ConstantFolding.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines routines for folding instructions into constants.
11//
12// Also, to supplement the basic IR ConstantExpr simplifications,
13// this file defines some additional folding routines that can make use of
14// DataLayout information. These functions cannot go in IR due to library
15// dependency issues.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/StringMap.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/IR/Constants.h"
25#include "llvm/IR/DataLayout.h"
26#include "llvm/IR/DerivedTypes.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/GetElementPtrTypeIterator.h"
29#include "llvm/IR/GlobalVariable.h"
30#include "llvm/IR/Instructions.h"
31#include "llvm/IR/Intrinsics.h"
32#include "llvm/IR/Operator.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/FEnv.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Target/TargetLibraryInfo.h"
37#include <cerrno>
38#include <cmath>
39using namespace llvm;
40
41//===----------------------------------------------------------------------===//
42// Constant Folding internal helper functions
43//===----------------------------------------------------------------------===//
44
45/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
46/// DataLayout.  This always returns a non-null constant, but it may be a
47/// ConstantExpr if unfoldable.
48static Constant *FoldBitCast(Constant *C, Type *DestTy,
49                             const DataLayout &TD) {
50  // Catch the obvious splat cases.
51  if (C->isNullValue() && !DestTy->isX86_MMXTy())
52    return Constant::getNullValue(DestTy);
53  if (C->isAllOnesValue() && !DestTy->isX86_MMXTy())
54    return Constant::getAllOnesValue(DestTy);
55
56  // Handle a vector->integer cast.
57  if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) {
58    VectorType *VTy = dyn_cast<VectorType>(C->getType());
59    if (VTy == 0)
60      return ConstantExpr::getBitCast(C, DestTy);
61
62    unsigned NumSrcElts = VTy->getNumElements();
63    Type *SrcEltTy = VTy->getElementType();
64
65    // If the vector is a vector of floating point, convert it to vector of int
66    // to simplify things.
67    if (SrcEltTy->isFloatingPointTy()) {
68      unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
69      Type *SrcIVTy =
70        VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
71      // Ask IR to do the conversion now that #elts line up.
72      C = ConstantExpr::getBitCast(C, SrcIVTy);
73    }
74
75    ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
76    if (CDV == 0)
77      return ConstantExpr::getBitCast(C, DestTy);
78
79    // Now that we know that the input value is a vector of integers, just shift
80    // and insert them into our result.
81    unsigned BitShift = TD.getTypeAllocSizeInBits(SrcEltTy);
82    APInt Result(IT->getBitWidth(), 0);
83    for (unsigned i = 0; i != NumSrcElts; ++i) {
84      Result <<= BitShift;
85      if (TD.isLittleEndian())
86        Result |= CDV->getElementAsInteger(NumSrcElts-i-1);
87      else
88        Result |= CDV->getElementAsInteger(i);
89    }
90
91    return ConstantInt::get(IT, Result);
92  }
93
94  // The code below only handles casts to vectors currently.
95  VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
96  if (DestVTy == 0)
97    return ConstantExpr::getBitCast(C, DestTy);
98
99  // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
100  // vector so the code below can handle it uniformly.
101  if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
102    Constant *Ops = C; // don't take the address of C!
103    return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
104  }
105
106  // If this is a bitcast from constant vector -> vector, fold it.
107  if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
108    return ConstantExpr::getBitCast(C, DestTy);
109
110  // If the element types match, IR can fold it.
111  unsigned NumDstElt = DestVTy->getNumElements();
112  unsigned NumSrcElt = C->getType()->getVectorNumElements();
113  if (NumDstElt == NumSrcElt)
114    return ConstantExpr::getBitCast(C, DestTy);
115
116  Type *SrcEltTy = C->getType()->getVectorElementType();
117  Type *DstEltTy = DestVTy->getElementType();
118
119  // Otherwise, we're changing the number of elements in a vector, which
120  // requires endianness information to do the right thing.  For example,
121  //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
122  // folds to (little endian):
123  //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
124  // and to (big endian):
125  //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
126
127  // First thing is first.  We only want to think about integer here, so if
128  // we have something in FP form, recast it as integer.
129  if (DstEltTy->isFloatingPointTy()) {
130    // Fold to an vector of integers with same size as our FP type.
131    unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
132    Type *DestIVTy =
133      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
134    // Recursively handle this integer conversion, if possible.
135    C = FoldBitCast(C, DestIVTy, TD);
136
137    // Finally, IR can handle this now that #elts line up.
138    return ConstantExpr::getBitCast(C, DestTy);
139  }
140
141  // Okay, we know the destination is integer, if the input is FP, convert
142  // it to integer first.
143  if (SrcEltTy->isFloatingPointTy()) {
144    unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
145    Type *SrcIVTy =
146      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
147    // Ask IR to do the conversion now that #elts line up.
148    C = ConstantExpr::getBitCast(C, SrcIVTy);
149    // If IR wasn't able to fold it, bail out.
150    if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
151        !isa<ConstantDataVector>(C))
152      return C;
153  }
154
155  // Now we know that the input and output vectors are both integer vectors
156  // of the same size, and that their #elements is not the same.  Do the
157  // conversion here, which depends on whether the input or output has
158  // more elements.
159  bool isLittleEndian = TD.isLittleEndian();
160
161  SmallVector<Constant*, 32> Result;
162  if (NumDstElt < NumSrcElt) {
163    // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
164    Constant *Zero = Constant::getNullValue(DstEltTy);
165    unsigned Ratio = NumSrcElt/NumDstElt;
166    unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
167    unsigned SrcElt = 0;
168    for (unsigned i = 0; i != NumDstElt; ++i) {
169      // Build each element of the result.
170      Constant *Elt = Zero;
171      unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
172      for (unsigned j = 0; j != Ratio; ++j) {
173        Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
174        if (!Src)  // Reject constantexpr elements.
175          return ConstantExpr::getBitCast(C, DestTy);
176
177        // Zero extend the element to the right size.
178        Src = ConstantExpr::getZExt(Src, Elt->getType());
179
180        // Shift it to the right place, depending on endianness.
181        Src = ConstantExpr::getShl(Src,
182                                   ConstantInt::get(Src->getType(), ShiftAmt));
183        ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
184
185        // Mix it in.
186        Elt = ConstantExpr::getOr(Elt, Src);
187      }
188      Result.push_back(Elt);
189    }
190    return ConstantVector::get(Result);
191  }
192
193  // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
194  unsigned Ratio = NumDstElt/NumSrcElt;
195  unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
196
197  // Loop over each source value, expanding into multiple results.
198  for (unsigned i = 0; i != NumSrcElt; ++i) {
199    Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
200    if (!Src)  // Reject constantexpr elements.
201      return ConstantExpr::getBitCast(C, DestTy);
202
203    unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
204    for (unsigned j = 0; j != Ratio; ++j) {
205      // Shift the piece of the value into the right place, depending on
206      // endianness.
207      Constant *Elt = ConstantExpr::getLShr(Src,
208                                  ConstantInt::get(Src->getType(), ShiftAmt));
209      ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
210
211      // Truncate and remember this piece.
212      Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
213    }
214  }
215
216  return ConstantVector::get(Result);
217}
218
219
220/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
221/// from a global, return the global and the constant.  Because of
222/// constantexprs, this function is recursive.
223static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
224                                       APInt &Offset, const DataLayout &TD) {
225  // Trivial case, constant is the global.
