1//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the primary stateless implementation of the
11// Alias Analysis interface that implements identities (two different
12// globals cannot alias, etc), but does no stateful analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/Passes.h"
17#include "llvm/ADT/SmallPtrSet.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/CFG.h"
21#include "llvm/Analysis/CaptureTracking.h"
22#include "llvm/Analysis/InstructionSimplify.h"
23#include "llvm/Analysis/LoopInfo.h"
24#include "llvm/Analysis/MemoryBuiltins.h"
25#include "llvm/Analysis/ValueTracking.h"
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
28#include "llvm/IR/DerivedTypes.h"
29#include "llvm/IR/Dominators.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/GetElementPtrTypeIterator.h"
32#include "llvm/IR/GlobalAlias.h"
33#include "llvm/IR/GlobalVariable.h"
34#include "llvm/IR/Instructions.h"
35#include "llvm/IR/IntrinsicInst.h"
36#include "llvm/IR/LLVMContext.h"
37#include "llvm/IR/Operator.h"
38#include "llvm/Pass.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/Target/TargetLibraryInfo.h"
41#include <algorithm>
42using namespace llvm;
43
44/// Cutoff after which to stop analysing a set of phi nodes potentially involved
45/// in a cycle. Because we are analysing 'through' phi nodes we need to be
46/// careful with value equivalence. We use reachability to make sure a value
47/// cannot be involved in a cycle.
48const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
49
50// The max limit of the search depth in DecomposeGEPExpression() and
51// GetUnderlyingObject(), both functions need to use the same search
52// depth otherwise the algorithm in aliasGEP will assert.
53static const unsigned MaxLookupSearchDepth = 6;
54
55//===----------------------------------------------------------------------===//
56// Useful predicates
57//===----------------------------------------------------------------------===//
58
59/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
60/// object that never escapes from the function.
61static bool isNonEscapingLocalObject(const Value *V) {
62  // If this is a local allocation, check to see if it escapes.
63  if (isa<AllocaInst>(V) || isNoAliasCall(V))
64    // Set StoreCaptures to True so that we can assume in our callers that the
65    // pointer is not the result of a load instruction. Currently
66    // PointerMayBeCaptured doesn't have any special analysis for the
67    // StoreCaptures=false case; if it did, our callers could be refined to be
68    // more precise.
69    return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
70
71  // If this is an argument that corresponds to a byval or noalias argument,
72  // then it has not escaped before entering the function.  Check if it escapes
73  // inside the function.
74  if (const Argument *A = dyn_cast<Argument>(V))
75    if (A->hasByValAttr() || A->hasNoAliasAttr())
76      // Note even if the argument is marked nocapture we still need to check
77      // for copies made inside the function. The nocapture attribute only
78      // specifies that there are no copies made that outlive the function.
79      return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
80
81  return false;
82}
83
84/// isEscapeSource - Return true if the pointer is one which would have
85/// been considered an escape by isNonEscapingLocalObject.
86static bool isEscapeSource(const Value *V) {
87  if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
88    return true;
89
90  // The load case works because isNonEscapingLocalObject considers all
91  // stores to be escapes (it passes true for the StoreCaptures argument
92  // to PointerMayBeCaptured).
93  if (isa<LoadInst>(V))
94    return true;
95
96  return false;
97}
98
99/// getObjectSize - Return the size of the object specified by V, or
100/// UnknownSize if unknown.
101static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
102                              const TargetLibraryInfo &TLI,
103                              bool RoundToAlign = false) {
104  uint64_t Size;
105  if (getObjectSize(V, Size, &DL, &TLI, RoundToAlign))
106    return Size;
107  return AliasAnalysis::UnknownSize;
108}
109
110/// isObjectSmallerThan - Return true if we can prove that the object specified
111/// by V is smaller than Size.
112static bool isObjectSmallerThan(const Value *V, uint64_t Size,
113                                const DataLayout &DL,
114                                const TargetLibraryInfo &TLI) {
115  // Note that the meanings of the "object" are slightly different in the
116  // following contexts:
117  //    c1: llvm::getObjectSize()
118  //    c2: llvm.objectsize() intrinsic
119  //    c3: isObjectSmallerThan()
120  // c1 and c2 share the same meaning; however, the meaning of "object" in c3
121  // refers to the "entire object".
122  //
123  //  Consider this example:
124  //     char *p = (char*)malloc(100)
125  //     char *q = p+80;
126  //
127  //  In the context of c1 and c2, the "object" pointed by q refers to the
128  // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
129  //
130  //  However, in the context of c3, the "object" refers to the chunk of memory
131  // being allocated. So, the "object" has 100 bytes, and q points to the middle
132  // the "object". In case q is passed to isObjectSmallerThan() as the 1st
133  // parameter, before the llvm::getObjectSize() is called to get the size of
134  // entire object, we should:
135  //    - either rewind the pointer q to the base-address of the object in
136  //      question (in this case rewind to p), or
137  //    - just give up. It is up to caller to make sure the pointer is pointing
138  //      to the base address the object.
139  //
140  // We go for 2nd option for simplicity.
141  if (!isIdentifiedObject(V))
142    return false;
143
144  // This function needs to use the aligned object size because we allow
145  // reads a bit past the end given sufficient alignment.
146  uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/true);
147
148  return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size;
149}
150
151/// isObjectSize - Return true if we can prove that the object specified
152/// by V has size Size.
153static bool isObjectSize(const Value *V, uint64_t Size,
154                         const DataLayout &DL, const TargetLibraryInfo &TLI) {
155  uint64_t ObjectSize = getObjectSize(V, DL, TLI);
156  return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size;
157}
158
159/// isIdentifiedFunctionLocal - Return true if V is umabigously identified
160/// at the function-level. Different IdentifiedFunctionLocals can't alias.
161/// Further, an IdentifiedFunctionLocal can not alias with any function
162/// arguments other than itself, which is not necessarily true for
163/// IdentifiedObjects.
