FTy,
2186                                SDValue Target, ArgListTy &&ArgsList,
2187                                ImmutableCallSite &Call) {
2188      RetTy = ResultType;
2189
2190      IsInReg = Call.paramHasAttr(0, Attribute::InReg);
2191      DoesNotReturn = Call.doesNotReturn();
2192      IsVarArg = FTy->isVarArg();
2193      IsReturnValueUsed = !Call.getInstruction()->use_empty();
2194      RetSExt = Call.paramHasAttr(0, Attribute::SExt);
2195      RetZExt = Call.paramHasAttr(0, Attribute::ZExt);
2196
2197      Callee = Target;
2198
2199      CallConv = Call.getCallingConv();
2200      NumFixedArgs = FTy->getNumParams();
2201      Args = std::move(ArgsList);
2202
2203      CS = &Call;
2204
2205      return *this;
2206    }
2207
2208    CallLoweringInfo &setInRegister(bool Value = true) {
2209      IsInReg = Value;
2210      return *this;
2211    }
2212
2213    CallLoweringInfo &setNoReturn(bool Value = true) {
2214      DoesNotReturn = Value;
2215      return *this;
2216    }
2217
2218    CallLoweringInfo &setVarArg(bool Value = true) {
2219      IsVarArg = Value;
2220      return *this;
2221    }
2222
2223    CallLoweringInfo &setTailCall(bool Value = true) {
2224      IsTailCall = Value;
2225      return *this;
2226    }
2227
2228    CallLoweringInfo &setDiscardResult(bool Value = true) {
2229      IsReturnValueUsed = !Value;
2230      return *this;
2231    }
2232
2233    CallLoweringInfo &setSExtResult(bool Value = true) {
2234      RetSExt = Value;
2235      return *this;
2236    }
2237
2238    CallLoweringInfo &setZExtResult(bool Value = true) {
2239      RetZExt = Value;
2240      return *this;
2241    }
2242
2243    ArgListTy &getArgs() {
2244      return Args;
2245    }
2246  };
2247
2248  /// This function lowers an abstract call to a function into an actual call.
2249  /// This returns a pair of operands.  The first element is the return value
2250  /// for the function (if RetTy is not VoidTy).  The second element is the
2251  /// outgoing token chain. It calls LowerCall to do the actual lowering.
2252  std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
2253
2254  /// This hook must be implemented to lower calls into the the specified
2255  /// DAG. The outgoing arguments to the call are described by the Outs array,
2256  /// and the values to be returned by the call are described by the Ins
2257  /// array. The implementation should fill in the InVals array with legal-type
2258  /// return values from the call, and return the resulting token chain value.
2259  virtual SDValue
2260    LowerCall(CallLoweringInfo &/*CLI*/,
2261              SmallVectorImpl<SDValue> &/*InVals*/) const {
2262    llvm_unreachable("Not Implemented");
2263  }
2264
2265  /// Target-specific cleanup for formal ByVal parameters.
2266  virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}
2267
2268  /// This hook should be implemented to check whether the return values
2269  /// described by the Outs array can fit into the return registers.  If false
2270  /// is returned, an sret-demotion is performed.
2271  virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
2272                              MachineFunction &/*MF*/, bool /*isVarArg*/,
2273               const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
2274               LLVMContext &/*Context*/) const
2275  {
2276    // Return true by default to get preexisting behavior.
2277    return true;
2278  }
2279
2280  /// This hook must be implemented to lower outgoing return values, described
2281  /// by the Outs array, into the specified DAG. The implementation should
2282  /// return the resulting token chain value.
2283  virtual SDValue
2284    LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
2285                bool /*isVarArg*/,
2286                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
2287                const SmallVectorImpl<SDValue> &/*OutVals*/,
2288                SDLoc /*dl*/, SelectionDAG &/*DAG*/) const {
2289    llvm_unreachable("Not Implemented");
2290  }
2291
2292  /// Return true if result of the specified node is used by a return node
2293  /// only. It also compute and return the input chain for the tail call.
2294  ///
2295  /// This is used to determine whether it is possible to codegen a libcall as
2296  /// tail call at legalization time.
2297  virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
2298    return false;
2299  }
2300
2301  /// Return true if the target may be able emit the call instruction as a tail
2302  /// call. This is used by optimization passes to determine if it's profitable
2303  /// to duplicate return instructions to enable tailcall optimization.
