ConstantFolding.cpp revision b36f2f729d30b0e535ebaac9119ee65f4214ea1d
1//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines routines for folding instructions into constants.
11//
12// Also, to supplement the basic IR ConstantExpr simplifications,
13// this file defines some additional folding routines that can make use of
14// DataLayout information. These functions cannot go in IR due to library
15// dependency issues.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/StringMap.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/IR/Constants.h"
25#include "llvm/IR/DataLayout.h"
26#include "llvm/IR/DerivedTypes.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/GlobalVariable.h"
29#include "llvm/IR/Instructions.h"
30#include "llvm/IR/Intrinsics.h"
31#include "llvm/IR/Operator.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/FEnv.h"
34#include "llvm/Support/GetElementPtrTypeIterator.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Target/TargetLibraryInfo.h"
37#include <cerrno>
38#include <cmath>
39using namespace llvm;
40
41//===----------------------------------------------------------------------===//
42// Constant Folding internal helper functions
43//===----------------------------------------------------------------------===//
44
45/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
46/// DataLayout.  This always returns a non-null constant, but it may be a
47/// ConstantExpr if unfoldable.
48static Constant *FoldBitCast(Constant *C, Type *DestTy,
49                             const DataLayout &TD) {
50  // Catch the obvious splat cases.
51  if (C->isNullValue() && !DestTy->isX86_MMXTy())
52    return Constant::getNullValue(DestTy);
53  if (C->isAllOnesValue() && !DestTy->isX86_MMXTy())
54    return Constant::getAllOnesValue(DestTy);
55
56  // Handle a vector->integer cast.
57  if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) {
58    VectorType *VTy = dyn_cast<VectorType>(C->getType());
59    if (VTy == 0)
60      return ConstantExpr::getBitCast(C, DestTy);
61
62    unsigned NumSrcElts = VTy->getNumElements();
63    Type *SrcEltTy = VTy->getElementType();
64
65    // If the vector is a vector of floating point, convert it to vector of int
66    // to simplify things.
67    if (SrcEltTy->isFloatingPointTy()) {
68      unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
69      Type *SrcIVTy =
70        VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
71      // Ask IR to do the conversion now that #elts line up.
72      C = ConstantExpr::getBitCast(C, SrcIVTy);
73    }
74
75    ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
76    if (CDV == 0)
77      return ConstantExpr::getBitCast(C, DestTy);
78
79    // Now that we know that the input value is a vector of integers, just shift
80    // and insert them into our result.
81    unsigned BitShift = TD.getTypeAllocSizeInBits(SrcEltTy);
82    APInt Result(IT->getBitWidth(), 0);
83    for (unsigned i = 0; i != NumSrcElts; ++i) {
84      Result <<= BitShift;
85      if (TD.isLittleEndian())
86        Result |= CDV->getElementAsInteger(NumSrcElts-i-1);
87      else
88        Result |= CDV->getElementAsInteger(i);
89    }
90
91    return ConstantInt::get(IT, Result);
92  }
93
94  // The code below only handles casts to vectors currently.
95  VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
96  if (DestVTy == 0)
97    return ConstantExpr::getBitCast(C, DestTy);
98
99  // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
100  // vector so the code below can handle it uniformly.
101  if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
102    Constant *Ops = C; // don't take the address of C!
103    return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
104  }
105
106  // If this is a bitcast from constant vector -> vector, fold it.
107  if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
108    return ConstantExpr::getBitCast(C, DestTy);
109
110  // If the element types match, IR can fold it.
111  unsigned NumDstElt = DestVTy->getNumElements();
112  unsigned NumSrcElt = C->getType()->getVectorNumElements();
113  if (NumDstElt == NumSrcElt)
114    return ConstantExpr::getBitCast(C, DestTy);
115
116  Type *SrcEltTy = C->getType()->getVectorElementType();
117  Type *DstEltTy = DestVTy->getElementType();
118
119  // Otherwise, we're changing the number of elements in a vector, which
120  // requires endianness information to do the right thing.  For example,
121  //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
122  // folds to (little endian):
123  //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
124  // and to (big endian):
125  //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
126
127  // First thing is first.  We only want to think about integer here, so if
128  // we have something in FP form, recast it as integer.
129  if (DstEltTy->isFloatingPointTy()) {
130    // Fold to an vector of integers with same size as our FP type.
131    unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
132    Type *DestIVTy =
133      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
134    // Recursively handle this integer conversion, if possible.
135    C = FoldBitCast(C, DestIVTy, TD);
136
137    // Finally, IR can handle this now that #elts line up.
138    return ConstantExpr::getBitCast(C, DestTy);
139  }
140
141  // Okay, we know the destination is integer, if the input is FP, convert
142  // it to integer first.
143  if (SrcEltTy->isFloatingPointTy()) {
144    unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
145    Type *SrcIVTy =
146      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
147    // Ask IR to do the conversion now that #elts line up.
148    C = ConstantExpr::getBitCast(C, SrcIVTy);
149    // If IR wasn't able to fold it, bail out.
150    if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
151        !isa<ConstantDataVector>(C))
152      return C;
153  }
154
155  // Now we know that the input and output vectors are both integer vectors
156  // of the same size, and that their #elements is not the same.  Do the
157  // conversion here, which depends on whether the input or output has
158  // more elements.
159  bool isLittleEndian = TD.isLittleEndian();
160
161  SmallVector<Constant*, 32> Result;
162  if (NumDstElt < NumSrcElt) {
163    // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
164    Constant *Zero = Constant::getNullValue(DstEltTy);
165    unsigned Ratio = NumSrcElt/NumDstElt;
166    unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
167    unsigned SrcElt = 0;
168    for (unsigned i = 0; i != NumDstElt; ++i) {
169      // Build each element of the result.
170      Constant *Elt = Zero;
171      unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
172      for (unsigned j = 0; j != Ratio; ++j) {
173        Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
174        if (!Src)  // Reject constantexpr elements.
175          return ConstantExpr::getBitCast(C, DestTy);
176
177        // Zero extend the element to the right size.
178        Src = ConstantExpr::getZExt(Src, Elt->getType());
179
180        // Shift it to the right place, depending on endianness.
181        Src = ConstantExpr::getShl(Src,
182                                   ConstantInt::get(Src->getType(), ShiftAmt));
183        ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
184
185        // Mix it in.
186        Elt = ConstantExpr::getOr(Elt, Src);
187      }
188      Result.push_back(Elt);
189    }
190    return ConstantVector::get(Result);
191  }
192
193  // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
194  unsigned Ratio = NumDstElt/NumSrcElt;
195  unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
196
197  // Loop over each source value, expanding into multiple results.
198  for (unsigned i = 0; i != NumSrcElt; ++i) {
199    Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
200    if (!Src)  // Reject constantexpr elements.
201      return ConstantExpr::getBitCast(C, DestTy);
202
203    unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
204    for (unsigned j = 0; j != Ratio; ++j) {
205      // Shift the piece of the value into the right place, depending on
206      // endianness.
