BlockFrequencyInfoImpl.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Loops should be simplified before this analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
15#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/SCCIterator.h"
17#include "llvm/Support/raw_ostream.h"
18#include <deque>
19
20using namespace llvm;
21using namespace llvm::bfi_detail;
22
23#define DEBUG_TYPE "block-freq"
24
25//===----------------------------------------------------------------------===//
26//
27// UnsignedFloat implementation.
28//
29//===----------------------------------------------------------------------===//
30#ifndef _MSC_VER
31const int32_t UnsignedFloatBase::MaxExponent;
32const int32_t UnsignedFloatBase::MinExponent;
33#endif
34
35static void appendDigit(std::string &Str, unsigned D) {
36  assert(D < 10);
37  Str += '0' + D % 10;
38}
39
40static void appendNumber(std::string &Str, uint64_t N) {
41  while (N) {
42    appendDigit(Str, N % 10);
43    N /= 10;
44  }
45}
46
47static bool doesRoundUp(char Digit) {
48  switch (Digit) {
49  case '5':
50  case '6':
51  case '7':
52  case '8':
53  case '9':
54    return true;
55  default:
56    return false;
57  }
58}
59
60static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) {
61  assert(E >= UnsignedFloatBase::MinExponent);
62  assert(E <= UnsignedFloatBase::MaxExponent);
63
64  // Find a new E, but don't let it increase past MaxExponent.
65  int LeadingZeros = UnsignedFloatBase::countLeadingZeros64(D);
66  int NewE = std::min(UnsignedFloatBase::MaxExponent, E + 63 - LeadingZeros);
67  int Shift = 63 - (NewE - E);
68  assert(Shift <= LeadingZeros);
69  assert(Shift == LeadingZeros || NewE == UnsignedFloatBase::MaxExponent);
70  D <<= Shift;
71  E = NewE;
72
73  // Check for a denormal.
74  unsigned AdjustedE = E + 16383;
75  if (!(D >> 63)) {
76    assert(E == UnsignedFloatBase::MaxExponent);
77    AdjustedE = 0;
78  }
79
80  // Build the float and print it.
81  uint64_t RawBits[2] = {D, AdjustedE};
82  APFloat Float(APFloat::x87DoubleExtended, APInt(80, RawBits));
83  SmallVector<char, 24> Chars;
84  Float.toString(Chars, Precision, 0);
85  return std::string(Chars.begin(), Chars.end());
86}
87
88static std::string stripTrailingZeros(const std::string &Float) {
89  size_t NonZero = Float.find_last_not_of('0');
90  assert(NonZero != std::string::npos && "no . in floating point string");
91
92  if (Float[NonZero] == '.')
93    ++NonZero;
94
95  return Float.substr(0, NonZero + 1);
96}
97
98std::string UnsignedFloatBase::toString(uint64_t D, int16_t E, int Width,
99                                        unsigned Precision) {
100  if (!D)
101    return "0.0";
102
103  // Canonicalize exponent and digits.
104  uint64_t Above0 = 0;
105  uint64_t Below0 = 0;
106  uint64_t Extra = 0;
107  int ExtraShift = 0;
108  if (E == 0) {
109    Above0 = D;
110  } else if (E > 0) {
111    if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) {
112      D <<= Shift;
113      E -= Shift;
114
115      if (!E)
116        Above0 = D;
117    }
118  } else if (E > -64) {
119    Above0 = D >> -E;
120    Below0 = D << (64 + E);
121  } else if (E > -120) {
122    Below0 = D >> (-E - 64);
123    Extra = D << (128 + E);
124    ExtraShift = -64 - E;
125  }
126
127  // Fall back on APFloat for very small and very large numbers.
128  if (!Above0 && !Below0)
129    return toStringAPFloat(D, E, Precision);
130
131  // Append the digits before the decimal.
132  std::string Str;
133  size_t DigitsOut = 0;
134  if (Above0) {
135    appendNumber(Str, Above0);
136    DigitsOut = Str.size();
137  } else
138    appendDigit(Str, 0);
139  std::reverse(Str.begin(), Str.end());
140
141  // Return early if there's nothing after the decimal.
142  if (!Below0)
143    return Str + ".0";
144
145  // Append the decimal and beyond.
146  Str += '.';
147  uint64_t Error = UINT64_C(1) << (64 - Width);
148
149  // We need to shift Below0 to the right to make space for calculating
150  // digits.  Save the precision we're losing in Extra.