2304  virtual bool mayBeEmittedAsTailCall(CallInst *) const {
2305    return false;
2306  }
2307
2308  /// Return the builtin name for the __builtin___clear_cache intrinsic
2309  /// Default is to invoke the clear cache library call
2310  virtual const char * getClearCacheBuiltinName() const {
2311    return "__clear_cache";
2312  }
2313
2314  /// Return the register ID of the name passed in. Used by named register
2315  /// global variables extension. There is no target-independent behaviour
2316  /// so the default action is to bail.
2317  virtual unsigned getRegisterByName(const char* RegName, EVT VT) const {
2318    report_fatal_error("Named registers not implemented for this target");
2319  }
2320
2321  /// Return the type that should be used to zero or sign extend a
2322  /// zeroext/signext integer argument or return value.  FIXME: Most C calling
2323  /// convention requires the return type to be promoted, but this is not true
2324  /// all the time, e.g. i1 on x86-64. It is also not necessary for non-C
2325  /// calling conventions. The frontend should handle this and include all of
2326  /// the necessary information.
2327  virtual MVT getTypeForExtArgOrReturn(MVT VT,
2328                                       ISD::NodeType /*ExtendKind*/) const {
2329    MVT MinVT = getRegisterType(MVT::i32);
2330    return VT.bitsLT(MinVT) ? MinVT : VT;
2331  }
2332
2333  /// For some targets, an LLVM struct type must be broken down into multiple
2334  /// simple types, but the calling convention specifies that the entire struct
2335  /// must be passed in a block of consecutive registers.
2336  virtual bool
2337  functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv,
2338                                            bool isVarArg) const {
2339    return false;
2340  }
2341
2342  /// Returns a 0 terminated array of registers that can be safely used as
2343  /// scratch registers.
2344  virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const {
2345    return nullptr;
2346  }
2347
2348  /// This callback is used to prepare for a volatile or atomic load.
2349  /// It takes a chain node as input and returns the chain for the load itself.
2350  ///
2351  /// Having a callback like this is necessary for targets like SystemZ,
2352  /// which allows a CPU to reuse the result of a previous load indefinitely,
2353  /// even if a cache-coherent store is performed by another CPU.  The default
2354  /// implementation does nothing.
2355  virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL,
2356                                              SelectionDAG &DAG) const {
2357    return Chain;
2358  }
2359
2360  /// This callback is invoked by the type legalizer to legalize nodes with an
2361  /// illegal operand type but legal result types.  It replaces the
2362  /// LowerOperation callback in the type Legalizer.  The reason we can not do
2363  /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
2364  /// use this callback.
2365  ///
2366  /// TODO: Consider merging with ReplaceNodeResults.
2367  ///
2368  /// The target places new result values for the node in Results (their number
2369  /// and types must exactly match those of the original return values of
2370  /// the node), or leaves Results empty, which indicates that the node is not
2371  /// to be custom lowered after all.
2372  /// The default implementation calls LowerOperation.
2373  virtual void LowerOperationWrapper(SDNode *N,
2374                                     SmallVectorImpl<SDValue> &Results,
2375                                     SelectionDAG &DAG) const;
2376
2377  /// This callback is invoked for operations that are unsupported by the
2378  /// target, which are registered to use 'custom' lowering, and whose defined
2379  /// values are all legal.  If the target has no operations that require custom
2380  /// lowering, it need not implement this.  The default implementation of this
2381  /// aborts.
2382  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
2383
2384  /// This callback is invoked when a node result type is illegal for the
2385  /// target, and the operation was registered to use 'custom' lowering for that
2386  /// result type.  The target places new result values for the node in Results
2387  /// (their number and types must exactly match those of the original return
2388  /// values of the node), or leaves Results empty, which indicates that the
2389  /// node is not to be custom lowered after all.
2390  ///
2391  /// If the target has no operations that require custom lowering, it need not
2392  /// implement this.  The default implementation aborts.
2393  virtual void ReplaceNodeResults(SDNode * /*N*/,
2394                                  SmallVectorImpl<SDValue> &/*Results*/,
2395                                  SelectionDAG &/*DAG*/) const {
2396    llvm_unreachable("ReplaceNodeResults not implemented for this target!");
2397  }
2398
2399  /// This method returns the name of a target specific DAG node.