207      Constant *Elt = ConstantExpr::getLShr(Src,
208                                  ConstantInt::get(Src->getType(), ShiftAmt));
209      ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
210
211      // Truncate and remember this piece.
212      Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
213    }
214  }
215
216  return ConstantVector::get(Result);
217}
218
219
220/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
221/// from a global, return the global and the constant.  Because of
222/// constantexprs, this function is recursive.
223static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
224                                       APInt &Offset, const DataLayout &TD) {
225  // Trivial case, constant is the global.
226  if ((GV = dyn_cast<GlobalValue>(C))) {
227    Offset.clearAllBits();
228    return true;
229  }
230
231  // Otherwise, if this isn't a constant expr, bail out.
232  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
233  if (!CE) return false;
234
235  // Look through ptr->int and ptr->ptr casts.
236  if (CE->getOpcode() == Instruction::PtrToInt ||
237      CE->getOpcode() == Instruction::BitCast)
238    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
239
240  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
241  if (GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
242    // If the base isn't a global+constant, we aren't either.
243    if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
244      return false;
245
246    // Otherwise, add any offset that our operands provide.
247    return GEP->accumulateConstantOffset(TD, Offset);
248  }
249
250  return false;
251}
252
253/// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
254/// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
255/// pointer to copy results into and BytesLeft is the number of bytes left in
256/// the CurPtr buffer.  TD is the target data.
257static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
258                               unsigned char *CurPtr, unsigned BytesLeft,
259                               const DataLayout &TD) {
260  assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
261         "Out of range access");
262
263  // If this element is zero or undefined, we can just return since *CurPtr is
264  // zero initialized.
265  if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
266    return true;
267
268  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
269    if (CI->getBitWidth() > 64 ||
270        (CI->getBitWidth() & 7) != 0)
271      return false;
272
273    uint64_t Val = CI->getZExtValue();
274    unsigned IntBytes = unsigned(CI->getBitWidth()/8);
275
276    for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
277      int n = ByteOffset;
278      if (!TD.isLittleEndian())
279        n = IntBytes - n - 1;
280      CurPtr[i] = (unsigned char)(Val >> (n * 8));
281      ++ByteOffset;
282    }
283    return true;
284  }
285
286  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
287    if (CFP->getType()->isDoubleTy()) {
288      C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
289      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
290    }
291    if (CFP->getType()->isFloatTy()){
292      C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
293      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
294    }
295    if (CFP->getType()->isHalfTy()){
296      C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), TD);
297      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
298    }
299    return false;
300  }
301
302  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
303    const StructLayout *SL = TD.getStructLayout(CS->getType());
304    unsigned Index = SL->getElementContainingOffset(ByteOffset);
305    uint64_t CurEltOffset = SL->getElementOffset(Index);
306    ByteOffset -= CurEltOffset;
307
308    while (1) {
309      // If the element access is to the element itself and not to tail padding,
310      // read the bytes from the element.
311      uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
312
313      if (ByteOffset < EltSize &&
314          !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
315                              BytesLeft, TD))
316        return false;
317
318      ++Index;
319
320      // Check to see if we read from the last struct element, if so we're done.
321      if (Index == CS->getType()->getNumElements())
322        return true;
323
324      // If we read all of the bytes we needed from this element we're done.
325      uint64_t NextEltOffset = SL->getElementOffset(Index);
326
327      if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
328        return true;
329
330      // Move to the next element of the struct.
331      CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
332      BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
333      ByteOffset = 0;
334      CurEltOffset = NextEltOffset;
335    }
336    // not reached.
337  }
338
339  if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
340      isa<ConstantDataSequential>(C)) {
341    Type *EltTy = cast<SequentialType>(C->getType())->getElementType();
342    uint64_t EltSize = TD.getTypeAllocSize(EltTy);
343    uint64_t Index = ByteOffset / EltSize;
344    uint64_t Offset = ByteOffset - Index * EltSize;
345    uint64_t NumElts;
346    if (ArrayType *AT = dyn_cast<ArrayType>(C->getType()))
347      NumElts = AT->getNumElements();
348    else
349      NumElts = cast<VectorType>(C->getType())->getNumElements();
350
351    for (; Index != NumElts; ++Index) {
352      if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
353                              BytesLeft, TD))
354        return false;
355
356      uint64_t BytesWritten = EltSize - Offset;
357      assert(BytesWritten <= EltSize && "Not indexing into this element?");
358      if (BytesWritten >= BytesLeft)
359        return true;
360
361      Offset = 0;
362      BytesLeft -= BytesWritten;
363      CurPtr += BytesWritten;
364    }
365    return true;
366  }
367
368  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
369    if (CE->getOpcode() == Instruction::IntToPtr &&
370        CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext())) {
371      return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
372                                BytesLeft, TD);
373    }
374  }
375
376  // Otherwise, unknown initializer type.
377  return false;
378}
379
380static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
381                                                 const DataLayout &TD) {
382  Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
383  IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
384
385  // If this isn't an integer load we can't fold it directly.
386  if (!IntType) {
387    // If this is a float/double load, we can try folding it as an int32/64 load
388    // and then bitcast the result.  This can be useful for union cases.  Note
389    // that address spaces don't matter here since we're not going to result in
390    // an actual new load.
391    Type *MapTy;
392    if (LoadTy->isHalfTy())
393      MapTy = Type::getInt16PtrTy(C->getContext());
394    else if (LoadTy->isFloatTy())
395      MapTy = Type::getInt32PtrTy(C->getContext());
396    else if (LoadTy->isDoubleTy())
397      MapTy = Type::getInt64PtrTy(C->getContext());
398    else if (LoadTy->isVectorTy()) {
399      MapTy = IntegerType::get(C->getContext(),
400                               TD.getTypeAllocSizeInBits(LoadTy));
401      MapTy = PointerType::getUnqual(MapTy);
402    } else
403      return 0;
404
405    C = FoldBitCast(C, MapTy, TD);
406    if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
407      return FoldBitCast(Res, LoadTy, TD);
408    return 0;
409  }
410
411  unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
412  if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
413
414  GlobalValue *GVal;
415  APInt Offset(TD.getPointerSizeInBits(), 0);
416  if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
417    return 0;
418
419  GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
420  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
421      !GV->getInitializer()->getType()->isSized())
422    return 0;
423
424  // If we're loading off the beginning of the global, some bytes may be valid,
425  // but we don't try to handle this.
426  if (Offset.isNegative()) return 0;
427
428  // If we're not accessing anything in this constant, the result is undefined.