151  Extra = (Below0 & 0xf) << 56 | (Extra >> 8);
152  Below0 >>= 4;
153  size_t SinceDot = 0;
154  size_t AfterDot = Str.size();
155  do {
156    if (ExtraShift) {
157      --ExtraShift;
158      Error *= 5;
159    } else
160      Error *= 10;
161
162    Below0 *= 10;
163    Extra *= 10;
164    Below0 += (Extra >> 60);
165    Extra = Extra & (UINT64_MAX >> 4);
166    appendDigit(Str, Below0 >> 60);
167    Below0 = Below0 & (UINT64_MAX >> 4);
168    if (DigitsOut || Str.back() != '0')
169      ++DigitsOut;
170    ++SinceDot;
171  } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 &&
172           (!Precision || DigitsOut <= Precision || SinceDot < 2));
173
174  // Return early for maximum precision.
175  if (!Precision || DigitsOut <= Precision)
176    return stripTrailingZeros(Str);
177
178  // Find where to truncate.
179  size_t Truncate =
180      std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1);
181
182  // Check if there's anything to truncate.
183  if (Truncate >= Str.size())
184    return stripTrailingZeros(Str);
185
186  bool Carry = doesRoundUp(Str[Truncate]);
187  if (!Carry)
188    return stripTrailingZeros(Str.substr(0, Truncate));
189
190  // Round with the first truncated digit.
191  for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend();
192       I != E; ++I) {
193    if (*I == '.')
194      continue;
195    if (*I == '9') {
196      *I = '0';
197      continue;
198    }
199
200    ++*I;
201    Carry = false;
202    break;
203  }
204
205  // Add "1" in front if we still need to carry.
206  return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate));
207}
208
209raw_ostream &UnsignedFloatBase::print(raw_ostream &OS, uint64_t D, int16_t E,
210                                      int Width, unsigned Precision) {
211  return OS << toString(D, E, Width, Precision);
212}
213
214void UnsignedFloatBase::dump(uint64_t D, int16_t E, int Width) {
215  print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E
216                                << "]";
217}
218
219static std::pair<uint64_t, int16_t>
220getRoundedFloat(uint64_t N, bool ShouldRound, int64_t Shift) {
221  if (ShouldRound)
222    if (!++N)
223      // Rounding caused an overflow.
224      return std::make_pair(UINT64_C(1), Shift + 64);
225  return std::make_pair(N, Shift);
226}
227
228std::pair<uint64_t, int16_t> UnsignedFloatBase::divide64(uint64_t Dividend,
229                                                         uint64_t Divisor) {
230  // Input should be sanitized.
231  assert(Divisor);
232  assert(Dividend);
233
234  // Minimize size of divisor.
235  int16_t Shift = 0;
236  if (int Zeros = countTrailingZeros(Divisor)) {
237    Shift -= Zeros;
238    Divisor >>= Zeros;
239  }
240
241  // Check for powers of two.
242  if (Divisor == 1)
243    return std::make_pair(Dividend, Shift);
244
245  // Maximize size of dividend.
246  if (int Zeros = countLeadingZeros64(Dividend)) {
247    Shift -= Zeros;
248    Dividend <<= Zeros;
249  }
250
251  // Start with the result of a divide.
252  uint64_t Quotient = Dividend / Divisor;
253  Dividend %= Divisor;
254
255  // Continue building the quotient with long division.
256  //
257  // TODO: continue with largers digits.
258  while (!(Quotient >> 63) && Dividend) {
259    // Shift Dividend, and check for overflow.
260    bool IsOverflow = Dividend >> 63;
261    Dividend <<= 1;
262    --Shift;
263
264    // Divide.
265    bool DoesDivide = IsOverflow || Divisor <= Dividend;
266    Quotient = (Quotient << 1) | uint64_t(DoesDivide);
267    Dividend -= DoesDivide ? Divisor : 0;
268  }
269
270  // Round.
271  if (Dividend >= getHalf(Divisor))
272    if (!++Quotient)
273      // Rounding caused an overflow in Quotient.
274      return std::make_pair(UINT64_C(1), Shift + 64);
275
276  return getRoundedFloat(Quotient, Dividend >= getHalf(Divisor), Shift);
277}
278
279std::pair<uint64_t, int16_t> UnsignedFloatBase::multiply64(uint64_t L,
280                                                           uint64_t R) {
281  // Separate into two 32-bit digits (U.L).