226  if ((GV = dyn_cast<GlobalValue>(C))) {
227    unsigned BitWidth = TD.getPointerTypeSizeInBits(GV->getType());
228    Offset = APInt(BitWidth, 0);
229    return true;
230  }
231
232  // Otherwise, if this isn't a constant expr, bail out.
233  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
234  if (!CE) return false;
235
236  // Look through ptr->int and ptr->ptr casts.
237  if (CE->getOpcode() == Instruction::PtrToInt ||
238      CE->getOpcode() == Instruction::BitCast)
239    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
240
241  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
242  GEPOperator *GEP = dyn_cast<GEPOperator>(CE);
243  if (!GEP)
244    return false;
245
246  unsigned BitWidth = TD.getPointerTypeSizeInBits(GEP->getType());
247  APInt TmpOffset(BitWidth, 0);
248
249  // If the base isn't a global+constant, we aren't either.
250  if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, TD))
251    return false;
252
253  // Otherwise, add any offset that our operands provide.
254  if (!GEP->accumulateConstantOffset(TD, TmpOffset))
255    return false;
256
257  Offset = TmpOffset;
258  return true;
259}
260
261/// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
262/// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
263/// pointer to copy results into and BytesLeft is the number of bytes left in
264/// the CurPtr buffer.  TD is the target data.
265static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
266                               unsigned char *CurPtr, unsigned BytesLeft,
267                               const DataLayout &TD) {
268  assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
269         "Out of range access");
270
271  // If this element is zero or undefined, we can just return since *CurPtr is
272  // zero initialized.
273  if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
274    return true;
275
276  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
277    if (CI->getBitWidth() > 64 ||
278        (CI->getBitWidth() & 7) != 0)
279      return false;
280
281    uint64_t Val = CI->getZExtValue();
282    unsigned IntBytes = unsigned(CI->getBitWidth()/8);
283
284    for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
285      int n = ByteOffset;
286      if (!TD.isLittleEndian())
287        n = IntBytes - n - 1;
288      CurPtr[i] = (unsigned char)(Val >> (n * 8));
289      ++ByteOffset;
290    }
291    return true;
292  }
293
294  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
295    if (CFP->getType()->isDoubleTy()) {
296      C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
297      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
298    }
299    if (CFP->getType()->isFloatTy()){
300      C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
301      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
302    }
303    if (CFP->getType()->isHalfTy()){
304      C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), TD);
305      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
306    }
307    return false;
308  }
309
310  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
311    const StructLayout *SL = TD.getStructLayout(CS->getType());
312    unsigned Index = SL->getElementContainingOffset(ByteOffset);
313    uint64_t CurEltOffset = SL->getElementOffset(Index);
314    ByteOffset -= CurEltOffset;
315
316    while (1) {
317      // If the element access is to the element itself and not to tail padding,
318      // read the bytes from the element.
319      uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
320
321      if (ByteOffset < EltSize &&
322          !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
323                              BytesLeft, TD))
324        return false;
325
326      ++Index;
327
328      // Check to see if we read from the last struct element, if so we're done.
329      if (Index == CS->getType()->getNumElements())
330        return true;
331
332      // If we read all of the bytes we needed from this element we're done.
333      uint64_t NextEltOffset = SL->getElementOffset(Index);
334
335      if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
336        return true;
337
338      // Move to the next element of the struct.
339      CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
340      BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
341      ByteOffset = 0;
342      CurEltOffset = NextEltOffset;
343    }
344    // not reached.
345  }
346
347  if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
348      isa<ConstantDataSequential>(C)) {
349    Type *EltTy = C->getType()->getSequentialElementType();
350    uint64_t EltSize = TD.getTypeAllocSize(EltTy);
351    uint64_t Index = ByteOffset / EltSize;
352    uint64_t Offset = ByteOffset - Index * EltSize;
353    uint64_t NumElts;
354    if (ArrayType *AT = dyn_cast<ArrayType>(C->getType()))
355      NumElts = AT->getNumElements();
356    else
357      NumElts = C->getType()->getVectorNumElements();
358
359    for (; Index != NumElts; ++Index) {
360      if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
361                              BytesLeft, TD))
362        return false;
363
364      uint64_t BytesWritten = EltSize - Offset;
365      assert(BytesWritten <= EltSize && "Not indexing into this element?");
366      if (BytesWritten >= BytesLeft)
367        return true;
368
369      Offset = 0;
370      BytesLeft -= BytesWritten;
371      CurPtr += BytesWritten;
372    }
373    return true;
374  }
375
376  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
377    if (CE->getOpcode() == Instruction::IntToPtr &&
378        CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getType())) {
379      return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
380                                BytesLeft, TD);
381    }
382  }
383
384  // Otherwise, unknown initializer type.
385  return false;
386}
387
388static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
389                                                 const DataLayout &TD) {
390  PointerType *PTy = cast<PointerType>(C->getType());
391  Type *LoadTy = PTy->getElementType();
392  IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
393
394  // If this isn't an integer load we can't fold it directly.
395  if (!IntType) {
396    unsigned AS = PTy->getAddressSpace();
397
398    // If this is a float/double load, we can try folding it as an int32/64 load
399    // and then bitcast the result.  This can be useful for union cases.  Note
400    // that address spaces don't matter here since we're not going to result in
401    // an actual new load.
402    Type *MapTy;
403    if (LoadTy->isHalfTy())
404      MapTy = Type::getInt16PtrTy(C->getContext(), AS);
405    else if (LoadTy->isFloatTy())
406      MapTy = Type::getInt32PtrTy(C->getContext(), AS);
407    else if (LoadTy->isDoubleTy())
408      MapTy = Type::getInt64PtrTy(C->getContext(), AS);
409    else if (LoadTy->isVectorTy()) {
410      MapTy = PointerType::getIntNPtrTy(C->getContext(),
411                                        TD.getTypeAllocSizeInBits(LoadTy),
412                                        AS);
413    } else
414      return 0;
415
416    C = FoldBitCast(C, MapTy, TD);
417    if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
418      return FoldBitCast(Res, LoadTy, TD);
419    return 0;
420  }
421
422  unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
423  if (BytesLoaded > 32 || BytesLoaded == 0)
424    return 0;
425
426  GlobalValue *GVal;
427  APInt Offset;
428  if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
429    return 0;
430
431  GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
432  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
433      !GV->getInitializer()->getType()->isSized())
434    return 0;
435
436  // If we're loading off the beginning of the global, some bytes may be valid,
437  // but we don't try to handle this.
438  if (Offset.isNegative())
439    return 0;
440
441  // If we're not accessing anything in this constant, the result is undefined.
442  if (Offset.getZExtValue() >=
443      TD.getTypeAllocSize(GV->getInitializer()->getType()))
444    return UndefValue::get(IntType);
445
446  unsigned char RawBytes[32] = {0};
447  if (!ReadDataFromGlobal(GV->getInitializer(), Offset.getZExtValue(), RawBytes,
448                          BytesLoaded, TD))
449    return 0;
450
451  APInt ResultVal = APInt(IntType->getBitWidth(), 0);
452  if (TD.isLittleEndian()) {
453    ResultVal = RawBytes[BytesLoaded - 1];
454    for (unsigned i = 1; i != BytesLoaded; ++i) {
455      ResultVal <<= 8;
456      ResultVal |= RawBytes[BytesLoaded - 1 - i];
457    }
458  } else {
459    ResultVal = RawBytes[0];
460    for (unsigned i = 1; i != BytesLoaded; ++i) {
461      ResultVal <<= 8;
462      ResultVal |= RawBytes[i];
463    }
464  }
465
466  return ConstantInt::get(IntType->getContext(), ResultVal);
467}
468
469/// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
470/// produce if it is constant and determinable.  If this is not determinable,
471/// return null.
472Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
473                                             const DataLayout *TD) {
474  // First, try the easy cases:
475  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
476    if (GV->isConstant() && GV->hasDefinitiveInitializer())
477      return GV->getInitializer();
478
479  // If the loaded value isn't a constant expr, we can't handle it.
480  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
481  if (!CE)
482    return 0;
483
484  if (CE->getOpcode() == Instruction::GetElementPtr) {
485    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
486      if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
487        if (Constant *V =
488             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
489          return V;
490      }
491    }
492  }
493
494  // Instead of loading constant c string, use corresponding integer value
495  // directly if string length is small enough.
496  StringRef Str;
497  if (TD && getConstantStringInfo(CE, Str) && !Str.empty()) {
498    unsigned StrLen = Str.size();
499    Type *Ty = cast<PointerType>(CE->getType())->getElementType();
500    unsigned NumBits = Ty->getPrimitiveSizeInBits();
501    // Replace load with immediate integer if the result is an integer or fp
502    // value.
503    if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
504        (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
505      APInt StrVal(NumBits, 0);
506      APInt SingleChar(NumBits, 0);
507      if (TD->isLittleEndian()) {
508        for (signed i = StrLen-1; i >= 0; i--) {
509          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
510          StrVal = (StrVal << 8) | SingleChar;
511        }
512      } else {
513        for (unsigned i = 0; i < StrLen; i++) {
514          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
515          StrVal = (StrVal << 8) | SingleChar;
516        }
517        // Append NULL at the end.
518        SingleChar = 0;
519        StrVal = (StrVal << 8) | SingleChar;
520      }
521
522      Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
523      if (Ty->isFloatingPointTy())
524        Res = ConstantExpr::getBitCast(Res, Ty);
525      return Res;
526    }
527  }
528
529  // If this load comes from anywhere in a constant global, and if the global
530  // is all undef or zero, we know what it loads.
531  if (GlobalVariable *GV =
532        dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
533    if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
534      Type *ResTy = cast<PointerType>(C->getType())->getElementType();
535      if (GV->getInitializer()->isNullValue())
536        return Constant::getNullValue(ResTy);
537      if (isa<UndefValue>(GV->getInitializer()))
538        return UndefValue::get(ResTy);
539    }
540  }
541
542  // Try hard to fold loads from bitcasted strange and non-type-safe things.
543  if (TD)
544    return FoldReinterpretLoadFromConstPtr(CE, *TD);
545  return 0;
546}
547
548static Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout *TD){
549  if (LI->isVolatile()) return 0;
550
551  if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
552    return ConstantFoldLoadFromConstPtr(C, TD);
553
554  return 0;
555}
556
557/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
558/// Attempt to symbolically evaluate the result of a binary operator merging
559/// these together.  If target data info is available, it is provided as DL,
560/// otherwise DL is null.
561static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
562                                           Constant *Op1, const DataLayout *DL){
563  // SROA
564
565  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
566  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
567  // bits.
568
569
570  if (Opc == Instruction::And && DL) {
571    unsigned BitWidth = DL->getTypeSizeInBits(Op0->getType()->getScalarType());
572    APInt KnownZero0(BitWidth, 0), KnownOne0(BitWidth, 0);
573    APInt KnownZero1(BitWidth, 0), KnownOne1(BitWidth, 0);
574    ComputeMaskedBits(Op0, KnownZero0, KnownOne0, DL);
575    ComputeMaskedBits(Op1, KnownZero1, KnownOne1, DL);
576    if ((KnownOne1 | KnownZero0).isAllOnesValue()) {
577      // All the bits of Op0 that the 'and' could be masking are already zero.
578      return Op0;
579    }
580    if ((KnownOne0 | KnownZero1).isAllOnesValue()) {
581      // All the bits of Op1 that the 'and' could be masking are already zero.
582      return Op1;
583    }
584
585    APInt KnownZero = KnownZero0 | KnownZero1;
586    APInt KnownOne = KnownOne0 & KnownOne1;
587    if ((KnownZero | KnownOne).isAllOnesValue()) {
588      return ConstantInt::get(Op0->getType(), KnownOne);
589    }
590  }
591
592  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
593  // constant.  This happens frequently when iterating over a global array.
594  if (Opc == Instruction::Sub && DL) {
595    GlobalValue *GV1, *GV2;
596    APInt Offs1, Offs2;
597
598    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *DL))
599      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *DL) &&
600          GV1 == GV2) {
601        unsigned OpSize = DL->getTypeSizeInBits(Op0->getType());
602
603        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
604        // PtrToInt may change the bitwidth so we have convert to the right size
605        // first.
606        return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
607                                                Offs2.zextOrTrunc(OpSize));
608      }
609  }
610
611  return 0;
612}
613
614/// CastGEPIndices - If array indices are not pointer-sized integers,
615/// explicitly cast them so that they aren't implicitly casted by the
616/// getelementptr.
617static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
618                                Type *ResultTy, const DataLayout *TD,
619                                const TargetLibraryInfo *TLI) {
620  if (!TD)
621    return 0;
622
623  Type *IntPtrTy = TD->getIntPtrType(ResultTy);
624
625  bool Any = false;
626  SmallVector<Constant*, 32> NewIdxs;
627  for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
628    if ((i == 1 ||
629         !isa<StructType>(GetElementPtrInst::getIndexedType(
630                            Ops[0]->getType(),
631                            Ops.slice(1, i - 1)))) &&
632        Ops[i]->getType() != IntPtrTy) {
633      Any = true;
634      NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
635                                                                      true,
636                                                                      IntPtrTy,
637                                                                      true),
638                                              Ops[i], IntPtrTy));
639    } else
640      NewIdxs.push_back(Ops[i]);
641  }
642
643  if (!Any)
644    return 0;
645
646  Constant *C = ConstantExpr::getGetElementPtr(Ops[0], NewIdxs);
647  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
648    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
649      C = Folded;
650  }
651
652  return C;
653}
654
655/// Strip the pointer casts, but preserve the address space information.
656static Constant* StripPtrCastKeepAS(Constant* Ptr) {
657  assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
658  PointerType *OldPtrTy = cast<PointerType>(Ptr->getType());
659  Ptr = cast<Constant>(Ptr->stripPointerCasts());
660  PointerType *NewPtrTy = cast<PointerType>(Ptr->getType());
661
662  // Preserve the address space number of the pointer.
663  if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
664    NewPtrTy = NewPtrTy->getElementType()->getPointerTo(
665      OldPtrTy->getAddressSpace());
666    Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
667  }
668  return Ptr;
669}
670
671/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
672/// constant expression, do so.