429  if (Offset.getZExtValue() >=
430      TD.getTypeAllocSize(GV->getInitializer()->getType()))
431    return UndefValue::get(IntType);
432
433  unsigned char RawBytes[32] = {0};
434  if (!ReadDataFromGlobal(GV->getInitializer(), Offset.getZExtValue(), RawBytes,
435                          BytesLoaded, TD))
436    return 0;
437
438  APInt ResultVal = APInt(IntType->getBitWidth(), 0);
439  if (TD.isLittleEndian()) {
440    ResultVal = RawBytes[BytesLoaded - 1];
441    for (unsigned i = 1; i != BytesLoaded; ++i) {
442      ResultVal <<= 8;
443      ResultVal |= RawBytes[BytesLoaded - 1 - i];
444    }
445  } else {
446    ResultVal = RawBytes[0];
447    for (unsigned i = 1; i != BytesLoaded; ++i) {
448      ResultVal <<= 8;
449      ResultVal |= RawBytes[i];
450    }
451  }
452
453  return ConstantInt::get(IntType->getContext(), ResultVal);
454}
455
456/// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
457/// produce if it is constant and determinable.  If this is not determinable,
458/// return null.
459Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
460                                             const DataLayout *TD) {
461  // First, try the easy cases:
462  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
463    if (GV->isConstant() && GV->hasDefinitiveInitializer())
464      return GV->getInitializer();
465
466  // If the loaded value isn't a constant expr, we can't handle it.
467  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
468  if (!CE)
469    return 0;
470
471  if (CE->getOpcode() == Instruction::GetElementPtr) {
472    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
473      if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
474        if (Constant *V =
475             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
476          return V;
477      }
478    }
479  }
480
481  // Instead of loading constant c string, use corresponding integer value
482  // directly if string length is small enough.
483  StringRef Str;
484  if (TD && getConstantStringInfo(CE, Str) && !Str.empty()) {
485    unsigned StrLen = Str.size();
486    Type *Ty = cast<PointerType>(CE->getType())->getElementType();
487    unsigned NumBits = Ty->getPrimitiveSizeInBits();
488    // Replace load with immediate integer if the result is an integer or fp
489    // value.
490    if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
491        (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
492      APInt StrVal(NumBits, 0);
493      APInt SingleChar(NumBits, 0);
494      if (TD->isLittleEndian()) {
495        for (signed i = StrLen-1; i >= 0; i--) {
496          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
497          StrVal = (StrVal << 8) | SingleChar;
498        }
499      } else {
500        for (unsigned i = 0; i < StrLen; i++) {
501          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
502          StrVal = (StrVal << 8) | SingleChar;
503        }
504        // Append NULL at the end.
505        SingleChar = 0;
506        StrVal = (StrVal << 8) | SingleChar;
507      }
508
509      Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
510      if (Ty->isFloatingPointTy())
511        Res = ConstantExpr::getBitCast(Res, Ty);
512      return Res;
513    }
514  }
515
516  // If this load comes from anywhere in a constant global, and if the global
517  // is all undef or zero, we know what it loads.
518  if (GlobalVariable *GV =
519        dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
520    if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
521      Type *ResTy = cast<PointerType>(C->getType())->getElementType();
522      if (GV->getInitializer()->isNullValue())
523        return Constant::getNullValue(ResTy);
524      if (isa<UndefValue>(GV->getInitializer()))
525        return UndefValue::get(ResTy);
526    }
527  }
528
529  // Try hard to fold loads from bitcasted strange and non-type-safe things.
530  if (TD)
531    return FoldReinterpretLoadFromConstPtr(CE, *TD);
532  return 0;
533}
534
535static Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout *TD){
536  if (LI->isVolatile()) return 0;
537
538  if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
539    return ConstantFoldLoadFromConstPtr(C, TD);
540
541  return 0;
542}
543
544/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
545/// Attempt to symbolically evaluate the result of a binary operator merging
546/// these together.  If target data info is available, it is provided as DL,
547/// otherwise DL is null.
548static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
549                                           Constant *Op1, const DataLayout *DL){
550  // SROA
551
552  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
553  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
554  // bits.
555
556
557  if (Opc == Instruction::And && DL) {
558    unsigned BitWidth = DL->getTypeSizeInBits(Op0->getType()->getScalarType());
559    APInt KnownZero0(BitWidth, 0), KnownOne0(BitWidth, 0);
560    APInt KnownZero1(BitWidth, 0), KnownOne1(BitWidth, 0);
561    ComputeMaskedBits(Op0, KnownZero0, KnownOne0, DL);
562    ComputeMaskedBits(Op1, KnownZero1, KnownOne1, DL);
563    if ((KnownOne1 | KnownZero0).isAllOnesValue()) {
564      // All the bits of Op0 that the 'and' could be masking are already zero.
565      return Op0;
566    }
567    if ((KnownOne0 | KnownZero1).isAllOnesValue()) {
568      // All the bits of Op1 that the 'and' could be masking are already zero.
569      return Op1;
570    }
571
572    APInt KnownZero = KnownZero0 | KnownZero1;
573    APInt KnownOne = KnownOne0 & KnownOne1;
574    if ((KnownZero | KnownOne).isAllOnesValue()) {
575      return ConstantInt::get(Op0->getType(), KnownOne);
576    }
577  }
578
579  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
580  // constant.  This happens frequently when iterating over a global array.
581  if (Opc == Instruction::Sub && DL) {
582    GlobalValue *GV1, *GV2;
583    unsigned PtrSize = DL->getPointerSizeInBits();
584    unsigned OpSize = DL->getTypeSizeInBits(Op0->getType());
585    APInt Offs1(PtrSize, 0), Offs2(PtrSize, 0);
586
587    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *DL))
588      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *DL) &&
589          GV1 == GV2) {
590        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
591        // PtrToInt may change the bitwidth so we have convert to the right size
592        // first.
593        return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
594                                                Offs2.zextOrTrunc(OpSize));
595      }
596  }
597
598  return 0;
599}
600
601/// CastGEPIndices - If array indices are not pointer-sized integers,
602/// explicitly cast them so that they aren't implicitly casted by the
603/// getelementptr.
604static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
605                                Type *ResultTy, const DataLayout *TD,
606                                const TargetLibraryInfo *TLI) {
607  if (!TD) return 0;
608  Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
609
610  bool Any = false;
611  SmallVector<Constant*, 32> NewIdxs;
612  for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
613    if ((i == 1 ||
614         !isa<StructType>(GetElementPtrInst::getIndexedType(
615                            Ops[0]->getType(),
616                            Ops.slice(1, i - 1)))) &&
617        Ops[i]->getType() != IntPtrTy) {
618      Any = true;
619      NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
620                                                                      true,
621                                                                      IntPtrTy,
622                                                                      true),
623                                              Ops[i], IntPtrTy));
624    } else
625      NewIdxs.push_back(Ops[i]);
626  }
627
628  if (!Any)
629    return 0;
630
631  Constant *C = ConstantExpr::getGetElementPtr(Ops[0], NewIdxs);
632  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
633    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
634      C = Folded;
635  }
636
637  return C;
638}
639
640/// Strip the pointer casts, but preserve the address space information.
641static Constant* StripPtrCastKeepAS(Constant* Ptr) {
642  assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
643  PointerType *OldPtrTy = cast<PointerType>(Ptr->getType());
644  Ptr = cast<Constant>(Ptr->stripPointerCasts());
645  PointerType *NewPtrTy = cast<PointerType>(Ptr->getType());
646
647  // Preserve the address space number of the pointer.