282  uint64_t UL = L >> 32, LL = L & UINT32_MAX, UR = R >> 32, LR = R & UINT32_MAX;
283
284  // Compute cross products.
285  uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR;
286
287  // Sum into two 64-bit digits.
288  uint64_t Upper = P1, Lower = P4;
289  auto addWithCarry = [&](uint64_t N) {
290    uint64_t NewLower = Lower + (N << 32);
291    Upper += (N >> 32) + (NewLower < Lower);
292    Lower = NewLower;
293  };
294  addWithCarry(P2);
295  addWithCarry(P3);
296
297  // Check whether the upper digit is empty.
298  if (!Upper)
299    return std::make_pair(Lower, 0);
300
301  // Shift as little as possible to maximize precision.
302  unsigned LeadingZeros = countLeadingZeros64(Upper);
303  int16_t Shift = 64 - LeadingZeros;
304  if (LeadingZeros)
305    Upper = Upper << LeadingZeros | Lower >> Shift;
306  bool ShouldRound = Shift && (Lower & UINT64_C(1) << (Shift - 1));
307  return getRoundedFloat(Upper, ShouldRound, Shift);
308}
309
310//===----------------------------------------------------------------------===//
311//
312// BlockMass implementation.
313//
314//===----------------------------------------------------------------------===//
315UnsignedFloat<uint64_t> BlockMass::toFloat() const {
316  if (isFull())
317    return UnsignedFloat<uint64_t>(1, 0);
318  return UnsignedFloat<uint64_t>(getMass() + 1, -64);
319}
320
321void BlockMass::dump() const { print(dbgs()); }
322
323static char getHexDigit(int N) {
324  assert(N < 16);
325  if (N < 10)
326    return '0' + N;
327  return 'a' + N - 10;
328}
329raw_ostream &BlockMass::print(raw_ostream &OS) const {
330  for (int Digits = 0; Digits < 16; ++Digits)
331    OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf);
332  return OS;
333}
334
335//===----------------------------------------------------------------------===//
336//
337// BlockFrequencyInfoImpl implementation.
338//
339//===----------------------------------------------------------------------===//
340namespace {
341
342typedef BlockFrequencyInfoImplBase::BlockNode BlockNode;
343typedef BlockFrequencyInfoImplBase::Distribution Distribution;
344typedef BlockFrequencyInfoImplBase::Distribution::WeightList WeightList;
345typedef BlockFrequencyInfoImplBase::Float Float;
346typedef BlockFrequencyInfoImplBase::LoopData LoopData;
347typedef BlockFrequencyInfoImplBase::Weight Weight;
348typedef BlockFrequencyInfoImplBase::FrequencyData FrequencyData;
349
350/// \brief Dithering mass distributer.
351///
352/// This class splits up a single mass into portions by weight, dithering to
353/// spread out error.  No mass is lost.  The dithering precision depends on the
354/// precision of the product of \a BlockMass and \a BranchProbability.
355///
356/// The distribution algorithm follows.
357///
358///  1. Initialize by saving the sum of the weights in \a RemWeight and the
359///     mass to distribute in \a RemMass.
360///
361///  2. For each portion:
362///
363///      1. Construct a branch probability, P, as the portion's weight divided
364///         by the current value of \a RemWeight.
365///      2. Calculate the portion's mass as \a RemMass times P.
366///      3. Update \a RemWeight and \a RemMass at each portion by subtracting
367///         the current portion's weight and mass.
368struct DitheringDistributer {
369  uint32_t RemWeight;
370  BlockMass RemMass;
371
372  DitheringDistributer(Distribution &Dist, const BlockMass &Mass);
373
374  BlockMass takeMass(uint32_t Weight);
375};
376}
377
378DitheringDistributer::DitheringDistributer(Distribution &Dist,
379                                           const BlockMass &Mass) {
380  Dist.normalize();
381  RemWeight = Dist.Total;
382  RemMass = Mass;
383}
384
385BlockMass DitheringDistributer::takeMass(uint32_t Weight) {
386  assert(Weight && "invalid weight");
387  assert(Weight <= RemWeight);
388  BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight);
389
390  // Decrement totals (dither).
391  RemWeight -= Weight;
392  RemMass -= Mass;
393  return Mass;
394}
395
396void Distribution::add(const BlockNode &Node, uint64_t Amount,
397                       Weight::DistType Type) {
398  assert(Amount && "invalid weight of 0");
399  uint64_t NewTotal = Total + Amount;
400
401  // Check for overflow.  It should be impossible to overflow twice.