164static bool isIdentifiedFunctionLocal(const Value *V)
165{
166  return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
167}
168
169
170//===----------------------------------------------------------------------===//
171// GetElementPtr Instruction Decomposition and Analysis
172//===----------------------------------------------------------------------===//
173
174namespace {
175  enum ExtensionKind {
176    EK_NotExtended,
177    EK_SignExt,
178    EK_ZeroExt
179  };
180
181  struct VariableGEPIndex {
182    const Value *V;
183    ExtensionKind Extension;
184    int64_t Scale;
185
186    bool operator==(const VariableGEPIndex &Other) const {
187      return V == Other.V && Extension == Other.Extension &&
188        Scale == Other.Scale;
189    }
190
191    bool operator!=(const VariableGEPIndex &Other) const {
192      return !operator==(Other);
193    }
194  };
195}
196
197
198/// GetLinearExpression - Analyze the specified value as a linear expression:
199/// "A*V + B", where A and B are constant integers.  Return the scale and offset
200/// values as APInts and return V as a Value*, and return whether we looked
201/// through any sign or zero extends.  The incoming Value is known to have
202/// IntegerType and it may already be sign or zero extended.
203///
204/// Note that this looks through extends, so the high bits may not be
205/// represented in the result.
206static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
207                                  ExtensionKind &Extension,
208                                  const DataLayout &DL, unsigned Depth) {
209  assert(V->getType()->isIntegerTy() && "Not an integer value");
210
211  // Limit our recursion depth.
212  if (Depth == 6) {
213    Scale = 1;
214    Offset = 0;
215    return V;
216  }
217
218  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
219    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
220      switch (BOp->getOpcode()) {
221      default: break;
222      case Instruction::Or:
223        // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
224        // analyze it.
225        if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &DL))
226          break;
227        // FALL THROUGH.
228      case Instruction::Add:
229        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
230                                DL, Depth+1);
231        Offset += RHSC->getValue();
232        return V;
233      case Instruction::Mul:
234        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
235                                DL, Depth+1);
236        Offset *= RHSC->getValue();
237        Scale *= RHSC->getValue();
238        return V;
239      case Instruction::Shl:
240        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
241                                DL, Depth+1);
242        Offset <<= RHSC->getValue().getLimitedValue();
243        Scale <<= RHSC->getValue().getLimitedValue();
244        return V;
245      }
246    }
247  }
248
249  // Since GEP indices are sign extended anyway, we don't care about the high
250  // bits of a sign or zero extended value - just scales and offsets.  The
251  // extensions have to be consistent though.
252  if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) ||
253      (isa<ZExtInst>(V) && Extension != EK_SignExt)) {
254    Value *CastOp = cast<CastInst>(V)->getOperand(0);
255    unsigned OldWidth = Scale.getBitWidth();
256    unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
257    Scale = Scale.trunc(SmallWidth);
258    Offset = Offset.trunc(SmallWidth);
259    Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
260
261    Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension,
262                                        DL, Depth+1);
263    Scale = Scale.zext(OldWidth);
264    Offset = Offset.zext(OldWidth);
265
266    return Result;
267  }
268
269  Scale = 1;
270  Offset = 0;
271  return V;
272}
273
274/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
275/// into a base pointer with a constant offset and a number of scaled symbolic
276/// offsets.
277///
278/// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
279/// the VarIndices vector) are Value*'s that are known to be scaled by the
280/// specified amount, but which may have other unrepresented high bits. As such,
281/// the gep cannot necessarily be reconstructed from its decomposed form.
282///
283/// When DataLayout is around, this function is capable of analyzing everything
284/// that GetUnderlyingObject can look through. To be able to do that
285/// GetUnderlyingObject and DecomposeGEPExpression must use the same search
286/// depth (MaxLookupSearchDepth).
287/// When DataLayout not is around, it just looks through pointer casts.
288///
289static const Value *
290DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
291                       SmallVectorImpl<VariableGEPIndex> &VarIndices,
292                       bool &MaxLookupReached, const DataLayout *DL) {
293  // Limit recursion depth to limit compile time in crazy cases.
294  unsigned MaxLookup = MaxLookupSearchDepth;
295  MaxLookupReached = false;
296
297  BaseOffs = 0;
298  do {
299    // See if this is a bitcast or GEP.
300    const Operator *Op = dyn_cast<Operator>(V);
301    if (!Op) {
302      // The only non-operator case we can handle are GlobalAliases.
303      if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
304        if (!GA->mayBeOverridden()) {
305          V = GA->getAliasee();
306          continue;
307        }
308      }
309      return V;
310    }
311
312    if (Op->getOpcode() == Instruction::BitCast) {
313      V = Op->getOperand(0);
314      continue;
315    }
316
317    const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
318    if (!GEPOp) {
319      // If it's not a GEP, hand it off to SimplifyInstruction to see if it
320      // can come up with something. This matches what GetUnderlyingObject does.
321      if (const Instruction *I = dyn_cast<Instruction>(V))
322        // TODO: Get a DominatorTree and use it here.
323        if (const Value *Simplified =
324              SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
325          V = Simplified;
326          continue;
327        }
328
329      return V;
330    }
331
332    // Don't attempt to analyze GEPs over unsized objects.
333    if (!GEPOp->getOperand(0)->getType()->getPointerElementType()->isSized())
334      return V;
335
336    // If we are lacking DataLayout information, we can't compute the offets of
337    // elements computed by GEPs.  However, we can handle bitcast equivalent
338    // GEPs.
339    if (!DL) {
340      if (!GEPOp->hasAllZeroIndices())
341        return V;
342      V = GEPOp->getOperand(0);
343      continue;
344    }
345
346    unsigned AS = GEPOp->getPointerAddressSpace();
347    // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
348    gep_type_iterator GTI = gep_type_begin(GEPOp);
349    for (User::const_op_iterator I = GEPOp->op_begin()+1,
350         E = GEPOp->op_end(); I != E; ++I) {
351      Value *Index = *I;
352      // Compute the (potentially symbolic) offset in bytes for this index.
353      if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
354        // For a struct, add the member offset.
355        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
356        if (FieldNo == 0) continue;
357
358        BaseOffs += DL->getStructLayout(STy)->getElementOffset(FieldNo);
359        continue;
360      }
361
362      // For an array/pointer, add the element offset, explicitly scaled.
363      if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
364        if (CIdx->isZero()) continue;
365        BaseOffs += DL->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
366        continue;
367      }
368
369      uint64_t Scale = DL->getTypeAllocSize(*GTI);
370      ExtensionKind Extension = EK_NotExtended;
371
372      // If the integer type is smaller than the pointer size, it is implicitly
373      // sign extended to pointer size.