648  if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
649    NewPtrTy = NewPtrTy->getElementType()->getPointerTo(
650      OldPtrTy->getAddressSpace());
651    Ptr = ConstantExpr::getBitCast(Ptr, NewPtrTy);
652  }
653  return Ptr;
654}
655
656/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
657/// constant expression, do so.
658static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
659                                         Type *ResultTy, const DataLayout *TD,
660                                         const TargetLibraryInfo *TLI) {
661  Constant *Ptr = Ops[0];
662  if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized() ||
663      !Ptr->getType()->isPointerTy())
664    return 0;
665
666  Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext());
667
668  // If this is a constant expr gep that is effectively computing an
669  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
670  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
671    if (!isa<ConstantInt>(Ops[i])) {
672
673      // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
674      // "inttoptr (sub (ptrtoint Ptr), V)"
675      if (Ops.size() == 2 &&
676          cast<PointerType>(ResultTy)->getElementType()->isIntegerTy(8)) {
677        ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
678        assert((CE == 0 || CE->getType() == IntPtrTy) &&
679               "CastGEPIndices didn't canonicalize index types!");
680        if (CE && CE->getOpcode() == Instruction::Sub &&
681            CE->getOperand(0)->isNullValue()) {
682          Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
683          Res = ConstantExpr::getSub(Res, CE->getOperand(1));
684          Res = ConstantExpr::getIntToPtr(Res, ResultTy);
685          if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
686            Res = ConstantFoldConstantExpression(ResCE, TD, TLI);
687          return Res;
688        }
689      }
690      return 0;
691    }
692
693  unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
694  APInt Offset =
695    APInt(BitWidth, TD->getIndexedOffset(Ptr->getType(),
696                                         makeArrayRef((Value *const*)
697                                                        Ops.data() + 1,
698                                                      Ops.size() - 1)));
699  Ptr = StripPtrCastKeepAS(Ptr);
700
701  // If this is a GEP of a GEP, fold it all into a single GEP.
702  while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
703    SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
704
705    // Do not try the incorporate the sub-GEP if some index is not a number.
706    bool AllConstantInt = true;
707    for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
708      if (!isa<ConstantInt>(NestedOps[i])) {
709        AllConstantInt = false;
710        break;
711      }
712    if (!AllConstantInt)
713      break;
714
715    Ptr = cast<Constant>(GEP->getOperand(0));
716    Offset += APInt(BitWidth,
717                    TD->getIndexedOffset(Ptr->getType(), NestedOps));
718    Ptr = StripPtrCastKeepAS(Ptr);
719  }
720
721  // If the base value for this address is a literal integer value, fold the
722  // getelementptr to the resulting integer value casted to the pointer type.
723  APInt BasePtr(BitWidth, 0);
724  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
725    if (CE->getOpcode() == Instruction::IntToPtr) {
726      if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
727        BasePtr = Base->getValue().zextOrTrunc(BitWidth);
728    }
729  }
730
731  if (Ptr->isNullValue() || BasePtr != 0) {
732    Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
733    return ConstantExpr::getIntToPtr(C, ResultTy);
734  }
735
736  // Otherwise form a regular getelementptr. Recompute the indices so that
737  // we eliminate over-indexing of the notional static type array bounds.
738  // This makes it easy to determine if the getelementptr is "inbounds".
739  // Also, this helps GlobalOpt do SROA on GlobalVariables.
740  Type *Ty = Ptr->getType();
741  assert(Ty->isPointerTy() && "Forming regular GEP of non-pointer type");
742  SmallVector<Constant*, 32> NewIdxs;
743  do {
744    if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
745      if (ATy->isPointerTy()) {
746        // The only pointer indexing we'll do is on the first index of the GEP.
747        if (!NewIdxs.empty())
748          break;
749
750        // Only handle pointers to sized types, not pointers to functions.
751        if (!ATy->getElementType()->isSized())
752          return 0;
753      }
754
755      // Determine which element of the array the offset points into.
756      APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
757      IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
758      if (ElemSize == 0)
759        // The element size is 0. This may be [0 x Ty]*, so just use a zero
760        // index for this level and proceed to the next level to see if it can
761        // accommodate the offset.
762        NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
763      else {
764        // The element size is non-zero divide the offset by the element
765        // size (rounding down), to compute the index at this level.
766        APInt NewIdx = Offset.udiv(ElemSize);
767        Offset -= NewIdx * ElemSize;
768        NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
769      }
770      Ty = ATy->getElementType();
771    } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
772      // If we end up with an offset that isn't valid for this struct type, we
773      // can't re-form this GEP in a regular form, so bail out. The pointer
774      // operand likely went through casts that are necessary to make the GEP
775      // sensible.
776      const StructLayout &SL = *TD->getStructLayout(STy);
777      if (Offset.uge(SL.getSizeInBytes()))
778        break;
779
780      // Determine which field of the struct the offset points into. The
781      // getZExtValue is fine as we've already ensured that the offset is
782      // within the range representable by the StructLayout API.
783      unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
784      NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
785                                         ElIdx));
786      Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
787      Ty = STy->getTypeAtIndex(ElIdx);
788    } else {
789      // We've reached some non-indexable type.
790      break;
791    }
792  } while (Ty != cast<PointerType>(ResultTy)->getElementType());
793
794  // If we haven't used up the entire offset by descending the static
795  // type, then the offset is pointing into the middle of an indivisible
796  // member, so we can't simplify it.
797  if (Offset != 0)
798    return 0;
799
800  // Create a GEP.
801  Constant *C = ConstantExpr::getGetElementPtr(Ptr, NewIdxs);
802  assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
803         "Computed GetElementPtr has unexpected type!");
804
805  // If we ended up indexing a member with a type that doesn't match
806  // the type of what the original indices indexed, add a cast.
807  if (Ty != cast<PointerType>(ResultTy)->getElementType())
808    C = FoldBitCast(C, ResultTy, *TD);
809
810  return C;
811}
812
813
814
815//===----------------------------------------------------------------------===//
816// Constant Folding public APIs
817//===----------------------------------------------------------------------===//
818
819/// ConstantFoldInstruction - Try to constant fold the specified instruction.
820/// If successful, the constant result is returned, if not, null is returned.
821/// Note that this fails if not all of the operands are constant.  Otherwise,
822/// this function can only fail when attempting to fold instructions like loads
823/// and stores, which have no constant expression form.
824Constant *llvm::ConstantFoldInstruction(Instruction *I,
825                                        const DataLayout *TD,
826                                        const TargetLibraryInfo *TLI) {
827  // Handle PHI nodes quickly here...
828  if (PHINode *PN = dyn_cast<PHINode>(I)) {
829    Constant *CommonValue = 0;
830
831    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
832      Value *Incoming = PN->getIncomingValue(i);
833      // If the incoming value is undef then skip it.  Note that while we could
834      // skip the value if it is equal to the phi node itself we choose not to
835      // because that would break the rule that constant folding only applies if
836      // all operands are constants.