402  bool IsOverflow = NewTotal < Total;
403  assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow");
404  DidOverflow |= IsOverflow;
405
406  // Update the total.
407  Total = NewTotal;
408
409  // Save the weight.
410  Weight W;
411  W.TargetNode = Node;
412  W.Amount = Amount;
413  W.Type = Type;
414  Weights.push_back(W);
415}
416
417static void combineWeight(Weight &W, const Weight &OtherW) {
418  assert(OtherW.TargetNode.isValid());
419  if (!W.Amount) {
420    W = OtherW;
421    return;
422  }
423  assert(W.Type == OtherW.Type);
424  assert(W.TargetNode == OtherW.TargetNode);
425  assert(W.Amount < W.Amount + OtherW.Amount && "Unexpected overflow");
426  W.Amount += OtherW.Amount;
427}
428static void combineWeightsBySorting(WeightList &Weights) {
429  // Sort so edges to the same node are adjacent.
430  std::sort(Weights.begin(), Weights.end(),
431            [](const Weight &L,
432               const Weight &R) { return L.TargetNode < R.TargetNode; });
433
434  // Combine adjacent edges.
435  WeightList::iterator O = Weights.begin();
436  for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E;
437       ++O, (I = L)) {
438    *O = *I;
439
440    // Find the adjacent weights to the same node.
441    for (++L; L != E && I->TargetNode == L->TargetNode; ++L)
442      combineWeight(*O, *L);
443  }
444
445  // Erase extra entries.
446  Weights.erase(O, Weights.end());
447  return;
448}
449static void combineWeightsByHashing(WeightList &Weights) {
450  // Collect weights into a DenseMap.
451  typedef DenseMap<BlockNode::IndexType, Weight> HashTable;
452  HashTable Combined(NextPowerOf2(2 * Weights.size()));
453  for (const Weight &W : Weights)
454    combineWeight(Combined[W.TargetNode.Index], W);
455
456  // Check whether anything changed.
457  if (Weights.size() == Combined.size())
458    return;
459
460  // Fill in the new weights.
461  Weights.clear();
462  Weights.reserve(Combined.size());
463  for (const auto &I : Combined)
464    Weights.push_back(I.second);
465}
466static void combineWeights(WeightList &Weights) {
467  // Use a hash table for many successors to keep this linear.
468  if (Weights.size() > 128) {
469    combineWeightsByHashing(Weights);
470    return;
471  }
472
473  combineWeightsBySorting(Weights);
474}
475static uint64_t shiftRightAndRound(uint64_t N, int Shift) {
476  assert(Shift >= 0);
477  assert(Shift < 64);
478  if (!Shift)
479    return N;
480  return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1));
481}
482void Distribution::normalize() {
483  // Early exit for termination nodes.
484  if (Weights.empty())
485    return;
486
487  // Only bother if there are multiple successors.
488  if (Weights.size() > 1)
489    combineWeights(Weights);
490
491  // Early exit when combined into a single successor.
492  if (Weights.size() == 1) {
493    Total = 1;
494    Weights.front().Amount = 1;
495    return;
496  }
497
498  // Determine how much to shift right so that the total fits into 32-bits.
499  //
500  // If we shift at all, shift by 1 extra.  Otherwise, the lower limit of 1
501  // for each weight can cause a 32-bit overflow.
502  int Shift = 0;
503  if (DidOverflow)
504    Shift = 33;
505  else if (Total > UINT32_MAX)
506    Shift = 33 - countLeadingZeros(Total);
507
508  // Early exit if nothing needs to be scaled.
509  if (!Shift)
510    return;
511
512  // Recompute the total through accumulation (rather than shifting it) so that
513  // it's accurate after shifting.
514  Total = 0;
515
516  // Sum the weights to each node and shift right if necessary.
517  for (Weight &W : Weights) {
518    // Scale down below UINT32_MAX.  Since Shift is larger than necessary, we
519    // can round here without concern about overflow.
520    assert(W.TargetNode.isValid());
521    W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift));
522    assert(W.Amount <= UINT32_MAX);
523
524    // Update the total.
525    Total += W.Amount;
526  }
527  assert(Total <= UINT32_MAX);
528}
529
530void BlockFrequencyInfoImplBase::clear() {
531  // Swap with a default-constructed std::vector, since std::vector<>::clear()
532  // does not actually clear heap storage.