673static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
674                                         Type *ResultTy, const DataLayout *TD,
675                                         const TargetLibraryInfo *TLI) {
676  Constant *Ptr = Ops[0];
677  if (!TD || !Ptr->getType()->getPointerElementType()->isSized() ||
678      !Ptr->getType()->isPointerTy())
679    return 0;
680
681  Type *IntPtrTy = TD->getIntPtrType(Ptr->getType());
682  Type *ResultElementTy = ResultTy->getPointerElementType();
683
684  // If this is a constant expr gep that is effectively computing an
685  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
686  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
687    if (!isa<ConstantInt>(Ops[i])) {
688
689      // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
690      // "inttoptr (sub (ptrtoint Ptr), V)"
691      if (Ops.size() == 2 && ResultElementTy->isIntegerTy(8)) {
692        ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
693        assert((CE == 0 || CE->getType() == IntPtrTy) &&
694               "CastGEPIndices didn't canonicalize index types!");
695        if (CE && CE->getOpcode() == Instruction::Sub &&
696            CE->getOperand(0)->isNullValue()) {
697          Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
698          Res = ConstantExpr::getSub(Res, CE->getOperand(1));
699          Res = ConstantExpr::getIntToPtr(Res, ResultTy);
700          if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
701            Res = ConstantFoldConstantExpression(ResCE, TD, TLI);
702          return Res;
703        }
704      }
705      return 0;
706    }
707
708  unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
709  APInt Offset =
710    APInt(BitWidth, TD->getIndexedOffset(Ptr->getType(),
711                                         makeArrayRef((Value *const*)
712                                                        Ops.data() + 1,
713                                                      Ops.size() - 1)));
714  Ptr = StripPtrCastKeepAS(Ptr);
715
716  // If this is a GEP of a GEP, fold it all into a single GEP.
717  while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
718    SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
719
720    // Do not try the incorporate the sub-GEP if some index is not a number.
721    bool AllConstantInt = true;
722    for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
723      if (!isa<ConstantInt>(NestedOps[i])) {
724        AllConstantInt = false;
725        break;
726      }
727    if (!AllConstantInt)
728      break;
729
730    Ptr = cast<Constant>(GEP->getOperand(0));
731    Offset += APInt(BitWidth,
732                    TD->getIndexedOffset(Ptr->getType(), NestedOps));
733    Ptr = StripPtrCastKeepAS(Ptr);
734  }
735
736  // If the base value for this address is a literal integer value, fold the
737  // getelementptr to the resulting integer value casted to the pointer type.
738  APInt BasePtr(BitWidth, 0);
739  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
740    if (CE->getOpcode() == Instruction::IntToPtr) {
741      if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
742        BasePtr = Base->getValue().zextOrTrunc(BitWidth);
743    }
744  }
745
746  if (Ptr->isNullValue() || BasePtr != 0) {
747    Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
748    return ConstantExpr::getIntToPtr(C, ResultTy);
749  }
750
751  // Otherwise form a regular getelementptr. Recompute the indices so that
752  // we eliminate over-indexing of the notional static type array bounds.
753  // This makes it easy to determine if the getelementptr is "inbounds".
754  // Also, this helps GlobalOpt do SROA on GlobalVariables.
755  Type *Ty = Ptr->getType();
756  assert(Ty->isPointerTy() && "Forming regular GEP of non-pointer type");
757  SmallVector<Constant *, 32> NewIdxs;
758
759  do {
760    if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
761      if (ATy->isPointerTy()) {
762        // The only pointer indexing we'll do is on the first index of the GEP.
763        if (!NewIdxs.empty())
764          break;
765
766        // Only handle pointers to sized types, not pointers to functions.
767        if (!ATy->getElementType()->isSized())
768          return 0;
769      }
770
771      // Determine which element of the array the offset points into.
772      APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
773      if (ElemSize == 0)
774        // The element size is 0. This may be [0 x Ty]*, so just use a zero
775        // index for this level and proceed to the next level to see if it can
776        // accommodate the offset.
777        NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
778      else {
779        // The element size is non-zero divide the offset by the element
780        // size (rounding down), to compute the index at this level.
781        APInt NewIdx = Offset.udiv(ElemSize);
782        Offset -= NewIdx * ElemSize;
783        NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
784      }
785      Ty = ATy->getElementType();
786    } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
787      // If we end up with an offset that isn't valid for this struct type, we
788      // can't re-form this GEP in a regular form, so bail out. The pointer
789      // operand likely went through casts that are necessary to make the GEP
790      // sensible.
791      const StructLayout &SL = *TD->getStructLayout(STy);
792      if (Offset.uge(SL.getSizeInBytes()))
793        break;
794
795      // Determine which field of the struct the offset points into. The
796      // getZExtValue is fine as we've already ensured that the offset is
797      // within the range representable by the StructLayout API.
798      unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
799      NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
800                                         ElIdx));
801      Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
802      Ty = STy->getTypeAtIndex(ElIdx);
803    } else {
804      // We've reached some non-indexable type.
805      break;
806    }
807  } while (Ty != ResultElementTy);
808
809  // If we haven't used up the entire offset by descending the static
810  // type, then the offset is pointing into the middle of an indivisible
811  // member, so we can't simplify it.
812  if (Offset != 0)
813    return 0;
814
815  // Create a GEP.
816  Constant *C = ConstantExpr::getGetElementPtr(Ptr, NewIdxs);
817  assert(C->getType()->getPointerElementType() == Ty &&
818         "Computed GetElementPtr has unexpected type!");
819
820  // If we ended up indexing a member with a type that doesn't match
821  // the type of what the original indices indexed, add a cast.
822  if (Ty != ResultElementTy)
823    C = FoldBitCast(C, ResultTy, *TD);
824
825  return C;
826}
827
828
829
830//===----------------------------------------------------------------------===//
831// Constant Folding public APIs
832//===----------------------------------------------------------------------===//
833
834/// ConstantFoldInstruction - Try to constant fold the specified instruction.
835/// If successful, the constant result is returned, if not, null is returned.
836/// Note that this fails if not all of the operands are constant.  Otherwise,
837/// this function can only fail when attempting to fold instructions like loads
838/// and stores, which have no constant expression form.
839Constant *llvm::ConstantFoldInstruction(Instruction *I,
840                                        const DataLayout *TD,
841                                        const TargetLibraryInfo *TLI) {
842  // Handle PHI nodes quickly here...
843  if (PHINode *PN = dyn_cast<PHINode>(I)) {
844    Constant *CommonValue = 0;
845
846    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
847      Value *Incoming = PN->getIncomingValue(i);
848      // If the incoming value is undef then skip it.  Note that while we could
849      // skip the value if it is equal to the phi node itself we choose not to
850      // because that would break the rule that constant folding only applies if
851      // all operands are constants.
852      if (isa<UndefValue>(Incoming))
853        continue;
854      // If the incoming value is not a constant, then give up.
855      Constant *C = dyn_cast<Constant>(Incoming);
856      if (!C)
857        return 0;
858      // Fold the PHI's operands.
859      if (ConstantExpr *NewC = dyn_cast<ConstantExpr>(C))
860        C = ConstantFoldConstantExpression(NewC, TD, TLI);
861      // If the incoming value is a different constant to
862      // the one we saw previously, then give up.
863      if (CommonValue && C != CommonValue)
864        return 0;
865      CommonValue = C;
866    }
867
868
869    // If we reach here, all incoming values are the same constant or undef.
870    return CommonValue ? CommonValue : UndefValue::get(PN->getType());
871  }
872
873  // Scan the operand list, checking to see if they are all constants, if so,
874  // hand off to ConstantFoldInstOperands.
875  SmallVector<Constant*, 8> Ops;
876  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
877    Constant *Op = dyn_cast<Constant>(*i);
878    if (!Op)
879      return 0;  // All operands not constant!