837      if (isa<UndefValue>(Incoming))
838        continue;
839      // If the incoming value is not a constant, then give up.
840      Constant *C = dyn_cast<Constant>(Incoming);
841      if (!C)
842        return 0;
843      // Fold the PHI's operands.
844      if (ConstantExpr *NewC = dyn_cast<ConstantExpr>(C))
845        C = ConstantFoldConstantExpression(NewC, TD, TLI);
846      // If the incoming value is a different constant to
847      // the one we saw previously, then give up.
848      if (CommonValue && C != CommonValue)
849        return 0;
850      CommonValue = C;
851    }
852
853
854    // If we reach here, all incoming values are the same constant or undef.
855    return CommonValue ? CommonValue : UndefValue::get(PN->getType());
856  }
857
858  // Scan the operand list, checking to see if they are all constants, if so,
859  // hand off to ConstantFoldInstOperands.
860  SmallVector<Constant*, 8> Ops;
861  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
862    Constant *Op = dyn_cast<Constant>(*i);
863    if (!Op)
864      return 0;  // All operands not constant!
865
866    // Fold the Instruction's operands.
867    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(Op))
868      Op = ConstantFoldConstantExpression(NewCE, TD, TLI);
869
870    Ops.push_back(Op);
871  }
872
873  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
874    return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
875                                           TD, TLI);
876
877  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
878    return ConstantFoldLoadInst(LI, TD);
879
880  if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I)) {
881    return ConstantExpr::getInsertValue(
882                                cast<Constant>(IVI->getAggregateOperand()),
883                                cast<Constant>(IVI->getInsertedValueOperand()),
884                                IVI->getIndices());
885  }
886
887  if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I)) {
888    return ConstantExpr::getExtractValue(
889                                    cast<Constant>(EVI->getAggregateOperand()),
890                                    EVI->getIndices());
891  }
892
893  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD, TLI);
894}
895
896static Constant *
897ConstantFoldConstantExpressionImpl(const ConstantExpr *CE, const DataLayout *TD,
898                                   const TargetLibraryInfo *TLI,
899                                   SmallPtrSet<ConstantExpr *, 4> &FoldedOps) {
900  SmallVector<Constant *, 8> Ops;
901  for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end(); i != e;
902       ++i) {
903    Constant *NewC = cast<Constant>(*i);
904    // Recursively fold the ConstantExpr's operands. If we have already folded
905    // a ConstantExpr, we don't have to process it again.
906    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC)) {
907      if (FoldedOps.insert(NewCE))
908        NewC = ConstantFoldConstantExpressionImpl(NewCE, TD, TLI, FoldedOps);
909    }
910    Ops.push_back(NewC);
911  }
912
913  if (CE->isCompare())
914    return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
915                                           TD, TLI);
916  return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, TD, TLI);
917}
918
919/// ConstantFoldConstantExpression - Attempt to fold the constant expression
920/// using the specified DataLayout.  If successful, the constant result is
921/// result is returned, if not, null is returned.
922Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
923                                               const DataLayout *TD,
924                                               const TargetLibraryInfo *TLI) {
925  SmallPtrSet<ConstantExpr *, 4> FoldedOps;
926  return ConstantFoldConstantExpressionImpl(CE, TD, TLI, FoldedOps);
927}
928
929/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
930/// specified opcode and operands.  If successful, the constant result is
931/// returned, if not, null is returned.  Note that this function can fail when
932/// attempting to fold instructions like loads and stores, which have no
933/// constant expression form.
934///
935/// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
936/// information, due to only being passed an opcode and operands. Constant
937/// folding using this function strips this information.
938///
939Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
940                                         ArrayRef<Constant *> Ops,
941                                         const DataLayout *TD,
942                                         const TargetLibraryInfo *TLI) {
943  // Handle easy binops first.
944  if (Instruction::isBinaryOp(Opcode)) {
945    if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1])) {
946      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
947        return C;
948    }
949
950    return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
951  }
952
953  switch (Opcode) {
954  default: return 0;
955  case Instruction::ICmp:
956  case Instruction::FCmp: llvm_unreachable("Invalid for compares");
957  case Instruction::Call:
958    if (Function *F = dyn_cast<Function>(Ops.back()))
959      if (canConstantFoldCallTo(F))
960        return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
961    return 0;
962  case Instruction::PtrToInt:
963    // If the input is a inttoptr, eliminate the pair.  This requires knowing
964    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
965    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
966      if (TD && CE->getOpcode() == Instruction::IntToPtr) {
967        Constant *Input = CE->getOperand(0);
968        unsigned InWidth = Input->getType()->getScalarSizeInBits();
969        if (TD->getPointerSizeInBits() < InWidth) {
970          Constant *Mask =
971            ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
972                                                  TD->getPointerSizeInBits()));
973          Input = ConstantExpr::getAnd(Input, Mask);
974        }
975        // Do a zext or trunc to get to the dest size.
976        return ConstantExpr::getIntegerCast(Input, DestTy, false);
977      }
978    }
979    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
980  case Instruction::IntToPtr:
981    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
982    // the int size is >= the ptr size.  This requires knowing the width of a
983    // pointer, so it can't be done in ConstantExpr::getCast.
984    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
985      if (TD &&
986          TD->getPointerSizeInBits() <= CE->getType()->getScalarSizeInBits() &&
987          CE->getOpcode() == Instruction::PtrToInt)
988        return FoldBitCast(CE->getOperand(0), DestTy, *TD);
989
990    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
991  case Instruction::Trunc:
992  case Instruction::ZExt:
993  case Instruction::SExt:
994  case Instruction::FPTrunc:
995  case Instruction::FPExt:
996  case Instruction::UIToFP:
997  case Instruction::SIToFP:
998  case Instruction::FPToUI:
999  case Instruction::FPToSI:
1000      return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1001  case Instruction::BitCast:
1002    if (TD)
1003      return FoldBitCast(Ops[0], DestTy, *TD);
1004    return ConstantExpr::getBitCast(Ops[0], DestTy);
1005  case Instruction::Select:
1006    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1007  case Instruction::ExtractElement:
1008    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1009  case Instruction::InsertElement:
1010    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1011  case Instruction::ShuffleVector:
1012    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1013  case Instruction::GetElementPtr:
1014    if (Constant *C = CastGEPIndices(Ops, DestTy, TD, TLI))
1015      return C;
1016    if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, TD, TLI))
1017      return C;
1018
1019    return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1));
1020  }
1021}
1022
1023/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
1024/// instruction (icmp/fcmp) with the specified operands.  If it fails, it
1025/// returns a constant expression of the specified operands.
1026///
1027Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
1028                                                Constant *Ops0, Constant *Ops1,
1029                                                const DataLayout *TD,
1030                                                const TargetLibraryInfo *TLI) {
1031  // fold: icmp (inttoptr x), null         -> icmp x, 0
1032  // fold: icmp (ptrtoint x), 0            -> icmp x, null
1033  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1034  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1035  //
1036  // ConstantExpr::getCompare cannot do this, because it doesn't have TD
1037  // around to know if bit truncation is happening.