533  std::vector<FrequencyData>().swap(Freqs);
534  std::vector<WorkingData>().swap(Working);
535  Loops.clear();
536}
537
538/// \brief Clear all memory not needed downstream.
539///
540/// Releases all memory not used downstream.  In particular, saves Freqs.
541static void cleanup(BlockFrequencyInfoImplBase &BFI) {
542  std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs));
543  BFI.clear();
544  BFI.Freqs = std::move(SavedFreqs);
545}
546
547bool BlockFrequencyInfoImplBase::addToDist(Distribution &Dist,
548                                           const LoopData *OuterLoop,
549                                           const BlockNode &Pred,
550                                           const BlockNode &Succ,
551                                           uint64_t Weight) {
552  if (!Weight)
553    Weight = 1;
554
555  auto isLoopHeader = [&OuterLoop](const BlockNode &Node) {
556    return OuterLoop && OuterLoop->isHeader(Node);
557  };
558
559  BlockNode Resolved = Working[Succ.Index].getResolvedNode();
560
561#ifndef NDEBUG
562  auto debugSuccessor = [&](const char *Type) {
563    dbgs() << "  =>"
564           << " [" << Type << "] weight = " << Weight;
565    if (!isLoopHeader(Resolved))
566      dbgs() << ", succ = " << getBlockName(Succ);
567    if (Resolved != Succ)
568      dbgs() << ", resolved = " << getBlockName(Resolved);
569    dbgs() << "\n";
570  };
571  (void)debugSuccessor;
572#endif
573
574  if (isLoopHeader(Resolved)) {
575    DEBUG(debugSuccessor("backedge"));
576    Dist.addBackedge(OuterLoop->getHeader(), Weight);
577    return true;
578  }
579
580  if (Working[Resolved.Index].getContainingLoop() != OuterLoop) {
581    DEBUG(debugSuccessor("  exit  "));
582    Dist.addExit(Resolved, Weight);
583    return true;
584  }
585
586  if (Resolved < Pred) {
587    if (!isLoopHeader(Pred)) {
588      // If OuterLoop is an irreducible loop, we can't actually handle this.
589      assert((!OuterLoop || !OuterLoop->isIrreducible()) &&
590             "unhandled irreducible control flow");
591
592      // Irreducible backedge.  Abort.
593      DEBUG(debugSuccessor("abort!!!"));
594      return false;
595    }
596
597    // If "Pred" is a loop header, then this isn't really a backedge; rather,
598    // OuterLoop must be irreducible.  These false backedges can come only from
599    // secondary loop headers.
600    assert(OuterLoop && OuterLoop->isIrreducible() && !isLoopHeader(Resolved) &&
601           "unhandled irreducible control flow");
602  }
603
604  DEBUG(debugSuccessor(" local  "));
605  Dist.addLocal(Resolved, Weight);
606  return true;
607}
608
609bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
610    const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist) {
611  // Copy the exit map into Dist.
612  for (const auto &I : Loop.Exits)
613    if (!addToDist(Dist, OuterLoop, Loop.getHeader(), I.first,
614                   I.second.getMass()))
615      // Irreducible backedge.
616      return false;
617
618  return true;
619}
620
621/// \brief Get the maximum allowed loop scale.
622///
623/// Gives the maximum number of estimated iterations allowed for a loop.  Very
624/// large numbers cause problems downstream (even within 64-bits).
625static Float getMaxLoopScale() { return Float(1, 12); }
626
627/// \brief Compute the loop scale for a loop.
628void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) {
629  // Compute loop scale.
630  DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop) << "\n");
631
632  // LoopScale == 1 / ExitMass
633  // ExitMass == HeadMass - BackedgeMass
634  BlockMass ExitMass = BlockMass::getFull() - Loop.BackedgeMass;
635
636  // Block scale stores the inverse of the scale.
637  Loop.Scale = ExitMass.toFloat().inverse();
638
639  DEBUG(dbgs() << " - exit-mass = " << ExitMass << " (" << BlockMass::getFull()
640               << " - " << Loop.BackedgeMass << ")\n"
641               << " - scale = " << Loop.Scale << "\n");
642
643  if (Loop.Scale > getMaxLoopScale()) {
644    Loop.Scale = getMaxLoopScale();
645    DEBUG(dbgs() << " - reduced-to-max-scale: " << getMaxLoopScale() << "\n");
646  }
647}
648
649/// \brief Package up a loop.