880
881    // Fold the Instruction's operands.
882    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(Op))
883      Op = ConstantFoldConstantExpression(NewCE, TD, TLI);
884
885    Ops.push_back(Op);
886  }
887
888  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
889    return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
890                                           TD, TLI);
891
892  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
893    return ConstantFoldLoadInst(LI, TD);
894
895  if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I)) {
896    return ConstantExpr::getInsertValue(
897                                cast<Constant>(IVI->getAggregateOperand()),
898                                cast<Constant>(IVI->getInsertedValueOperand()),
899                                IVI->getIndices());
900  }
901
902  if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I)) {
903    return ConstantExpr::getExtractValue(
904                                    cast<Constant>(EVI->getAggregateOperand()),
905                                    EVI->getIndices());
906  }
907
908  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD, TLI);
909}
910
911static Constant *
912ConstantFoldConstantExpressionImpl(const ConstantExpr *CE, const DataLayout *TD,
913                                   const TargetLibraryInfo *TLI,
914                                   SmallPtrSet<ConstantExpr *, 4> &FoldedOps) {
915  SmallVector<Constant *, 8> Ops;
916  for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end(); i != e;
917       ++i) {
918    Constant *NewC = cast<Constant>(*i);
919    // Recursively fold the ConstantExpr's operands. If we have already folded
920    // a ConstantExpr, we don't have to process it again.
921    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC)) {
922      if (FoldedOps.insert(NewCE))
923        NewC = ConstantFoldConstantExpressionImpl(NewCE, TD, TLI, FoldedOps);
924    }
925    Ops.push_back(NewC);
926  }
927
928  if (CE->isCompare())
929    return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
930                                           TD, TLI);
931  return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, TD, TLI);
932}
933
934/// ConstantFoldConstantExpression - Attempt to fold the constant expression
935/// using the specified DataLayout.  If successful, the constant result is
936/// result is returned, if not, null is returned.
937Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
938                                               const DataLayout *TD,
939                                               const TargetLibraryInfo *TLI) {
940  SmallPtrSet<ConstantExpr *, 4> FoldedOps;
941  return ConstantFoldConstantExpressionImpl(CE, TD, TLI, FoldedOps);
942}
943
944/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
945/// specified opcode and operands.  If successful, the constant result is
946/// returned, if not, null is returned.  Note that this function can fail when
947/// attempting to fold instructions like loads and stores, which have no
948/// constant expression form.
949///
950/// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
951/// information, due to only being passed an opcode and operands. Constant
952/// folding using this function strips this information.
953///
954Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
955                                         ArrayRef<Constant *> Ops,
956                                         const DataLayout *TD,
957                                         const TargetLibraryInfo *TLI) {
958  // Handle easy binops first.
959  if (Instruction::isBinaryOp(Opcode)) {
960    if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1])) {
961      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
962        return C;
963    }
964
965    return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
966  }
967
968  switch (Opcode) {
969  default: return 0;
970  case Instruction::ICmp:
971  case Instruction::FCmp: llvm_unreachable("Invalid for compares");
972  case Instruction::Call:
973    if (Function *F = dyn_cast<Function>(Ops.back()))
974      if (canConstantFoldCallTo(F))
975        return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
976    return 0;
977  case Instruction::PtrToInt:
978    // If the input is a inttoptr, eliminate the pair.  This requires knowing
979    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
980    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
981      if (TD && CE->getOpcode() == Instruction::IntToPtr) {
982        Constant *Input = CE->getOperand(0);
983        unsigned InWidth = Input->getType()->getScalarSizeInBits();
984        unsigned PtrWidth = TD->getPointerTypeSizeInBits(CE->getType());
985        if (PtrWidth < InWidth) {
986          Constant *Mask =
987            ConstantInt::get(CE->getContext(),
988                             APInt::getLowBitsSet(InWidth, PtrWidth));
989          Input = ConstantExpr::getAnd(Input, Mask);
990        }
991        // Do a zext or trunc to get to the dest size.
992        return ConstantExpr::getIntegerCast(Input, DestTy, false);
993      }
994    }
995    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
996  case Instruction::IntToPtr:
997    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
998    // the int size is >= the ptr size and the address spaces are the same.
999    // This requires knowing the width of a pointer, so it can't be done in
1000    // ConstantExpr::getCast.
1001    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
1002      if (TD && CE->getOpcode() == Instruction::PtrToInt) {
1003        Constant *SrcPtr = CE->getOperand(0);
1004        unsigned SrcPtrSize = TD->getPointerTypeSizeInBits(SrcPtr->getType());
1005        unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1006
1007        if (MidIntSize >= SrcPtrSize) {
1008          unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1009          if (SrcAS == DestTy->getPointerAddressSpace())
1010            return FoldBitCast(CE->getOperand(0), DestTy, *TD);
1011        }
1012      }
1013    }
1014
1015    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1016  case Instruction::Trunc:
1017  case Instruction::ZExt:
1018  case Instruction::SExt:
1019  case Instruction::FPTrunc:
1020  case Instruction::FPExt:
1021  case Instruction::UIToFP:
1022  case Instruction::SIToFP:
1023  case Instruction::FPToUI:
1024  case Instruction::FPToSI:
1025  case Instruction::AddrSpaceCast:
1026      return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1027  case Instruction::BitCast:
1028    if (TD)
1029      return FoldBitCast(Ops[0], DestTy, *TD);
1030    return ConstantExpr::getBitCast(Ops[0], DestTy);
1031  case Instruction::Select:
1032    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1033  case Instruction::ExtractElement:
1034    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1035  case Instruction::InsertElement:
1036    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1037  case Instruction::ShuffleVector:
1038    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1039  case Instruction::GetElementPtr:
1040    if (Constant *C = CastGEPIndices(Ops, DestTy, TD, TLI))
1041      return C;
1042    if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, TD, TLI))
1043      return C;
1044
1045    return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1));
1046  }
1047}
1048
1049/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
1050/// instruction (icmp/fcmp) with the specified operands.  If it fails, it
1051/// returns a constant expression of the specified operands.
1052///
1053Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
1054                                                Constant *Ops0, Constant *Ops1,
1055                                                const DataLayout *TD,
1056                                                const TargetLibraryInfo *TLI) {
1057  // fold: icmp (inttoptr x), null         -> icmp x, 0
1058  // fold: icmp (ptrtoint x), 0            -> icmp x, null
1059  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1060  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1061  //
1062  // ConstantExpr::getCompare cannot do this, because it doesn't have TD
1063  // around to know if bit truncation is happening.
1064  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1065    if (TD && Ops1->isNullValue()) {
1066      if (CE0->getOpcode() == Instruction::IntToPtr) {
1067        Type *IntPtrTy = TD->getIntPtrType(CE0->getType());
1068        // Convert the integer value to the right size to ensure we get the
1069        // proper extension or truncation.
1070        Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1071                                                   IntPtrTy, false);
1072        Constant *Null = Constant::getNullValue(C->getType());
1073        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
1074      }
1075
1076      // Only do this transformation if the int is intptrty in size, otherwise
1077      // there is a truncation or extension that we aren't modeling.