1038  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1039    if (TD && Ops1->isNullValue()) {
1040      Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
1041      if (CE0->getOpcode() == Instruction::IntToPtr) {
1042        // Convert the integer value to the right size to ensure we get the
1043        // proper extension or truncation.
1044        Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1045                                                   IntPtrTy, false);
1046        Constant *Null = Constant::getNullValue(C->getType());
1047        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
1048      }
1049
1050      // Only do this transformation if the int is intptrty in size, otherwise
1051      // there is a truncation or extension that we aren't modeling.
1052      if (CE0->getOpcode() == Instruction::PtrToInt &&
1053          CE0->getType() == IntPtrTy) {
1054        Constant *C = CE0->getOperand(0);
1055        Constant *Null = Constant::getNullValue(C->getType());
1056        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
1057      }
1058    }
1059
1060    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1061      if (TD && CE0->getOpcode() == CE1->getOpcode()) {
1062        Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
1063
1064        if (CE0->getOpcode() == Instruction::IntToPtr) {
1065          // Convert the integer value to the right size to ensure we get the
1066          // proper extension or truncation.
1067          Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1068                                                      IntPtrTy, false);
1069          Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1070                                                      IntPtrTy, false);
1071          return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD, TLI);
1072        }
1073
1074        // Only do this transformation if the int is intptrty in size, otherwise
1075        // there is a truncation or extension that we aren't modeling.
1076        if ((CE0->getOpcode() == Instruction::PtrToInt &&
1077             CE0->getType() == IntPtrTy &&
1078             CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
1079          return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
1080                                                 CE1->getOperand(0), TD, TLI);
1081      }
1082    }
1083
1084    // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1085    // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1086    if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1087        CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1088      Constant *LHS =
1089        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,
1090                                        TD, TLI);
1091      Constant *RHS =
1092        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,
1093                                        TD, TLI);
1094      unsigned OpC =
1095        Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1096      Constant *Ops[] = { LHS, RHS };
1097      return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, TD, TLI);
1098    }
1099  }
1100
1101  return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1102}
1103
1104
1105/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
1106/// getelementptr constantexpr, return the constant value being addressed by the
1107/// constant expression, or null if something is funny and we can't decide.
1108Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1109                                                       ConstantExpr *CE) {
1110  if (!CE->getOperand(1)->isNullValue())
1111    return 0;  // Do not allow stepping over the value!
1112
1113  // Loop over all of the operands, tracking down which value we are
1114  // addressing.
1115  for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1116    C = C->getAggregateElement(CE->getOperand(i));
1117    if (C == 0)
1118      return 0;
1119  }
1120  return C;
1121}
1122
1123/// ConstantFoldLoadThroughGEPIndices - Given a constant and getelementptr
1124/// indices (with an *implied* zero pointer index that is not in the list),
1125/// return the constant value being addressed by a virtual load, or null if
1126/// something is funny and we can't decide.
1127Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
1128                                                  ArrayRef<Constant*> Indices) {
1129  // Loop over all of the operands, tracking down which value we are
1130  // addressing.
1131  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1132    C = C->getAggregateElement(Indices[i]);
1133    if (C == 0)
1134      return 0;
1135  }
1136  return C;
1137}
1138
1139
1140//===----------------------------------------------------------------------===//
1141//  Constant Folding for Calls
1142//
1143
1144/// canConstantFoldCallTo - Return true if its even possible to fold a call to
1145/// the specified function.
1146bool llvm::canConstantFoldCallTo(const Function *F) {
1147  switch (F->getIntrinsicID()) {
1148  case Intrinsic::fabs:
1149  case Intrinsic::log:
1150  case Intrinsic::log2:
1151  case Intrinsic::log10:
1152  case Intrinsic::exp:
1153  case Intrinsic::exp2:
1154  case Intrinsic::floor:
1155  case Intrinsic::sqrt:
1156  case Intrinsic::pow:
1157  case Intrinsic::powi:
1158  case Intrinsic::bswap:
1159  case Intrinsic::ctpop:
1160  case Intrinsic::ctlz:
1161  case Intrinsic::cttz:
1162  case Intrinsic::sadd_with_overflow:
1163  case Intrinsic::uadd_with_overflow:
1164  case Intrinsic::ssub_with_overflow:
1165  case Intrinsic::usub_with_overflow:
1166  case Intrinsic::smul_with_overflow:
1167  case Intrinsic::umul_with_overflow:
1168  case Intrinsic::convert_from_fp16:
1169  case Intrinsic::convert_to_fp16:
1170  case Intrinsic::x86_sse_cvtss2si:
1171  case Intrinsic::x86_sse_cvtss2si64:
1172  case Intrinsic::x86_sse_cvttss2si:
1173  case Intrinsic::x86_sse_cvttss2si64:
1174  case Intrinsic::x86_sse2_cvtsd2si:
1175  case Intrinsic::x86_sse2_cvtsd2si64:
1176  case Intrinsic::x86_sse2_cvttsd2si:
1177  case Intrinsic::x86_sse2_cvttsd2si64:
1178    return true;
1179  default:
1180    return false;
1181  case 0: break;
1182  }
1183
1184  if (!F->hasName())
1185    return false;
1186  StringRef Name = F->getName();
1187
1188  // In these cases, the check of the length is required.  We don't want to
1189  // return true for a name like "cos\0blah" which strcmp would return equal to
1190  // "cos", but has length 8.
1191  switch (Name[0]) {
1192  default: return false;
1193  case 'a':
1194    return Name == "acos" || Name == "asin" || Name == "atan" || Name =="atan2";
1195  case 'c':
1196    return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
1197  case 'e':
1198    return Name == "exp" || Name == "exp2";
1199  case 'f':
1200    return Name == "fabs" || Name == "fmod" || Name == "floor";
1201  case 'l':
1202    return Name == "log" || Name == "log10";
1203  case 'p':
1204    return Name == "pow";
1205  case 's':
1206    return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
1207      Name == "sinf" || Name == "sqrtf";
1208  case 't':
1209    return Name == "tan" || Name == "tanh";
1210  }
1211}
1212
1213static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
1214                                Type *Ty) {
1215  sys::llvm_fenv_clearexcept();
1216  V = NativeFP(V);
1217  if (sys::llvm_fenv_testexcept()) {
1218    sys::llvm_fenv_clearexcept();
1219    return 0;
1220  }
1221
1222  if (Ty->isHalfTy()) {
1223    APFloat APF(V);
1224    bool unused;
1225    APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
1226    return ConstantFP::get(Ty->getContext(), APF);
1227  }
1228  if (Ty->isFloatTy())
1229    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1230  if (Ty->isDoubleTy())
1231    return ConstantFP::get(Ty->getContext(), APFloat(V));
1232  llvm_unreachable("Can only constant fold half/float/double");
1233}
1234
1235static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1236                                      double V, double W, Type *Ty) {
1237  sys::llvm_fenv_clearexcept();
1238  V = NativeFP(V, W);
1239  if (sys::llvm_fenv_testexcept()) {
1240    sys::llvm_fenv_clearexcept();
1241    return 0;
1242  }
1243
1244  if (Ty->isHalfTy()) {
1245    APFloat APF(V);
1246    bool unused;
1247    APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
1248    return ConstantFP::get(Ty->getContext(), APF);
1249  }
1250  if (Ty->isFloatTy())
1251    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1252  if (Ty->isDoubleTy())
1253    return ConstantFP::get(Ty->getContext(), APFloat(V));
1254  llvm_unreachable("Can only constant fold half/float/double");
1255}
1256
1257/// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
1258/// conversion of a constant floating point. If roundTowardZero is false, the
1259/// default IEEE rounding is used (toward nearest, ties to even). This matches
1260/// the behavior of the non-truncating SSE instructions in the default rounding
1261/// mode. The desired integer type Ty is used to select how many bits are
1262/// available for the result. Returns null if the conversion cannot be
1263/// performed, otherwise returns the Constant value resulting from the
1264/// conversion.