650void BlockFrequencyInfoImplBase::packageLoop(LoopData &Loop) {
651  DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop) << "\n");
652
653  // Clear the subloop exits to prevent quadratic memory usage.
654  for (const BlockNode &M : Loop.Nodes) {
655    if (auto *Loop = Working[M.Index].getPackagedLoop())
656      Loop->Exits.clear();
657    DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n");
658  }
659  Loop.IsPackaged = true;
660}
661
662void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source,
663                                                LoopData *OuterLoop,
664                                                Distribution &Dist) {
665  BlockMass Mass = Working[Source.Index].getMass();
666  DEBUG(dbgs() << "  => mass:  " << Mass << "\n");
667
668  // Distribute mass to successors as laid out in Dist.
669  DitheringDistributer D(Dist, Mass);
670
671#ifndef NDEBUG
672  auto debugAssign = [&](const BlockNode &T, const BlockMass &M,
673                         const char *Desc) {
674    dbgs() << "  => assign " << M << " (" << D.RemMass << ")";
675    if (Desc)
676      dbgs() << " [" << Desc << "]";
677    if (T.isValid())
678      dbgs() << " to " << getBlockName(T);
679    dbgs() << "\n";
680  };
681  (void)debugAssign;
682#endif
683
684  for (const Weight &W : Dist.Weights) {
685    // Check for a local edge (non-backedge and non-exit).
686    BlockMass Taken = D.takeMass(W.Amount);
687    if (W.Type == Weight::Local) {
688      Working[W.TargetNode.Index].getMass() += Taken;
689      DEBUG(debugAssign(W.TargetNode, Taken, nullptr));
690      continue;
691    }
692
693    // Backedges and exits only make sense if we're processing a loop.
694    assert(OuterLoop && "backedge or exit outside of loop");
695
696    // Check for a backedge.
697    if (W.Type == Weight::Backedge) {
698      OuterLoop->BackedgeMass += Taken;
699      DEBUG(debugAssign(BlockNode(), Taken, "back"));
700      continue;
701    }
702
703    // This must be an exit.
704    assert(W.Type == Weight::Exit);
705    OuterLoop->Exits.push_back(std::make_pair(W.TargetNode, Taken));
706    DEBUG(debugAssign(W.TargetNode, Taken, "exit"));
707  }
708}
709
710static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI,
711                                     const Float &Min, const Float &Max) {
712  // Scale the Factor to a size that creates integers.  Ideally, integers would
713  // be scaled so that Max == UINT64_MAX so that they can be best
714  // differentiated.  However, the register allocator currently deals poorly
715  // with large numbers.  Instead, push Min up a little from 1 to give some
716  // room to differentiate small, unequal numbers.
717  //
718  // TODO: fix issues downstream so that ScalingFactor can be Float(1,64)/Max.
719  Float ScalingFactor = Min.inverse();
720  if ((Max / Min).lg() < 60)
721    ScalingFactor <<= 3;
722
723  // Translate the floats to integers.
724  DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max
725               << ", factor = " << ScalingFactor << "\n");
726  for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) {
727    Float Scaled = BFI.Freqs[Index].Floating * ScalingFactor;
728    BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>());
729    DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = "
730                 << BFI.Freqs[Index].Floating << ", scaled = " << Scaled
731                 << ", int = " << BFI.Freqs[Index].Integer << "\n");
732  }
733}
734
735/// \brief Unwrap a loop package.
736///
737/// Visits all the members of a loop, adjusting their BlockData according to
738/// the loop's pseudo-node.
739static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) {
740  DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getLoopName(Loop)
741               << ": mass = " << Loop.Mass << ", scale = " << Loop.Scale
742               << "\n");
743  Loop.Scale *= Loop.Mass.toFloat();
744  Loop.IsPackaged = false;
745  DEBUG(dbgs() << "  => combined-scale = " << Loop.Scale << "\n");
746
747  // Propagate the head scale through the loop.  Since members are visited in
748  // RPO, the head scale will be updated by the loop scale first, and then the
749  // final head scale will be used for updated the rest of the members.
750  for (const BlockNode &N : Loop.Nodes) {
751    const auto &Working = BFI.Working[N.Index];
752    Float &F = Working.isAPackage() ? Working.getPackagedLoop()->Scale
753                                    : BFI.Freqs[N.Index].Floating;
754    Float New = Loop.Scale * F;
755    DEBUG(dbgs() << " - " << BFI.getBlockName(N) << ": " << F << " => " << New
756                 << "\n");
757    F = New;
758  }
759}
760
761void BlockFrequencyInfoImplBase::unwrapLoops() {
762  // Set initial frequencies from loop-local masses.