1078      if (CE0->getOpcode() == Instruction::PtrToInt) {
1079        Type *IntPtrTy = TD->getIntPtrType(CE0->getOperand(0)->getType());
1080        if (CE0->getType() == IntPtrTy) {
1081          Constant *C = CE0->getOperand(0);
1082          Constant *Null = Constant::getNullValue(C->getType());
1083          return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
1084        }
1085      }
1086    }
1087
1088    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1089      if (TD && CE0->getOpcode() == CE1->getOpcode()) {
1090        if (CE0->getOpcode() == Instruction::IntToPtr) {
1091          Type *IntPtrTy = TD->getIntPtrType(CE0->getType());
1092
1093          // Convert the integer value to the right size to ensure we get the
1094          // proper extension or truncation.
1095          Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1096                                                      IntPtrTy, false);
1097          Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1098                                                      IntPtrTy, false);
1099          return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD, TLI);
1100        }
1101
1102        // Only do this transformation if the int is intptrty in size, otherwise
1103        // there is a truncation or extension that we aren't modeling.
1104        if (CE0->getOpcode() == Instruction::PtrToInt) {
1105          Type *IntPtrTy = TD->getIntPtrType(CE0->getOperand(0)->getType());
1106          if (CE0->getType() == IntPtrTy &&
1107              CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1108            return ConstantFoldCompareInstOperands(Predicate,
1109                                                   CE0->getOperand(0),
1110                                                   CE1->getOperand(0),
1111                                                   TD,
1112                                                   TLI);
1113          }
1114        }
1115      }
1116    }
1117
1118    // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1119    // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1120    if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1121        CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1122      Constant *LHS =
1123        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,
1124                                        TD, TLI);
1125      Constant *RHS =
1126        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,
1127                                        TD, TLI);
1128      unsigned OpC =
1129        Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1130      Constant *Ops[] = { LHS, RHS };
1131      return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, TD, TLI);
1132    }
1133  }
1134
1135  return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1136}
1137
1138
1139/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
1140/// getelementptr constantexpr, return the constant value being addressed by the
1141/// constant expression, or null if something is funny and we can't decide.
1142Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1143                                                       ConstantExpr *CE) {
1144  if (!CE->getOperand(1)->isNullValue())
1145    return 0;  // Do not allow stepping over the value!
1146
1147  // Loop over all of the operands, tracking down which value we are
1148  // addressing.
1149  for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1150    C = C->getAggregateElement(CE->getOperand(i));
1151    if (C == 0)
1152      return 0;
1153  }
1154  return C;
1155}
1156
1157/// ConstantFoldLoadThroughGEPIndices - Given a constant and getelementptr
1158/// indices (with an *implied* zero pointer index that is not in the list),
1159/// return the constant value being addressed by a virtual load, or null if
1160/// something is funny and we can't decide.
1161Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
1162                                                  ArrayRef<Constant*> Indices) {
1163  // Loop over all of the operands, tracking down which value we are
1164  // addressing.
1165  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1166    C = C->getAggregateElement(Indices[i]);
1167    if (C == 0)
1168      return 0;
1169  }
1170  return C;
1171}
1172
1173
1174//===----------------------------------------------------------------------===//
1175//  Constant Folding for Calls
1176//
1177
1178/// canConstantFoldCallTo - Return true if its even possible to fold a call to
1179/// the specified function.
1180bool llvm::canConstantFoldCallTo(const Function *F) {
1181  switch (F->getIntrinsicID()) {
1182  case Intrinsic::fabs:
1183  case Intrinsic::log:
1184  case Intrinsic::log2:
1185  case Intrinsic::log10:
1186  case Intrinsic::exp:
1187  case Intrinsic::exp2:
1188  case Intrinsic::floor:
1189  case Intrinsic::ceil:
1190  case Intrinsic::sqrt:
1191  case Intrinsic::pow:
1192  case Intrinsic::powi:
1193  case Intrinsic::bswap:
1194  case Intrinsic::ctpop:
1195  case Intrinsic::ctlz:
1196  case Intrinsic::cttz:
1197  case Intrinsic::fma:
1198  case Intrinsic::fmuladd:
1199  case Intrinsic::copysign:
1200  case Intrinsic::round:
1201  case Intrinsic::sadd_with_overflow:
1202  case Intrinsic::uadd_with_overflow:
1203  case Intrinsic::ssub_with_overflow:
1204  case Intrinsic::usub_with_overflow:
1205  case Intrinsic::smul_with_overflow:
1206  case Intrinsic::umul_with_overflow:
1207  case Intrinsic::convert_from_fp16:
1208  case Intrinsic::convert_to_fp16:
1209  case Intrinsic::x86_sse_cvtss2si:
1210  case Intrinsic::x86_sse_cvtss2si64:
1211  case Intrinsic::x86_sse_cvttss2si:
1212  case Intrinsic::x86_sse_cvttss2si64:
1213  case Intrinsic::x86_sse2_cvtsd2si:
1214  case Intrinsic::x86_sse2_cvtsd2si64:
1215  case Intrinsic::x86_sse2_cvttsd2si:
1216  case Intrinsic::x86_sse2_cvttsd2si64:
1217    return true;
1218  default:
1219    return false;
1220  case 0: break;
1221  }
1222
1223  if (!F->hasName())
1224    return false;
1225  StringRef Name = F->getName();
1226
1227  // In these cases, the check of the length is required.  We don't want to
1228  // return true for a name like "cos\0blah" which strcmp would return equal to
1229  // "cos", but has length 8.
1230  switch (Name[0]) {
1231  default: return false;
1232  case 'a':
1233    return Name == "acos" || Name == "asin" || Name == "atan" || Name =="atan2";
1234  case 'c':
1235    return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
1236  case 'e':
1237    return Name == "exp" || Name == "exp2";
1238  case 'f':
1239    return Name == "fabs" || Name == "fmod" || Name == "floor";
1240  case 'l':
1241    return Name == "log" || Name == "log10";
1242  case 'p':
1243    return Name == "pow";
1244  case 's':
1245    return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
1246      Name == "sinf" || Name == "sqrtf";
1247  case 't':
1248    return Name == "tan" || Name == "tanh";
1249  }
1250}
1251
1252static Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1253  if (Ty->isHalfTy()) {
1254    APFloat APF(V);
1255    bool unused;
1256    APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
1257    return ConstantFP::get(Ty->getContext(), APF);
1258  }
1259  if (Ty->isFloatTy())
1260    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1261  if (Ty->isDoubleTy())
1262    return ConstantFP::get(Ty->getContext(), APFloat(V));
1263  llvm_unreachable("Can only constant fold half/float/double");
1264
1265}
1266
1267static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
1268                                Type *Ty) {
1269  sys::llvm_fenv_clearexcept();
1270  V = NativeFP(V);
1271  if (sys::llvm_fenv_testexcept()) {
1272    sys::llvm_fenv_clearexcept();
1273    return 0;
1274  }
1275
1276  return GetConstantFoldFPValue(V, Ty);
1277}
1278
1279static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1280                                      double V, double W, Type *Ty) {
1281  sys::llvm_fenv_clearexcept();
1282  V = NativeFP(V, W);
1283  if (sys::llvm_fenv_testexcept()) {
1284    sys::llvm_fenv_clearexcept();
1285    return 0;
1286  }
1287
1288  return GetConstantFoldFPValue(V, Ty);
1289}
1290
1291/// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
1292/// conversion of a constant floating point. If roundTowardZero is false, the
1293/// default IEEE rounding is used (toward nearest, ties to even). This matches
1294/// the behavior of the non-truncating SSE instructions in the default rounding
1295/// mode. The desired integer type Ty is used to select how many bits are
1296/// available for the result. Returns null if the conversion cannot be
1297/// performed, otherwise returns the Constant value resulting from the
1298/// conversion.