2400  virtual const char *getTargetNodeName(unsigned Opcode) const;
2401
2402  /// This method returns a target specific FastISel object, or null if the
2403  /// target does not support "fast" ISel.
2404  virtual FastISel *createFastISel(FunctionLoweringInfo &,
2405                                   const TargetLibraryInfo *) const {
2406    return nullptr;
2407  }
2408
2409
2410  bool verifyReturnAddressArgumentIsConstant(SDValue Op,
2411                                             SelectionDAG &DAG) const;
2412
2413  //===--------------------------------------------------------------------===//
2414  // Inline Asm Support hooks
2415  //
2416
2417  /// This hook allows the target to expand an inline asm call to be explicit
2418  /// llvm code if it wants to.  This is useful for turning simple inline asms
2419  /// into LLVM intrinsics, which gives the compiler more information about the
2420  /// behavior of the code.
2421  virtual bool ExpandInlineAsm(CallInst *) const {
2422    return false;
2423  }
2424
2425  enum ConstraintType {
2426    C_Register,            // Constraint represents specific register(s).
2427    C_RegisterClass,       // Constraint represents any of register(s) in class.
2428    C_Memory,              // Memory constraint.
2429    C_Other,               // Something else.
2430    C_Unknown              // Unsupported constraint.
2431  };
2432
2433  enum ConstraintWeight {
2434    // Generic weights.
2435    CW_Invalid  = -1,     // No match.
2436    CW_Okay     = 0,      // Acceptable.
2437    CW_Good     = 1,      // Good weight.
2438    CW_Better   = 2,      // Better weight.
2439    CW_Best     = 3,      // Best weight.
2440
2441    // Well-known weights.
2442    CW_SpecificReg  = CW_Okay,    // Specific register operands.
2443    CW_Register     = CW_Good,    // Register operands.
2444    CW_Memory       = CW_Better,  // Memory operands.
2445    CW_Constant     = CW_Best,    // Constant operand.
2446    CW_Default      = CW_Okay     // Default or don't know type.
2447  };
2448
2449  /// This contains information for each constraint that we are lowering.
2450  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
2451    /// This contains the actual string for the code, like "m".  TargetLowering
2452    /// picks the 'best' code from ConstraintInfo::Codes that most closely
2453    /// matches the operand.
2454    std::string ConstraintCode;
2455
2456    /// Information about the constraint code, e.g. Register, RegisterClass,
2457    /// Memory, Other, Unknown.
2458    TargetLowering::ConstraintType ConstraintType;
2459
2460    /// If this is the result output operand or a clobber, this is null,
2461    /// otherwise it is the incoming operand to the CallInst.  This gets
2462    /// modified as the asm is processed.
2463    Value *CallOperandVal;
2464
2465    /// The ValueType for the operand value.
2466    MVT ConstraintVT;
2467
2468    /// Return true of this is an input operand that is a matching constraint
2469    /// like "4".
2470    bool isMatchingInputConstraint() const;
2471
2472    /// If this is an input matching constraint, this method returns the output
2473    /// operand it matches.
2474    unsigned getMatchedOperand() const;
2475
2476    /// Copy constructor for copying from a ConstraintInfo.
2477    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
2478      : InlineAsm::ConstraintInfo(info),
2479        ConstraintType(TargetLowering::C_Unknown),
2480        CallOperandVal(nullptr), ConstraintVT(MVT::Other) {
2481    }
2482  };
2483
2484  typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
2485
2486  /// Split up the constraint string from the inline assembly value into the
2487  /// specific constraints and their prefixes, and also tie in the associated
2488  /// operand values.  If this returns an empty vector, and if the constraint
2489  /// string itself isn't empty, there was an error parsing.
2490  virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
2491
2492  /// Examine constraint type and operand type and determine a weight value.
2493  /// The operand object must already have been set up with the operand type.
2494  virtual ConstraintWeight getMultipleConstraintMatchWeight(
2495      AsmOperandInfo &info, int maIndex) const;
2496
2497  /// Examine constraint string and operand type and determine a weight value.
2498  /// The operand object must already have been set up with the operand type.