374      unsigned Width = Index->getType()->getIntegerBitWidth();
375      if (DL->getPointerSizeInBits(AS) > Width)
376        Extension = EK_SignExt;
377
378      // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
379      APInt IndexScale(Width, 0), IndexOffset(Width, 0);
380      Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension,
381                                  *DL, 0);
382
383      // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
384      // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
385      BaseOffs += IndexOffset.getSExtValue()*Scale;
386      Scale *= IndexScale.getSExtValue();
387
388      // If we already had an occurrence of this index variable, merge this
389      // scale into it.  For example, we want to handle:
390      //   A[x][x] -> x*16 + x*4 -> x*20
391      // This also ensures that 'x' only appears in the index list once.
392      for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
393        if (VarIndices[i].V == Index &&
394            VarIndices[i].Extension == Extension) {
395          Scale += VarIndices[i].Scale;
396          VarIndices.erase(VarIndices.begin()+i);
397          break;
398        }
399      }
400
401      // Make sure that we have a scale that makes sense for this target's
402      // pointer size.
403      if (unsigned ShiftBits = 64 - DL->getPointerSizeInBits(AS)) {
404        Scale <<= ShiftBits;
405        Scale = (int64_t)Scale >> ShiftBits;
406      }
407
408      if (Scale) {
409        VariableGEPIndex Entry = {Index, Extension,
410                                  static_cast<int64_t>(Scale)};
411        VarIndices.push_back(Entry);
412      }
413    }
414
415    // Analyze the base pointer next.
416    V = GEPOp->getOperand(0);
417  } while (--MaxLookup);
418
419  // If the chain of expressions is too deep, just return early.
420  MaxLookupReached = true;
421  return V;
422}
423
424//===----------------------------------------------------------------------===//
425// BasicAliasAnalysis Pass
426//===----------------------------------------------------------------------===//
427
428#ifndef NDEBUG
429static const Function *getParent(const Value *V) {
430  if (const Instruction *inst = dyn_cast<Instruction>(V))
431    return inst->getParent()->getParent();
432
433  if (const Argument *arg = dyn_cast<Argument>(V))
434    return arg->getParent();
435
436  return nullptr;
437}
438
439static bool notDifferentParent(const Value *O1, const Value *O2) {
440
441  const Function *F1 = getParent(O1);
442  const Function *F2 = getParent(O2);
443
444  return !F1 || !F2 || F1 == F2;
445}
446#endif
447
448namespace {
449  /// BasicAliasAnalysis - This is the primary alias analysis implementation.
450  struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
451    static char ID; // Class identification, replacement for typeinfo
452    BasicAliasAnalysis() : ImmutablePass(ID) {
453      initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
454    }
455
456    void initializePass() override {
457      InitializeAliasAnalysis(this);
458    }
459
460    void getAnalysisUsage(AnalysisUsage &AU) const override {
461      AU.addRequired<AliasAnalysis>();
462      AU.addRequired<TargetLibraryInfo>();
463    }
464
465    AliasResult alias(const Location &LocA, const Location &LocB) override {
466      assert(AliasCache.empty() && "AliasCache must be cleared after use!");
467      assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
468             "BasicAliasAnalysis doesn't support interprocedural queries.");
469      AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag,
470                                     LocB.Ptr, LocB.Size, LocB.TBAATag);
471      // AliasCache rarely has more than 1 or 2 elements, always use
472      // shrink_and_clear so it quickly returns to the inline capacity of the
473      // SmallDenseMap if it ever grows larger.
474      // FIXME: This should really be shrink_to_inline_capacity_and_clear().
475      AliasCache.shrink_and_clear();
476      VisitedPhiBBs.clear();
477      return Alias;
478    }
479
480    ModRefResult getModRefInfo(ImmutableCallSite CS,
481                               const Location &Loc) override;
482
483    ModRefResult getModRefInfo(ImmutableCallSite CS1,
484                               ImmutableCallSite CS2) override {
485      // The AliasAnalysis base class has some smarts, lets use them.
486      return AliasAnalysis::getModRefInfo(CS1, CS2);
487    }
488
489    /// pointsToConstantMemory - Chase pointers until we find a (constant
490    /// global) or not.
491    bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override;
492
493    /// Get the location associated with a pointer argument of a callsite.
494    Location getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
495                            ModRefResult &Mask) override;
496
497    /// getModRefBehavior - Return the behavior when calling the given
498    /// call site.
499    ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
500
501    /// getModRefBehavior - Return the behavior when calling the given function.
502    /// For use when the call site is not known.
503    ModRefBehavior getModRefBehavior(const Function *F) override;
504
505    /// getAdjustedAnalysisPointer - This method is used when a pass implements
506    /// an analysis interface through multiple inheritance.  If needed, it
507    /// should override this to adjust the this pointer as needed for the
508    /// specified pass info.
509    void *getAdjustedAnalysisPointer(const void *ID) override {
510      if (ID == &AliasAnalysis::ID)
511        return (AliasAnalysis*)this;
512      return this;
513    }
514
515  private:
516    // AliasCache - Track alias queries to guard against recursion.
517    typedef std::pair<Location, Location> LocPair;
518    typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy;
519    AliasCacheTy AliasCache;
520
521    /// \brief Track phi nodes we have visited. When interpret "Value" pointer
522    /// equality as value equality we need to make sure that the "Value" is not
523    /// part of a cycle. Otherwise, two uses could come from different
524    /// "iterations" of a cycle and see different values for the same "Value"
525    /// pointer.
526    /// The following example shows the problem:
527    ///   %p = phi(%alloca1, %addr2)
528    ///   %l = load %ptr
529    ///   %addr1 = gep, %alloca2, 0, %l
530    ///   %addr2 = gep  %alloca2, 0, (%l + 1)
531    ///      alias(%p, %addr1) -> MayAlias !
532    ///   store %l, ...
533    SmallPtrSet<const BasicBlock*, 8> VisitedPhiBBs;
534
535    // Visited - Track instructions visited by pointsToConstantMemory.
536    SmallPtrSet<const Value*, 16> Visited;
537
538    /// \brief Check whether two Values can be considered equivalent.