1299static Constant *ConstantFoldConvertToInt(const APFloat &Val,
1300                                          bool roundTowardZero, Type *Ty) {
1301  // All of these conversion intrinsics form an integer of at most 64bits.
1302  unsigned ResultWidth = Ty->getIntegerBitWidth();
1303  assert(ResultWidth <= 64 &&
1304         "Can only constant fold conversions to 64 and 32 bit ints");
1305
1306  uint64_t UIntVal;
1307  bool isExact = false;
1308  APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1309                                              : APFloat::rmNearestTiesToEven;
1310  APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
1311                                                  /*isSigned=*/true, mode,
1312                                                  &isExact);
1313  if (status != APFloat::opOK && status != APFloat::opInexact)
1314    return 0;
1315  return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
1316}
1317
1318static double getValueAsDouble(ConstantFP *Op) {
1319  Type *Ty = Op->getType();
1320
1321  if (Ty->isFloatTy())
1322    return Op->getValueAPF().convertToFloat();
1323
1324  if (Ty->isDoubleTy())
1325    return Op->getValueAPF().convertToDouble();
1326
1327  bool unused;
1328  APFloat APF = Op->getValueAPF();
1329  APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
1330  return APF.convertToDouble();
1331}
1332
1333static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID,
1334                                        Type *Ty, ArrayRef<Constant *> Operands,
1335                                        const TargetLibraryInfo *TLI) {
1336  if (Operands.size() == 1) {
1337    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
1338      if (IntrinsicID == Intrinsic::convert_to_fp16) {
1339        APFloat Val(Op->getValueAPF());
1340
1341        bool lost = false;
1342        Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
1343
1344        return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
1345      }
1346
1347      if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1348        return 0;
1349
1350      if (IntrinsicID == Intrinsic::round) {
1351        APFloat V = Op->getValueAPF();
1352        V.roundToIntegral(APFloat::rmNearestTiesToAway);
1353        return ConstantFP::get(Ty->getContext(), V);
1354      }
1355
1356      /// We only fold functions with finite arguments. Folding NaN and inf is
1357      /// likely to be aborted with an exception anyway, and some host libms
1358      /// have known errors raising exceptions.
1359      if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1360        return 0;
1361
1362      /// Currently APFloat versions of these functions do not exist, so we use
1363      /// the host native double versions.  Float versions are not called
1364      /// directly but for all these it is true (float)(f((double)arg)) ==
1365      /// f(arg).  Long double not supported yet.
1366      double V = getValueAsDouble(Op);
1367
1368      switch (IntrinsicID) {
1369        default: break;
1370        case Intrinsic::fabs:
1371          return ConstantFoldFP(fabs, V, Ty);
1372#if HAVE_LOG2
1373        case Intrinsic::log2:
1374          return ConstantFoldFP(log2, V, Ty);
1375#endif
1376#if HAVE_LOG
1377        case Intrinsic::log:
1378          return ConstantFoldFP(log, V, Ty);
1379#endif
1380#if HAVE_LOG10
1381        case Intrinsic::log10:
1382          return ConstantFoldFP(log10, V, Ty);
1383#endif
1384#if HAVE_EXP
1385        case Intrinsic::exp:
1386          return ConstantFoldFP(exp, V, Ty);
1387#endif
1388#if HAVE_EXP2
1389        case Intrinsic::exp2:
1390          return ConstantFoldFP(exp2, V, Ty);
1391#endif
1392        case Intrinsic::floor:
1393          return ConstantFoldFP(floor, V, Ty);
1394        case Intrinsic::ceil:
1395          return ConstantFoldFP(ceil, V, Ty);
1396      }
1397
1398      if (!TLI)
1399        return 0;
1400
1401      switch (Name[0]) {
1402      case 'a':
1403        if (Name == "acos" && TLI->has(LibFunc::acos))
1404          return ConstantFoldFP(acos, V, Ty);
1405        else if (Name == "asin" && TLI->has(LibFunc::asin))
1406          return ConstantFoldFP(asin, V, Ty);
1407        else if (Name == "atan" && TLI->has(LibFunc::atan))
1408          return ConstantFoldFP(atan, V, Ty);
1409        break;
1410      case 'c':
1411        if (Name == "ceil" && TLI->has(LibFunc::ceil))
1412          return ConstantFoldFP(ceil, V, Ty);
1413        else if (Name == "cos" && TLI->has(LibFunc::cos))
1414          return ConstantFoldFP(cos, V, Ty);
1415        else if (Name == "cosh" && TLI->has(LibFunc::cosh))
1416          return ConstantFoldFP(cosh, V, Ty);
1417        else if (Name == "cosf" && TLI->has(LibFunc::cosf))
1418          return ConstantFoldFP(cos, V, Ty);
1419        break;
1420      case 'e':
1421        if (Name == "exp" && TLI->has(LibFunc::exp))
1422          return ConstantFoldFP(exp, V, Ty);
1423
1424        if (Name == "exp2" && TLI->has(LibFunc::exp2)) {
1425          // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
1426          // C99 library.
1427          return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1428        }
1429        break;
1430      case 'f':
1431        if (Name == "fabs" && TLI->has(LibFunc::fabs))
1432          return ConstantFoldFP(fabs, V, Ty);
1433        else if (Name == "floor" && TLI->has(LibFunc::floor))
1434          return ConstantFoldFP(floor, V, Ty);
1435        break;
1436      case 'l':
1437        if (Name == "log" && V > 0 && TLI->has(LibFunc::log))
1438          return ConstantFoldFP(log, V, Ty);
1439        else if (Name == "log10" && V > 0 && TLI->has(LibFunc::log10))
1440          return ConstantFoldFP(log10, V, Ty);
1441        else if (IntrinsicID == Intrinsic::sqrt &&
1442                 (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())) {
1443          if (V >= -0.0)
1444            return ConstantFoldFP(sqrt, V, Ty);
1445          else // Undefined
1446            return Constant::getNullValue(Ty);
1447        }
1448        break;
1449      case 's':
1450        if (Name == "sin" && TLI->has(LibFunc::sin))
1451          return ConstantFoldFP(sin, V, Ty);
1452        else if (Name == "sinh" && TLI->has(LibFunc::sinh))
1453          return ConstantFoldFP(sinh, V, Ty);
1454        else if (Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt))
1455          return ConstantFoldFP(sqrt, V, Ty);
1456        else if (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf))
1457          return ConstantFoldFP(sqrt, V, Ty);
1458        else if (Name == "sinf" && TLI->has(LibFunc::sinf))
1459          return ConstantFoldFP(sin, V, Ty);
1460        break;
1461      case 't':
1462        if (Name == "tan" && TLI->has(LibFunc::tan))
1463          return ConstantFoldFP(tan, V, Ty);
1464        else if (Name == "tanh" && TLI->has(LibFunc::tanh))
1465          return ConstantFoldFP(tanh, V, Ty);
1466        break;
1467      default:
1468        break;
1469      }
1470      return 0;
1471    }
1472
1473    if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
1474      switch (IntrinsicID) {
1475      case Intrinsic::bswap:
1476        return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
1477      case Intrinsic::ctpop:
1478        return ConstantInt::get(Ty, Op->getValue().countPopulation());
1479      case Intrinsic::convert_from_fp16: {
1480        APFloat Val(APFloat::IEEEhalf, Op->getValue());
1481
1482        bool lost = false;
1483        APFloat::opStatus status =
1484          Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
1485
1486        // Conversion is always precise.