2499  virtual ConstraintWeight getSingleConstraintMatchWeight(
2500      AsmOperandInfo &info, const char *constraint) const;
2501
2502  /// Determines the constraint code and constraint type to use for the specific
2503  /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
2504  /// If the actual operand being passed in is available, it can be passed in as
2505  /// Op, otherwise an empty SDValue can be passed.
2506  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2507                                      SDValue Op,
2508                                      SelectionDAG *DAG = nullptr) const;
2509
2510  /// Given a constraint, return the type of constraint it is for this target.
2511  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
2512
2513  /// Given a physical register constraint (e.g.  {edx}), return the register
2514  /// number and the register class for the register.
2515  ///
2516  /// Given a register class constraint, like 'r', if this corresponds directly
2517  /// to an LLVM register class, return a register of 0 and the register class
2518  /// pointer.
2519  ///
2520  /// This should only be used for C_Register constraints.  On error, this
2521  /// returns a register number of 0 and a null register class pointer..
2522  virtual std::pair<unsigned, const TargetRegisterClass*>
2523    getRegForInlineAsmConstraint(const std::string &Constraint,
2524                                 MVT VT) const;
2525
2526  /// Try to replace an X constraint, which matches anything, with another that
2527  /// has more specific requirements based on the type of the corresponding
2528  /// operand.  This returns null if there is no replacement to make.
2529  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
2530
2531  /// Lower the specified operand into the Ops vector.  If it is invalid, don't
2532  /// add anything to Ops.
2533  virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
2534                                            std::vector<SDValue> &Ops,
2535                                            SelectionDAG &DAG) const;
2536
2537  //===--------------------------------------------------------------------===//
2538  // Div utility functions
2539  //
2540  SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl,
2541                         SelectionDAG &DAG) const;
2542  SDValue BuildSDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
2543                    bool IsAfterLegalization,
2544                    std::vector<SDNode *> *Created) const;
2545  SDValue BuildUDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
2546                    bool IsAfterLegalization,
2547                    std::vector<SDNode *> *Created) const;
2548
2549  //===--------------------------------------------------------------------===//
2550  // Legalization utility functions
2551  //
2552
2553  /// Expand a MUL into two nodes.  One that computes the high bits of
2554  /// the result and one that computes the low bits.
2555  /// \param HiLoVT The value type to use for the Lo and Hi nodes.
2556  /// \param LL Low bits of the LHS of the MUL.  You can use this parameter
2557  ///        if you want to control how low bits are extracted from the LHS.
2558  /// \param LH High bits of the LHS of the MUL.  See LL for meaning.
2559  /// \param RL Low bits of the RHS of the MUL.  See LL for meaning
2560  /// \param RH High bits of the RHS of the MUL.  See LL for meaning.
2561  /// \returns true if the node has been expanded. false if it has not
2562  bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
2563                 SelectionDAG &DAG, SDValue LL = SDValue(),
2564                 SDValue LH = SDValue(), SDValue RL = SDValue(),
2565                 SDValue RH = SDValue()) const;
2566
2567  //===--------------------------------------------------------------------===//
2568  // Instruction Emitting Hooks
2569  //
2570
2571  /// This method should be implemented by targets that mark instructions with
2572  /// the 'usesCustomInserter' flag.  These instructions are special in various
2573  /// ways, which require special support to insert.  The specified MachineInstr
2574  /// is created but not inserted into any basic blocks, and this method is
2575  /// called to expand it into a sequence of instructions, potentially also
2576  /// creating new basic blocks and control flow.
2577  virtual MachineBasicBlock *
2578    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
2579
2580  /// This method should be implemented by targets that mark instructions with
2581  /// the 'hasPostISelHook' flag. These instructions must be adjusted after
2582  /// instruction selection by target hooks.  e.g. To fill in optional defs for
2583  /// ARM 's' setting instructions.
2584  virtual void
2585  AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
2586};
2587
2588/// Given an LLVM IR type and return type attributes, compute the return value
2589/// EVTs and flags, and optionally also the offsets, if the return value is
2590/// being lowered to memory.
2591void GetReturnInfo(Type* ReturnType, AttributeSet attr,
2592                   SmallVectorImpl<ISD::OutputArg> &Outs,
2593                   const TargetLowering &TLI);
2594
2595} // end llvm namespace
2596
2597#endif
2598