539    ///
540    /// In addition to pointer equivalence of \p V1 and \p V2 this checks
541    /// whether they can not be part of a cycle in the value graph by looking at
542    /// all visited phi nodes an making sure that the phis cannot reach the
543    /// value. We have to do this because we are looking through phi nodes (That
544    /// is we say noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
545    bool isValueEqualInPotentialCycles(const Value *V1, const Value *V2);
546
547    /// \brief Dest and Src are the variable indices from two decomposed
548    /// GetElementPtr instructions GEP1 and GEP2 which have common base
549    /// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
550    /// difference between the two pointers.
551    void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
552                            const SmallVectorImpl<VariableGEPIndex> &Src);
553
554    // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
555    // instruction against another.
556    AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
557                         const MDNode *V1TBAAInfo,
558                         const Value *V2, uint64_t V2Size,
559                         const MDNode *V2TBAAInfo,
560                         const Value *UnderlyingV1, const Value *UnderlyingV2);
561
562    // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
563    // instruction against another.
564    AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
565                         const MDNode *PNTBAAInfo,
566                         const Value *V2, uint64_t V2Size,
567                         const MDNode *V2TBAAInfo);
568
569    /// aliasSelect - Disambiguate a Select instruction against another value.
570    AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
571                            const MDNode *SITBAAInfo,
572                            const Value *V2, uint64_t V2Size,
573                            const MDNode *V2TBAAInfo);
574
575    AliasResult aliasCheck(const Value *V1, uint64_t V1Size,
576                           const MDNode *V1TBAATag,
577                           const Value *V2, uint64_t V2Size,
578                           const MDNode *V2TBAATag);
579  };
580}  // End of anonymous namespace
581
582// Register this pass...
583char BasicAliasAnalysis::ID = 0;
584INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa",
585                   "Basic Alias Analysis (stateless AA impl)",
586                   false, true, false)
587INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
588INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa",
589                   "Basic Alias Analysis (stateless AA impl)",
590                   false, true, false)
591
592
593ImmutablePass *llvm::createBasicAliasAnalysisPass() {
594  return new BasicAliasAnalysis();
595}
596
597/// pointsToConstantMemory - Returns whether the given pointer value
598/// points to memory that is local to the function, with global constants being
599/// considered local to all functions.
600bool
601BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) {
602  assert(Visited.empty() && "Visited must be cleared after use!");
603
604  unsigned MaxLookup = 8;
605  SmallVector<const Value *, 16> Worklist;
606  Worklist.push_back(Loc.Ptr);
607  do {
608    const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
609    if (!Visited.insert(V)) {
610      Visited.clear();
611      return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
612    }
613
614    // An alloca instruction defines local memory.
615    if (OrLocal && isa<AllocaInst>(V))
616      continue;
617
618    // A global constant counts as local memory for our purposes.
619    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
620      // Note: this doesn't require GV to be "ODR" because it isn't legal for a
621      // global to be marked constant in some modules and non-constant in
622      // others.  GV may even be a declaration, not a definition.
623      if (!GV->isConstant()) {
624        Visited.clear();
625        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
626      }
627      continue;
628    }
629
630    // If both select values point to local memory, then so does the select.
631    if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
632      Worklist.push_back(SI->getTrueValue());
633      Worklist.push_back(SI->getFalseValue());
634      continue;
635    }
636
637    // If all values incoming to a phi node point to local memory, then so does
638    // the phi.
639    if (const PHINode *PN = dyn_cast<PHINode>(V)) {
640      // Don't bother inspecting phi nodes with many operands.
641      if (PN->getNumIncomingValues() > MaxLookup) {
642        Visited.clear();
643        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
644      }
645      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
646        Worklist.push_back(PN->getIncomingValue(i));
647      continue;
648    }
649
650    // Otherwise be conservative.
651    Visited.clear();
652    return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
653
654  } while (!Worklist.empty() && --MaxLookup);
655
656  Visited.clear();
657  return Worklist.empty();
658}
659
660static bool isMemsetPattern16(const Function *MS,
661                              const TargetLibraryInfo &TLI) {
662  if (TLI.has(LibFunc::memset_pattern16) &&
663      MS->getName() == "memset_pattern16") {
664    FunctionType *MemsetType = MS->getFunctionType();
665    if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 &&
666        isa<PointerType>(MemsetType->getParamType(0)) &&
667        isa<PointerType>(MemsetType->getParamType(1)) &&
668        isa<IntegerType>(MemsetType->getParamType(2)))
669      return true;
670  }
671
672  return false;
673}
674
675/// getModRefBehavior - Return the behavior when calling the given call site.
676AliasAnalysis::ModRefBehavior
677BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
678  if (CS.doesNotAccessMemory())
679    // Can't do better than this.
680    return DoesNotAccessMemory;
681
682  ModRefBehavior Min = UnknownModRefBehavior;
683
684  // If the callsite knows it only reads memory, don't return worse
685  // than that.
686  if (CS.onlyReadsMemory())
687    Min = OnlyReadsMemory;
688
689  // The AliasAnalysis base class has some smarts, lets use them.
690  return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
691}
692
693/// getModRefBehavior - Return the behavior when calling the given function.
694/// For use when the call site is not known.
695AliasAnalysis::ModRefBehavior
696BasicAliasAnalysis::getModRefBehavior(const Function *F) {
697  // If the function declares it doesn't access memory, we can't do better.
698  if (F->doesNotAccessMemory())
699    return DoesNotAccessMemory;
700
701  // For intrinsics, we can check the table.
702  if (unsigned iid = F->getIntrinsicID()) {
703#define GET_INTRINSIC_MODREF_BEHAVIOR
704#include "llvm/IR/Intrinsics.gen"
705#undef GET_INTRINSIC_MODREF_BEHAVIOR
706  }
707
708  ModRefBehavior Min = UnknownModRefBehavior;
709
710  // If the function declares it only reads memory, go with that.
711  if (F->onlyReadsMemory())
712    Min = OnlyReadsMemory;
713
714  const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>();
715  if (isMemsetPattern16(F, TLI))
716    Min = OnlyAccessesArgumentPointees;
717
718  // Otherwise be conservative.