763  for (size_t Index = 0; Index < Working.size(); ++Index)
764    Freqs[Index].Floating = Working[Index].Mass.toFloat();
765
766  for (LoopData &Loop : Loops)
767    unwrapLoop(*this, Loop);
768}
769
770void BlockFrequencyInfoImplBase::finalizeMetrics() {
771  // Unwrap loop packages in reverse post-order, tracking min and max
772  // frequencies.
773  auto Min = Float::getLargest();
774  auto Max = Float::getZero();
775  for (size_t Index = 0; Index < Working.size(); ++Index) {
776    // Update min/max scale.
777    Min = std::min(Min, Freqs[Index].Floating);
778    Max = std::max(Max, Freqs[Index].Floating);
779  }
780
781  // Convert to integers.
782  convertFloatingToInteger(*this, Min, Max);
783
784  // Clean up data structures.
785  cleanup(*this);
786
787  // Print out the final stats.
788  DEBUG(dump());
789}
790
791BlockFrequency
792BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const {
793  if (!Node.isValid())
794    return 0;
795  return Freqs[Node.Index].Integer;
796}
797Float
798BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const {
799  if (!Node.isValid())
800    return Float::getZero();
801  return Freqs[Node.Index].Floating;
802}
803
804std::string
805BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const {
806  return std::string();
807}
808std::string
809BlockFrequencyInfoImplBase::getLoopName(const LoopData &Loop) const {
810  return getBlockName(Loop.getHeader()) + (Loop.isIrreducible() ? "**" : "*");
811}
812
813raw_ostream &
814BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
815                                           const BlockNode &Node) const {
816  return OS << getFloatingBlockFreq(Node);
817}
818
819raw_ostream &
820BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
821                                           const BlockFrequency &Freq) const {
822  Float Block(Freq.getFrequency(), 0);
823  Float Entry(getEntryFreq(), 0);
824
825  return OS << Block / Entry;
826}
827
828void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData &OuterLoop) {
829  Start = OuterLoop.getHeader();
830  Nodes.reserve(OuterLoop.Nodes.size());
831  for (auto N : OuterLoop.Nodes)
832    addNode(N);
833  indexNodes();
834}
835void IrreducibleGraph::addNodesInFunction() {
836  Start = 0;
837  for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
838    if (!BFI.Working[Index].isPackaged())
839      addNode(Index);
840  indexNodes();
841}
842void IrreducibleGraph::indexNodes() {
843  for (auto &I : Nodes)
844    Lookup[I.Node.Index] = &I;
845}
846void IrreducibleGraph::addEdge(IrrNode &Irr, const BlockNode &Succ,
847                               const BFIBase::LoopData *OuterLoop) {
848  if (OuterLoop && OuterLoop->isHeader(Succ))
849    return;
850  auto L = Lookup.find(Succ.Index);
851  if (L == Lookup.end())
852    return;
853  IrrNode &SuccIrr = *L->second;
854  Irr.Edges.push_back(&SuccIrr);
855  SuccIrr.Edges.push_front(&Irr);
856  ++SuccIrr.NumIn;
857}
858
859namespace llvm {
860template <> struct GraphTraits<IrreducibleGraph> {
861  typedef bfi_detail::IrreducibleGraph GraphT;
862
863  typedef const GraphT::IrrNode NodeType;
864  typedef GraphT::IrrNode::iterator ChildIteratorType;
865
866  static const NodeType *getEntryNode(const GraphT &G) {
867    return G.StartIrr;
868  }
869  static ChildIteratorType child_begin(NodeType *N) { return N->succ_begin(); }
870  static ChildIteratorType child_end(NodeType *N) { return N->succ_end(); }
871};
872}
873
874/// \brief Find extra irreducible headers.
875///
876/// Find entry blocks and other blocks with backedges, which exist when \c G
877/// contains irreducible sub-SCCs.
878static void findIrreducibleHeaders(
879    const BlockFrequencyInfoImplBase &BFI,
880    const IrreducibleGraph &G,
881    const std::vector<const IrreducibleGraph::IrrNode *> &SCC,
882    LoopData::NodeList &Headers, LoopData::NodeList &Others) {
883  // Map from nodes in the SCC to whether it's an entry block.