1265static Constant *ConstantFoldConvertToInt(const APFloat &Val,
1266                                          bool roundTowardZero, Type *Ty) {
1267  // All of these conversion intrinsics form an integer of at most 64bits.
1268  unsigned ResultWidth = cast<IntegerType>(Ty)->getBitWidth();
1269  assert(ResultWidth <= 64 &&
1270         "Can only constant fold conversions to 64 and 32 bit ints");
1271
1272  uint64_t UIntVal;
1273  bool isExact = false;
1274  APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1275                                              : APFloat::rmNearestTiesToEven;
1276  APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
1277                                                  /*isSigned=*/true, mode,
1278                                                  &isExact);
1279  if (status != APFloat::opOK && status != APFloat::opInexact)
1280    return 0;
1281  return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
1282}
1283
1284/// ConstantFoldCall - Attempt to constant fold a call to the specified function
1285/// with the specified arguments, returning null if unsuccessful.
1286Constant *
1287llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
1288                       const TargetLibraryInfo *TLI) {
1289  if (!F->hasName())
1290    return 0;
1291  StringRef Name = F->getName();
1292
1293  Type *Ty = F->getReturnType();
1294  if (Operands.size() == 1) {
1295    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
1296      if (F->getIntrinsicID() == Intrinsic::convert_to_fp16) {
1297        APFloat Val(Op->getValueAPF());
1298
1299        bool lost = false;
1300        Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
1301
1302        return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
1303      }
1304      if (!TLI)
1305        return 0;
1306
1307      if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1308        return 0;
1309
1310      /// We only fold functions with finite arguments. Folding NaN and inf is
1311      /// likely to be aborted with an exception anyway, and some host libms
1312      /// have known errors raising exceptions.
1313      if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1314        return 0;
1315
1316      /// Currently APFloat versions of these functions do not exist, so we use
1317      /// the host native double versions.  Float versions are not called
1318      /// directly but for all these it is true (float)(f((double)arg)) ==
1319      /// f(arg).  Long double not supported yet.
1320      double V;
1321      if (Ty->isFloatTy())
1322        V = Op->getValueAPF().convertToFloat();
1323      else if (Ty->isDoubleTy())
1324        V = Op->getValueAPF().convertToDouble();
1325      else {
1326        bool unused;
1327        APFloat APF = Op->getValueAPF();
1328        APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
1329        V = APF.convertToDouble();
1330      }
1331
1332      switch (F->getIntrinsicID()) {
1333        default: break;
1334        case Intrinsic::fabs:
1335          return ConstantFoldFP(fabs, V, Ty);
1336#if HAVE_LOG2
1337        case Intrinsic::log2:
1338          return ConstantFoldFP(log2, V, Ty);
1339#endif
1340#if HAVE_LOG
1341        case Intrinsic::log:
1342          return ConstantFoldFP(log, V, Ty);
1343#endif
1344#if HAVE_LOG10
1345        case Intrinsic::log10:
1346          return ConstantFoldFP(log10, V, Ty);
1347#endif
1348#if HAVE_EXP
1349        case Intrinsic::exp:
1350          return ConstantFoldFP(exp, V, Ty);
1351#endif
1352#if HAVE_EXP2
1353        case Intrinsic::exp2:
1354          return ConstantFoldFP(exp2, V, Ty);
1355#endif
1356        case Intrinsic::floor:
1357          return ConstantFoldFP(floor, V, Ty);
1358      }
1359
1360      switch (Name[0]) {
1361      case 'a':
1362        if (Name == "acos" && TLI->has(LibFunc::acos))
1363          return ConstantFoldFP(acos, V, Ty);
1364        else if (Name == "asin" && TLI->has(LibFunc::asin))
1365          return ConstantFoldFP(asin, V, Ty);
1366        else if (Name == "atan" && TLI->has(LibFunc::atan))
1367          return ConstantFoldFP(atan, V, Ty);
1368        break;
1369      case 'c':
1370        if (Name == "ceil" && TLI->has(LibFunc::ceil))
1371          return ConstantFoldFP(ceil, V, Ty);
1372        else if (Name == "cos" && TLI->has(LibFunc::cos))
1373          return ConstantFoldFP(cos, V, Ty);
1374        else if (Name == "cosh" && TLI->has(LibFunc::cosh))
1375          return ConstantFoldFP(cosh, V, Ty);
1376        else if (Name == "cosf" && TLI->has(LibFunc::cosf))
1377          return ConstantFoldFP(cos, V, Ty);
1378        break;
1379      case 'e':
1380        if (Name == "exp" && TLI->has(LibFunc::exp))
1381          return ConstantFoldFP(exp, V, Ty);
1382
1383        if (Name == "exp2" && TLI->has(LibFunc::exp2)) {
1384          // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
1385          // C99 library.