719  return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
720}
721
722AliasAnalysis::Location
723BasicAliasAnalysis::getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
724                                   ModRefResult &Mask) {
725  Location Loc = AliasAnalysis::getArgLocation(CS, ArgIdx, Mask);
726  const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>();
727  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
728  if (II != nullptr)
729    switch (II->getIntrinsicID()) {
730    default: break;
731    case Intrinsic::memset:
732    case Intrinsic::memcpy:
733    case Intrinsic::memmove: {
734      assert((ArgIdx == 0 || ArgIdx == 1) &&
735             "Invalid argument index for memory intrinsic");
736      if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
737        Loc.Size = LenCI->getZExtValue();
738      assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
739             "Memory intrinsic location pointer not argument?");
740      Mask = ArgIdx ? Ref : Mod;
741      break;
742    }
743    case Intrinsic::lifetime_start:
744    case Intrinsic::lifetime_end:
745    case Intrinsic::invariant_start: {
746      assert(ArgIdx == 1 && "Invalid argument index");
747      assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
748             "Intrinsic location pointer not argument?");
749      Loc.Size = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
750      break;
751    }
752    case Intrinsic::invariant_end: {
753      assert(ArgIdx == 2 && "Invalid argument index");
754      assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
755             "Intrinsic location pointer not argument?");
756      Loc.Size = cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
757      break;
758    }
759    case Intrinsic::arm_neon_vld1: {
760      assert(ArgIdx == 0 && "Invalid argument index");
761      assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
762             "Intrinsic location pointer not argument?");
763      // LLVM's vld1 and vst1 intrinsics currently only support a single
764      // vector register.
765      if (DL)
766        Loc.Size = DL->getTypeStoreSize(II->getType());
767      break;
768    }
769    case Intrinsic::arm_neon_vst1: {
770      assert(ArgIdx == 0 && "Invalid argument index");
771      assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
772             "Intrinsic location pointer not argument?");
773      if (DL)
774        Loc.Size = DL->getTypeStoreSize(II->getArgOperand(1)->getType());
775      break;
776    }
777    }
778
779  // We can bound the aliasing properties of memset_pattern16 just as we can
780  // for memcpy/memset.  This is particularly important because the
781  // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
782  // whenever possible.
783  else if (CS.getCalledFunction() &&
784           isMemsetPattern16(CS.getCalledFunction(), TLI)) {
785    assert((ArgIdx == 0 || ArgIdx == 1) &&
786           "Invalid argument index for memset_pattern16");
787    if (ArgIdx == 1)
788      Loc.Size = 16;
789    else if (const ConstantInt *LenCI =
790             dyn_cast<ConstantInt>(CS.getArgument(2)))
791      Loc.Size = LenCI->getZExtValue();
792    assert(Loc.Ptr == CS.getArgument(ArgIdx) &&
793           "memset_pattern16 location pointer not argument?");
794    Mask = ArgIdx ? Ref : Mod;
795  }
796  // FIXME: Handle memset_pattern4 and memset_pattern8 also.
797
798  return Loc;
799}
800
801/// getModRefInfo - Check to see if the specified callsite can clobber the
802/// specified memory object.  Since we only look at local properties of this
803/// function, we really can't say much about this query.  We do, however, use
804/// simple "address taken" analysis on local objects.
805AliasAnalysis::ModRefResult
806BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
807                                  const Location &Loc) {
808  assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
809         "AliasAnalysis query involving multiple functions!");
810
811  const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
812
813  // If this is a tail call and Loc.Ptr points to a stack location, we know that
814  // the tail call cannot access or modify the local stack.
815  // We cannot exclude byval arguments here; these belong to the caller of
816  // the current function not to the current function, and a tail callee
817  // may reference them.
818  if (isa<AllocaInst>(Object))
819    if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
820      if (CI->isTailCall())
821        return NoModRef;
822
823  // If the pointer is to a locally allocated object that does not escape,
824  // then the call can not mod/ref the pointer unless the call takes the pointer
825  // as an argument, and itself doesn't capture it.
826  if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
827      isNonEscapingLocalObject(Object)) {
828    bool PassedAsArg = false;
829    unsigned ArgNo = 0;
830    for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
831         CI != CE; ++CI, ++ArgNo) {
832      // Only look at the no-capture or byval pointer arguments.  If this
833      // pointer were passed to arguments that were neither of these, then it
834      // couldn't be no-capture.
835      if (!(*CI)->getType()->isPointerTy() ||
836          (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
837        continue;
838
839      // If this is a no-capture pointer argument, see if we can tell that it
840      // is impossible to alias the pointer we're checking.  If not, we have to
841      // assume that the call could touch the pointer, even though it doesn't
842      // escape.
843      if (!isNoAlias(Location(*CI), Location(Object))) {
844        PassedAsArg = true;
845        break;
846      }
847    }
848
849    if (!PassedAsArg)
850      return NoModRef;
851  }
852
853  // The AliasAnalysis base class has some smarts, lets use them.
854  return AliasAnalysis::getModRefInfo(CS, Loc);
855}
856
857/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
858/// against another pointer.  We know that V1 is a GEP, but we don't know
859/// anything about V2.  UnderlyingV1 is GetUnderlyingObject(GEP1, DL),
860/// UnderlyingV2 is the same for V2.
861///
862AliasAnalysis::AliasResult
863BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
864                             const MDNode *V1TBAAInfo,
865                             const Value *V2, uint64_t V2Size,
866                             const MDNode *V2TBAAInfo,
867                             const Value *UnderlyingV1,
868                             const Value *UnderlyingV2) {
869  int64_t GEP1BaseOffset;
870  bool GEP1MaxLookupReached;
871  SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
872
873  // If we have two gep instructions with must-alias or not-alias'ing base
874  // pointers, figure out if the indexes to the GEP tell us anything about the
875  // derived pointer.
876  if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
877    // Do the base pointers alias?
878    AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, nullptr,
879                                       UnderlyingV2, UnknownSize, nullptr);
880
881    // Check for geps of non-aliasing underlying pointers where the offsets are
882    // identical.
883    if ((BaseAlias == MayAlias) && V1Size == V2Size) {
884      // Do the base pointers alias assuming type and size.
885      AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size,
886                                                V1TBAAInfo, UnderlyingV2,
887                                                V2Size, V2TBAAInfo);
888      if (PreciseBaseAlias == NoAlias) {
889        // See if the computed offset from the common pointer tells us about the
890        // relation of the resulting pointer.