884  SmallDenseMap<const IrreducibleGraph::IrrNode *, bool, 8> InSCC;
885
886  // InSCC also acts the set of nodes in the graph.  Seed it.
887  for (const auto *I : SCC)
888    InSCC[I] = false;
889
890  for (auto I = InSCC.begin(), E = InSCC.end(); I != E; ++I) {
891    auto &Irr = *I->first;
892    for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
893      if (InSCC.count(P))
894        continue;
895
896      // This is an entry block.
897      I->second = true;
898      Headers.push_back(Irr.Node);
899      DEBUG(dbgs() << "  => entry = " << BFI.getBlockName(Irr.Node) << "\n");
900      break;
901    }
902  }
903  assert(Headers.size() >= 2 && "Should be irreducible");
904  if (Headers.size() == InSCC.size()) {
905    // Every block is a header.
906    std::sort(Headers.begin(), Headers.end());
907    return;
908  }
909
910  // Look for extra headers from irreducible sub-SCCs.
911  for (const auto &I : InSCC) {
912    // Entry blocks are already headers.
913    if (I.second)
914      continue;
915
916    auto &Irr = *I.first;
917    for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
918      // Skip forward edges.
919      if (P->Node < Irr.Node)
920        continue;
921
922      // Skip predecessors from entry blocks.  These can have inverted
923      // ordering.
924      if (InSCC.lookup(P))
925        continue;
926
927      // Store the extra header.
928      Headers.push_back(Irr.Node);
929      DEBUG(dbgs() << "  => extra = " << BFI.getBlockName(Irr.Node) << "\n");
930      break;
931    }
932    if (Headers.back() == Irr.Node)
933      // Added this as a header.
934      continue;
935
936    // This is not a header.
937    Others.push_back(Irr.Node);
938    DEBUG(dbgs() << "  => other = " << BFI.getBlockName(Irr.Node) << "\n");
939  }
940  std::sort(Headers.begin(), Headers.end());
941  std::sort(Others.begin(), Others.end());
942}
943
944static void createIrreducibleLoop(
945    BlockFrequencyInfoImplBase &BFI, const IrreducibleGraph &G,
946    LoopData *OuterLoop, std::list<LoopData>::iterator Insert,
947    const std::vector<const IrreducibleGraph::IrrNode *> &SCC) {
948  // Translate the SCC into RPO.
949  DEBUG(dbgs() << " - found-scc\n");
950
951  LoopData::NodeList Headers;
952  LoopData::NodeList Others;
953  findIrreducibleHeaders(BFI, G, SCC, Headers, Others);
954
955  auto Loop = BFI.Loops.emplace(Insert, OuterLoop, Headers.begin(),
956                                Headers.end(), Others.begin(), Others.end());
957
958  // Update loop hierarchy.
959  for (const auto &N : Loop->Nodes)
960    if (BFI.Working[N.Index].isLoopHeader())
961      BFI.Working[N.Index].Loop->Parent = &*Loop;
962    else
963      BFI.Working[N.Index].Loop = &*Loop;
964}
965
966iterator_range<std::list<LoopData>::iterator>
967BlockFrequencyInfoImplBase::analyzeIrreducible(
968    const IrreducibleGraph &G, LoopData *OuterLoop,
969    std::list<LoopData>::iterator Insert) {
970  assert((OuterLoop == nullptr) == (Insert == Loops.begin()));
971  auto Prev = OuterLoop ? std::prev(Insert) : Loops.end();
972
973  for (auto I = scc_begin(G); !I.isAtEnd(); ++I) {
974    if (I->size() < 2)
975      continue;
976
977    // Translate the SCC into RPO.
978    createIrreducibleLoop(*this, G, OuterLoop, Insert, *I);
979  }
980
981  if (OuterLoop)
982    return make_range(std::next(Prev), Insert);
983  return make_range(Loops.begin(), Insert);
984}
985
986void
987BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData &OuterLoop) {
988  OuterLoop.Exits.clear();
989  OuterLoop.BackedgeMass = BlockMass::getEmpty();
990  auto O = OuterLoop.Nodes.begin() + 1;
991  for (auto I = O, E = OuterLoop.Nodes.end(); I != E; ++I)
992    if (!Working[I->Index].isPackaged())
993      *O++ = *I;
994  OuterLoop.Nodes.erase(O, OuterLoop.Nodes.end());
995}
996