1386          return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1387        }
1388        break;
1389      case 'f':
1390        if (Name == "fabs" && TLI->has(LibFunc::fabs))
1391          return ConstantFoldFP(fabs, V, Ty);
1392        else if (Name == "floor" && TLI->has(LibFunc::floor))
1393          return ConstantFoldFP(floor, V, Ty);
1394        break;
1395      case 'l':
1396        if (Name == "log" && V > 0 && TLI->has(LibFunc::log))
1397          return ConstantFoldFP(log, V, Ty);
1398        else if (Name == "log10" && V > 0 && TLI->has(LibFunc::log10))
1399          return ConstantFoldFP(log10, V, Ty);
1400        else if (F->getIntrinsicID() == Intrinsic::sqrt &&
1401                 (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())) {
1402          if (V >= -0.0)
1403            return ConstantFoldFP(sqrt, V, Ty);
1404          else // Undefined
1405            return Constant::getNullValue(Ty);
1406        }
1407        break;
1408      case 's':
1409        if (Name == "sin" && TLI->has(LibFunc::sin))
1410          return ConstantFoldFP(sin, V, Ty);
1411        else if (Name == "sinh" && TLI->has(LibFunc::sinh))
1412          return ConstantFoldFP(sinh, V, Ty);
1413        else if (Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt))
1414          return ConstantFoldFP(sqrt, V, Ty);
1415        else if (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf))
1416          return ConstantFoldFP(sqrt, V, Ty);
1417        else if (Name == "sinf" && TLI->has(LibFunc::sinf))
1418          return ConstantFoldFP(sin, V, Ty);
1419        break;
1420      case 't':
1421        if (Name == "tan" && TLI->has(LibFunc::tan))
1422          return ConstantFoldFP(tan, V, Ty);
1423        else if (Name == "tanh" && TLI->has(LibFunc::tanh))
1424          return ConstantFoldFP(tanh, V, Ty);
1425        break;
1426      default:
1427        break;
1428      }
1429      return 0;
1430    }
1431
1432    if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
1433      switch (F->getIntrinsicID()) {
1434      case Intrinsic::bswap:
1435        return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
1436      case Intrinsic::ctpop:
1437        return ConstantInt::get(Ty, Op->getValue().countPopulation());
1438      case Intrinsic::convert_from_fp16: {
1439        APFloat Val(APFloat::IEEEhalf, Op->getValue());
1440
1441        bool lost = false;
1442        APFloat::opStatus status =
1443          Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
1444
1445        // Conversion is always precise.
1446        (void)status;
1447        assert(status == APFloat::opOK && !lost &&
1448               "Precision lost during fp16 constfolding");
1449
1450        return ConstantFP::get(F->getContext(), Val);
1451      }
1452      default:
1453        return 0;
1454      }
1455    }
1456
1457    // Support ConstantVector in case we have an Undef in the top.
1458    if (isa<ConstantVector>(Operands[0]) ||
1459        isa<ConstantDataVector>(Operands[0])) {
1460      Constant *Op = cast<Constant>(Operands[0]);
1461      switch (F->getIntrinsicID()) {
1462      default: break;
1463      case Intrinsic::x86_sse_cvtss2si:
1464      case Intrinsic::x86_sse_cvtss2si64:
1465      case Intrinsic::x86_sse2_cvtsd2si:
1466      case Intrinsic::x86_sse2_cvtsd2si64:
1467        if (ConstantFP *FPOp =
1468              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1469          return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1470                                          /*roundTowardZero=*/false, Ty);
1471      case Intrinsic::x86_sse_cvttss2si:
1472      case Intrinsic::x86_sse_cvttss2si64:
1473      case Intrinsic::x86_sse2_cvttsd2si:
1474      case Intrinsic::x86_sse2_cvttsd2si64:
1475        if (ConstantFP *FPOp =
1476              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1477          return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1478                                          /*roundTowardZero=*/true, Ty);
1479      }
1480    }
1481
1482    if (isa<UndefValue>(Operands[0])) {
1483      if (F->getIntrinsicID() == Intrinsic::bswap)
1484        return Operands[0];
1485      return 0;
1486    }
1487
1488    return 0;
1489  }
1490
1491  if (Operands.size() == 2) {
1492    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1493      if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1494        return 0;
1495      double Op1V;
1496      if (Ty->isFloatTy())
1497        Op1V = Op1->getValueAPF().convertToFloat();
1498      else if (Ty->isDoubleTy())
1499        Op1V = Op1->getValueAPF().convertToDouble();
1500      else {
1501        bool unused;
1502        APFloat APF = Op1->getValueAPF();
1503        APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
1504        Op1V = APF.convertToDouble();
1505      }
1506
1507      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1508        if (Op2->getType() != Op1->getType())
1509          return 0;
1510
1511        double Op2V;
1512        if (Ty->isFloatTy())
1513          Op2V = Op2->getValueAPF().convertToFloat();
1514        else if (Ty->isDoubleTy())
1515          Op2V = Op2->getValueAPF().convertToDouble();
1516        else {
1517          bool unused;
1518          APFloat APF = Op2->getValueAPF();
1519          APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
1520          Op2V = APF.convertToDouble();
1521        }
1522
1523        if (F->getIntrinsicID() == Intrinsic::pow) {
1524          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1525        }
1526        if (!TLI)
1527          return 0;
1528        if (Name == "pow" && TLI->has(LibFunc::pow))
1529          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1530        if (Name == "fmod" && TLI->has(LibFunc::fmod))
1531          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
1532        if (Name == "atan2" && TLI->has(LibFunc::atan2))
1533          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
1534      } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1535        if (F->getIntrinsicID() == Intrinsic::powi && Ty->isHalfTy())
1536          return ConstantFP::get(F->getContext(),
1537                                 APFloat((float)std::pow((float)Op1V,
1538                                                 (int)Op2C->getZExtValue())));
1539        if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy())
1540          return ConstantFP::get(F->getContext(),
1541                                 APFloat((float)std::pow((float)Op1V,
1542                                                 (int)Op2C->getZExtValue())));
1543        if (F->getIntrinsicID() == Intrinsic::powi && Ty->isDoubleTy())
1544          return ConstantFP::get(F->getContext(),
1545                                 APFloat((double)std::pow((double)Op1V,
1546                                                   (int)Op2C->getZExtValue())));
1547      }
1548      return 0;
1549    }
1550
1551    if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1552      if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1553        switch (F->getIntrinsicID()) {
1554        default: break;
1555        case Intrinsic::sadd_with_overflow:
1556        case Intrinsic::uadd_with_overflow:
1557        case Intrinsic::ssub_with_overflow:
1558        case Intrinsic::usub_with_overflow:
1559        case Intrinsic::smul_with_overflow:
1560        case Intrinsic::umul_with_overflow: {
1561          APInt Res;
1562          bool Overflow;
1563          switch (F->getIntrinsicID()) {
1564          default: llvm_unreachable("Invalid case");
1565          case Intrinsic::sadd_with_overflow:
1566            Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
1567            break;
1568          case Intrinsic::uadd_with_overflow:
1569            Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
1570            break;
1571          case Intrinsic::ssub_with_overflow:
1572            Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
1573            break;
1574          case Intrinsic::usub_with_overflow:
1575            Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
1576            break;
1577          case Intrinsic::smul_with_overflow:
1578            Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
1579            break;
1580          case Intrinsic::umul_with_overflow:
1581            Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
1582            break;
1583          }
1584          Constant *Ops[] = {
1585            ConstantInt::get(F->getContext(), Res),
1586            ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow)
1587          };
1588          return ConstantStruct::get(cast<StructType>(F->getReturnType()), Ops);
1589        }
1590        case Intrinsic::cttz:
1591          if (Op2->isOne() && Op1->isZero()) // cttz(0, 1) is undef.
1592            return UndefValue::get(Ty);
1593          return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
1594        case Intrinsic::ctlz:
1595          if (Op2->isOne() && Op1->isZero()) // ctlz(0, 1) is undef.
1596            return UndefValue::get(Ty);
1597          return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
1598        }
1599      }
1600
1601      return 0;
1602    }
1603    return 0;
1604  }
1605  return 0;
1606}
1607