891        int64_t GEP2BaseOffset;
892        bool GEP2MaxLookupReached;
893        SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
894        const Value *GEP2BasePtr =
895          DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
896                                 GEP2MaxLookupReached, DL);
897        const Value *GEP1BasePtr =
898          DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
899                                 GEP1MaxLookupReached, DL);
900        // DecomposeGEPExpression and GetUnderlyingObject should return the
901        // same result except when DecomposeGEPExpression has no DataLayout.
902        if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
903          assert(!DL &&
904                 "DecomposeGEPExpression and GetUnderlyingObject disagree!");
905          return MayAlias;
906        }
907        // If the max search depth is reached the result is undefined
908        if (GEP2MaxLookupReached || GEP1MaxLookupReached)
909          return MayAlias;
910
911        // Same offsets.
912        if (GEP1BaseOffset == GEP2BaseOffset &&
913            GEP1VariableIndices == GEP2VariableIndices)
914          return NoAlias;
915        GEP1VariableIndices.clear();
916      }
917    }
918
919    // If we get a No or May, then return it immediately, no amount of analysis
920    // will improve this situation.
921    if (BaseAlias != MustAlias) return BaseAlias;
922
923    // Otherwise, we have a MustAlias.  Since the base pointers alias each other
924    // exactly, see if the computed offset from the common pointer tells us
925    // about the relation of the resulting pointer.
926    const Value *GEP1BasePtr =
927      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
928                             GEP1MaxLookupReached, DL);
929
930    int64_t GEP2BaseOffset;
931    bool GEP2MaxLookupReached;
932    SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
933    const Value *GEP2BasePtr =
934      DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
935                             GEP2MaxLookupReached, DL);
936
937    // DecomposeGEPExpression and GetUnderlyingObject should return the
938    // same result except when DecomposeGEPExpression has no DataLayout.
939    if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
940      assert(!DL &&
941             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
942      return MayAlias;
943    }
944    // If the max search depth is reached the result is undefined
945    if (GEP2MaxLookupReached || GEP1MaxLookupReached)
946      return MayAlias;
947
948    // Subtract the GEP2 pointer from the GEP1 pointer to find out their
949    // symbolic difference.
950    GEP1BaseOffset -= GEP2BaseOffset;
951    GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
952
953  } else {
954    // Check to see if these two pointers are related by the getelementptr
955    // instruction.  If one pointer is a GEP with a non-zero index of the other
956    // pointer, we know they cannot alias.
957
958    // If both accesses are unknown size, we can't do anything useful here.
959    if (V1Size == UnknownSize && V2Size == UnknownSize)
960      return MayAlias;
961
962    AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, nullptr,
963                               V2, V2Size, V2TBAAInfo);
964    if (R != MustAlias)
965      // If V2 may alias GEP base pointer, conservatively returns MayAlias.
966      // If V2 is known not to alias GEP base pointer, then the two values
967      // cannot alias per GEP semantics: "A pointer value formed from a
968      // getelementptr instruction is associated with the addresses associated
969      // with the first operand of the getelementptr".
970      return R;
971
972    const Value *GEP1BasePtr =
973      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
974                             GEP1MaxLookupReached, DL);
975
976    // DecomposeGEPExpression and GetUnderlyingObject should return the
977    // same result except when DecomposeGEPExpression has no DataLayout.
978    if (GEP1BasePtr != UnderlyingV1) {
979      assert(!DL &&
980             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
981      return MayAlias;
982    }
983    // If the max search depth is reached the result is undefined
984    if (GEP1MaxLookupReached)
985      return MayAlias;
986  }
987
988  // In the two GEP Case, if there is no difference in the offsets of the
989  // computed pointers, the resultant pointers are a must alias.  This
990  // hapens when we have two lexically identical GEP's (for example).
991  //
992  // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
993  // must aliases the GEP, the end result is a must alias also.
994  if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
995    return MustAlias;
996
997  // If there is a constant difference between the pointers, but the difference
998  // is less than the size of the associated memory object, then we know
999  // that the objects are partially overlapping.  If the difference is
1000  // greater, we know they do not overlap.
1001  if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
1002    if (GEP1BaseOffset >= 0) {
1003      if (V2Size != UnknownSize) {
1004        if ((uint64_t)GEP1BaseOffset < V2Size)
1005          return PartialAlias;
1006        return NoAlias;
1007      }
1008    } else {
1009      // We have the situation where:
1010      // +                +
1011      // | BaseOffset     |
1012      // ---------------->|
1013      // |-->V1Size       |-------> V2Size
1014      // GEP1             V2
1015      // We need to know that V2Size is not unknown, otherwise we might have
1016      // stripped a gep with negative index ('gep <ptr>, -1, ...).
1017      if (V1Size != UnknownSize && V2Size != UnknownSize) {
1018        if (-(uint64_t)GEP1BaseOffset < V1Size)
1019          return PartialAlias;
1020        return NoAlias;
1021      }
1022    }
1023  }
1024
1025  // Try to distinguish something like &A[i][1] against &A[42][0].
1026  // Grab the least significant bit set in any of the scales.
1027  if (!GEP1VariableIndices.empty()) {
1028    uint64_t Modulo = 0;
1029    for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i)
1030      Modulo |= (uint64_t)GEP1VariableIndices[i].Scale;
1031    Modulo = Modulo ^ (Modulo & (Modulo - 1));
1032
1033    // We can compute the difference between the two addresses
1034    // mod Modulo. Check whether that difference guarantees that the
1035    // two locations do not alias.
1036    uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
1037    if (V1Size != UnknownSize && V2Size != UnknownSize &&
1038        ModOffset >= V2Size && V1Size <= Modulo - ModOffset)
1039      return NoAlias;
1040  }
1041
1042  // Statically, we can see that the base objects are the same, but the
1043  // pointers have dynamic offsets which we can't resolve. And none of our
1044  // little tricks above worked.
1045  //
1046  // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
1047  // practical effect of this is protecting TBAA in the case of dynamic
1048  // indices into arrays of unions or malloc'd memory.
1049  return PartialAlias;
1050}
1051
1052static AliasAnalysis::AliasResult
1053MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) {
1054  // If the results agree, take it.
1055  if (A == B)
1056    return A;
1057  // A mix of PartialAlias and MustAlias is PartialAlias.