1487        (void)status;
1488        assert(status == APFloat::opOK && !lost &&
1489               "Precision lost during fp16 constfolding");
1490
1491        return ConstantFP::get(Ty->getContext(), Val);
1492      }
1493      default:
1494        return 0;
1495      }
1496    }
1497
1498    // Support ConstantVector in case we have an Undef in the top.
1499    if (isa<ConstantVector>(Operands[0]) ||
1500        isa<ConstantDataVector>(Operands[0])) {
1501      Constant *Op = cast<Constant>(Operands[0]);
1502      switch (IntrinsicID) {
1503      default: break;
1504      case Intrinsic::x86_sse_cvtss2si:
1505      case Intrinsic::x86_sse_cvtss2si64:
1506      case Intrinsic::x86_sse2_cvtsd2si:
1507      case Intrinsic::x86_sse2_cvtsd2si64:
1508        if (ConstantFP *FPOp =
1509              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1510          return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1511                                          /*roundTowardZero=*/false, Ty);
1512      case Intrinsic::x86_sse_cvttss2si:
1513      case Intrinsic::x86_sse_cvttss2si64:
1514      case Intrinsic::x86_sse2_cvttsd2si:
1515      case Intrinsic::x86_sse2_cvttsd2si64:
1516        if (ConstantFP *FPOp =
1517              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1518          return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1519                                          /*roundTowardZero=*/true, Ty);
1520      }
1521    }
1522
1523    if (isa<UndefValue>(Operands[0])) {
1524      if (IntrinsicID == Intrinsic::bswap)
1525        return Operands[0];
1526      return 0;
1527    }
1528
1529    return 0;
1530  }
1531
1532  if (Operands.size() == 2) {
1533    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1534      if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1535        return 0;
1536      double Op1V = getValueAsDouble(Op1);
1537
1538      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1539        if (Op2->getType() != Op1->getType())
1540          return 0;
1541
1542        double Op2V = getValueAsDouble(Op2);
1543        if (IntrinsicID == Intrinsic::pow) {
1544          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1545        }
1546        if (IntrinsicID == Intrinsic::copysign) {
1547          APFloat V1 = Op1->getValueAPF();
1548          APFloat V2 = Op2->getValueAPF();
1549          V1.copySign(V2);
1550          return ConstantFP::get(Ty->getContext(), V1);
1551        }
1552        if (!TLI)
1553          return 0;
1554        if (Name == "pow" && TLI->has(LibFunc::pow))
1555          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1556        if (Name == "fmod" && TLI->has(LibFunc::fmod))
1557          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
1558        if (Name == "atan2" && TLI->has(LibFunc::atan2))
1559          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
1560      } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1561        if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
1562          return ConstantFP::get(Ty->getContext(),
1563                                 APFloat((float)std::pow((float)Op1V,
1564                                                 (int)Op2C->getZExtValue())));
1565        if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
1566          return ConstantFP::get(Ty->getContext(),
1567                                 APFloat((float)std::pow((float)Op1V,
1568                                                 (int)Op2C->getZExtValue())));
1569        if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
1570          return ConstantFP::get(Ty->getContext(),
1571                                 APFloat((double)std::pow((double)Op1V,
1572                                                   (int)Op2C->getZExtValue())));
1573      }
1574      return 0;
1575    }
1576
1577    if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1578      if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1579        switch (IntrinsicID) {
1580        default: break;
1581        case Intrinsic::sadd_with_overflow:
1582        case Intrinsic::uadd_with_overflow:
1583        case Intrinsic::ssub_with_overflow:
1584        case Intrinsic::usub_with_overflow:
1585        case Intrinsic::smul_with_overflow:
1586        case Intrinsic::umul_with_overflow: {
1587          APInt Res;
1588          bool Overflow;
1589          switch (IntrinsicID) {
1590          default: llvm_unreachable("Invalid case");
1591          case Intrinsic::sadd_with_overflow:
1592            Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
1593            break;
1594          case Intrinsic::uadd_with_overflow:
1595            Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
1596            break;
1597          case Intrinsic::ssub_with_overflow:
1598            Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
1599            break;
1600          case Intrinsic::usub_with_overflow:
1601            Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
1602            break;
1603          case Intrinsic::smul_with_overflow:
1604            Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
1605            break;
1606          case Intrinsic::umul_with_overflow:
1607            Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
1608            break;
1609          }
1610          Constant *Ops[] = {
1611            ConstantInt::get(Ty->getContext(), Res),
1612            ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
1613          };
1614          return ConstantStruct::get(cast<StructType>(Ty), Ops);
1615        }
1616        case Intrinsic::cttz:
1617          if (Op2->isOne() && Op1->isZero()) // cttz(0, 1) is undef.
1618            return UndefValue::get(Ty);
1619          return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
1620        case Intrinsic::ctlz:
1621          if (Op2->isOne() && Op1->isZero()) // ctlz(0, 1) is undef.
1622            return UndefValue::get(Ty);
1623          return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
1624        }
1625      }
1626
1627      return 0;
1628    }
1629    return 0;
1630  }
1631
1632  if (Operands.size() != 3)
1633    return 0;
1634
1635  if (const ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1636    if (const ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1637      if (const ConstantFP *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
1638        switch (IntrinsicID) {
1639        default: break;
1640        case Intrinsic::fma:
1641        case Intrinsic::fmuladd: {
1642          APFloat V = Op1->getValueAPF();
1643          APFloat::opStatus s = V.fusedMultiplyAdd(Op2->getValueAPF(),
1644                                                   Op3->getValueAPF(),
1645                                                   APFloat::rmNearestTiesToEven);
1646          if (s != APFloat::opInvalidOp)
1647            return ConstantFP::get(Ty->getContext(), V);
1648
1649          return 0;
1650        }
1651        }
1652      }
1653    }
1654  }
1655
1656  return 0;
1657}
1658
1659static Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID,
1660                                        VectorType *VTy,
1661                                        ArrayRef<Constant *> Operands,
1662                                        const TargetLibraryInfo *TLI) {
1663  SmallVector<Constant *, 4> Result(VTy->getNumElements());
1664  SmallVector<Constant *, 4> Lane(Operands.size());
1665  Type *Ty = VTy->getElementType();
1666
1667  for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
1668    // Gather a column of constants.
1669    for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
1670      Constant *Agg = Operands[J]->getAggregateElement(I);
1671      if (!Agg)
1672        return nullptr;
1673
1674      Lane[J] = Agg;
1675    }
1676
1677    // Use the regular scalar folding to simplify this column.
1678    Constant *Folded = ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI);
1679    if (!Folded)
1680      return nullptr;
1681    Result[I] = Folded;
1682  }
1683
1684  return ConstantVector::get(Result);
1685}
1686
1687/// ConstantFoldCall - Attempt to constant fold a call to the specified function
1688/// with the specified arguments, returning null if unsuccessful.
1689Constant *
1690llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
1691                       const TargetLibraryInfo *TLI) {
1692  if (!F->hasName())
1693    return 0;
1694  StringRef Name = F->getName();
1695
1696  Type *Ty = F->getReturnType();
1697
1698  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1699    return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands, TLI);
1700
1701  return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI);
1702}
1703