1058  if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) ||
1059      (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias))
1060    return AliasAnalysis::PartialAlias;
1061  // Otherwise, we don't know anything.
1062  return AliasAnalysis::MayAlias;
1063}
1064
1065/// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
1066/// instruction against another.
1067AliasAnalysis::AliasResult
1068BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize,
1069                                const MDNode *SITBAAInfo,
1070                                const Value *V2, uint64_t V2Size,
1071                                const MDNode *V2TBAAInfo) {
1072  // If the values are Selects with the same condition, we can do a more precise
1073  // check: just check for aliases between the values on corresponding arms.
1074  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1075    if (SI->getCondition() == SI2->getCondition()) {
1076      AliasResult Alias =
1077        aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo,
1078                   SI2->getTrueValue(), V2Size, V2TBAAInfo);
1079      if (Alias == MayAlias)
1080        return MayAlias;
1081      AliasResult ThisAlias =
1082        aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo,
1083                   SI2->getFalseValue(), V2Size, V2TBAAInfo);
1084      return MergeAliasResults(ThisAlias, Alias);
1085    }
1086
1087  // If both arms of the Select node NoAlias or MustAlias V2, then returns
1088  // NoAlias / MustAlias. Otherwise, returns MayAlias.
1089  AliasResult Alias =
1090    aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo);
1091  if (Alias == MayAlias)
1092    return MayAlias;
1093
1094  AliasResult ThisAlias =
1095    aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo);
1096  return MergeAliasResults(ThisAlias, Alias);
1097}
1098
1099// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
1100// against another.
1101AliasAnalysis::AliasResult
1102BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
1103                             const MDNode *PNTBAAInfo,
1104                             const Value *V2, uint64_t V2Size,
1105                             const MDNode *V2TBAAInfo) {
1106  // Track phi nodes we have visited. We use this information when we determine
1107  // value equivalence.
1108  VisitedPhiBBs.insert(PN->getParent());
1109
1110  // If the values are PHIs in the same block, we can do a more precise
1111  // as well as efficient check: just check for aliases between the values
1112  // on corresponding edges.
1113  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1114    if (PN2->getParent() == PN->getParent()) {
1115      LocPair Locs(Location(PN, PNSize, PNTBAAInfo),
1116                   Location(V2, V2Size, V2TBAAInfo));
1117      if (PN > V2)
1118        std::swap(Locs.first, Locs.second);
1119      // Analyse the PHIs' inputs under the assumption that the PHIs are
1120      // NoAlias.
1121      // If the PHIs are May/MustAlias there must be (recursively) an input
1122      // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1123      // there must be an operation on the PHIs within the PHIs' value cycle
1124      // that causes a MayAlias.
1125      // Pretend the phis do not alias.
1126      AliasResult Alias = NoAlias;
1127      assert(AliasCache.count(Locs) &&
1128             "There must exist an entry for the phi node");
1129      AliasResult OrigAliasResult = AliasCache[Locs];
1130      AliasCache[Locs] = NoAlias;
1131
1132      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1133        AliasResult ThisAlias =
1134          aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo,
1135                     PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1136                     V2Size, V2TBAAInfo);
1137        Alias = MergeAliasResults(ThisAlias, Alias);
1138        if (Alias == MayAlias)
1139          break;
1140      }
1141
1142      // Reset if speculation failed.
1143      if (Alias != NoAlias)
1144        AliasCache[Locs] = OrigAliasResult;
1145
1146      return Alias;
1147    }
1148
1149  SmallPtrSet<Value*, 4> UniqueSrc;
1150  SmallVector<Value*, 4> V1Srcs;
1151  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1152    Value *PV1 = PN->getIncomingValue(i);
1153    if (isa<PHINode>(PV1))
1154      // If any of the source itself is a PHI, return MayAlias conservatively
1155      // to avoid compile time explosion. The worst possible case is if both
1156      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1157      // and 'n' are the number of PHI sources.
1158      return MayAlias;
1159    if (UniqueSrc.insert(PV1))
1160      V1Srcs.push_back(PV1);
1161  }
1162
1163  AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo,
1164                                 V1Srcs[0], PNSize, PNTBAAInfo);
1165  // Early exit if the check of the first PHI source against V2 is MayAlias.
1166  // Other results are not possible.
1167  if (Alias == MayAlias)
1168    return MayAlias;
1169
1170  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1171  // NoAlias / MustAlias. Otherwise, returns MayAlias.
1172  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1173    Value *V = V1Srcs[i];
1174
1175    AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo,
1176                                       V, PNSize, PNTBAAInfo);
1177    Alias = MergeAliasResults(ThisAlias, Alias);
1178    if (Alias == MayAlias)
1179      break;
1180  }
1181
1182  return Alias;
1183}
1184
1185// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
1186// such as array references.
1187//
1188AliasAnalysis::AliasResult
1189BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
1190                               const MDNode *V1TBAAInfo,
1191                               const Value *V2, uint64_t V2Size,
1192                               const MDNode *V2TBAAInfo) {
1193  // If either of the memory references is empty, it doesn't matter what the
1194  // pointer values are.
1195  if (V1Size == 0 || V2Size == 0)
1196    return NoAlias;
1197
1198  // Strip off any casts if they exist.
1199  V1 = V1->stripPointerCasts();
1200  V2 = V2->stripPointerCasts();
1201
1202  // Are we checking for alias of the same value?
1203  // Because we look 'through' phi nodes we could look at "Value" pointers from
1204  // different iterations. We must therefore make sure that this is not the
1205  // case. The function isValueEqualInPotentialCycles ensures that this cannot
1206  // happen by looking at the visited phi nodes and making sure they cannot
1207  // reach the value.
1208  if (isValueEqualInPotentialCycles(V1, V2))
1209    return MustAlias;
1210
1211  if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1212    return NoAlias;  // Scalars cannot alias each other
1213
1214  // Figure out what objects these things are pointing to if we can.
1215  const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
1216  const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
1217
1218  // Null values in the default address space don't point to any object, so they
1219  // don't alias any other pointer.
1220  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1221    if (CPN->getType()->getAddressSpace() == 0)
1222      return NoAlias;
1223  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1224    if (CPN->getType()->getAddressSpace() == 0)
1225      return NoAlias;
1226
1227  if (O1 != O2) {
1228    // If V1/V2 point to two different objects we know that we have no alias.
1229    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1230      return NoAlias;
1231
1232    // Constant pointers can't alias with non-const isIdentifiedObject objects.
1233    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1234        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1235      return NoAlias;
1236
1237    // Function arguments can't alias with things that are known to be
1238    // unambigously identified at the function level.
1239    if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1240        (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1241      return NoAlias;
1242
1243    // Most objects can't alias null.
1244    if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
1245        (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
1246      return NoAlias;
1247
1248    // If one pointer is the result of a call/invoke or load and the other is a
1249    // non-escaping local object within the same function, then we know the
1250    // object couldn't escape to a point where the call could return it.
1251    //
1252    // Note that if the pointers are in different functions, there are a
1253    // variety of complications. A call with a nocapture argument may still
1254    // temporary store the nocapture argument's value in a temporary memory
1255    // location if that memory location doesn't escape. Or it may pass a
1256    // nocapture value to other functions as long as they don't capture it.
1257    if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1258      return NoAlias;
1259    if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1260      return NoAlias;
1261  }
1262
1263  // If the size of one access is larger than the entire object on the other
1264  // side, then we know such behavior is undefined and can assume no alias.
1265  if (DL)
1266    if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *DL, *TLI)) ||
1267        (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *DL, *TLI)))
1268      return NoAlias;
1269
1270  // Check the cache before climbing up use-def chains. This also terminates
1271  // otherwise infinitely recursive queries.
1272  LocPair Locs(Location(V1, V1Size, V1TBAAInfo),
1273               Location(V2, V2Size, V2TBAAInfo));
1274  if (V1 > V2)
1275    std::swap(Locs.first, Locs.second);
1276  std::pair<AliasCacheTy::iterator, bool> Pair =
1277    AliasCache.insert(std::make_pair(Locs, MayAlias));
1278  if (!Pair.second)
1279    return Pair.first->second;
1280
1281  // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1282  // GEP can't simplify, we don't even look at the PHI cases.
1283  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1284    std::swap(V1, V2);
1285    std::swap(V1Size, V2Size);
1286    std::swap(O1, O2);
1287    std::swap(V1TBAAInfo, V2TBAAInfo);
1288  }
1289  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1290    AliasResult Result = aliasGEP(GV1, V1Size, V1TBAAInfo, V2, V2Size, V2TBAAInfo, O1, O2);
1291    if (Result != MayAlias) return AliasCache[Locs] = Result;
1292  }
1293
1294  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1295    std::swap(V1, V2);
1296    std::swap(V1Size, V2Size);
1297    std::swap(V1TBAAInfo, V2TBAAInfo);
1298  }
1299  if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1300    AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo,
1301                                  V2, V2Size, V2TBAAInfo);
1302    if (Result != MayAlias) return AliasCache[Locs] = Result;
1303  }
1304
1305  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1306    std::swap(V1, V2);
1307    std::swap(V1Size, V2Size);
1308    std::swap(V1TBAAInfo, V2TBAAInfo);
1309  }
1310  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1311    AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo,
1312                                     V2, V2Size, V2TBAAInfo);
1313    if (Result != MayAlias) return AliasCache[Locs] = Result;
1314  }
1315
1316  // If both pointers are pointing into the same object and one of them
1317  // accesses is accessing the entire object, then the accesses must
1318  // overlap in some way.
1319  if (DL && O1 == O2)
1320    if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *DL, *TLI)) ||
1321        (V2Size != UnknownSize && isObjectSize(O2, V2Size, *DL, *TLI)))
1322      return AliasCache[Locs] = PartialAlias;
1323
1324  AliasResult Result =
1325    AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo),
1326                         Location(V2, V2Size, V2TBAAInfo));
1327  return AliasCache[Locs] = Result;
1328}
1329
1330bool BasicAliasAnalysis::isValueEqualInPotentialCycles(const Value *V,
1331                                                       const Value *V2) {
1332  if (V != V2)
1333    return false;
1334
1335  const Instruction *Inst = dyn_cast<Instruction>(V);
1336  if (!Inst)
1337    return true;
1338
1339  if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1340    return false;
1341
1342  // Use dominance or loop info if available.
1343  DominatorTreeWrapperPass *DTWP =
1344      getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1345  DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
1346  LoopInfo *LI = getAnalysisIfAvailable<LoopInfo>();
1347
1348  // Make sure that the visited phis cannot reach the Value. This ensures that
1349  // the Values cannot come from different iterations of a potential cycle the
1350  // phi nodes could be involved in.
1351  for (SmallPtrSet<const BasicBlock *, 8>::iterator PI = VisitedPhiBBs.begin(),
1352                                                    PE = VisitedPhiBBs.end();
1353       PI != PE; ++PI)
1354    if (isPotentiallyReachable((*PI)->begin(), Inst, DT, LI))
1355      return false;
1356
1357  return true;
1358}
1359
1360/// GetIndexDifference - Dest and Src are the variable indices from two
1361/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
1362/// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
1363/// difference between the two pointers.
1364void BasicAliasAnalysis::GetIndexDifference(
1365    SmallVectorImpl<VariableGEPIndex> &Dest,
1366    const SmallVectorImpl<VariableGEPIndex> &Src) {
1367  if (Src.empty())
1368    return;
1369
1370  for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1371    const Value *V = Src[i].V;
1372    ExtensionKind Extension = Src[i].Extension;
1373    int64_t Scale = Src[i].Scale;
1374
1375    // Find V in Dest.  This is N^2, but pointer indices almost never have more
1376    // than a few variable indexes.
1377    for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1378      if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1379          Dest[j].Extension != Extension)
1380        continue;
1381
1382      // If we found it, subtract off Scale V's from the entry in Dest.  If it
1383      // goes to zero, remove the entry.
1384      if (Dest[j].Scale != Scale)
1385        Dest[j].Scale -= Scale;
1386      else
1387        Dest.erase(Dest.begin() + j);
1388      Scale = 0;
1389      break;
1390    }
1391
1392    // If we didn't consume this entry, add it to the end of the Dest list.
1393    if (Scale) {
1394      VariableGEPIndex Entry = { V, Extension, -Scale };
1395      Dest.push_back(Entry);
1396    }
1397  }
1398}
1399