ConstantFolding.cpp revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines routines for folding instructions into constants.
11//
12// Also, to supplement the basic IR ConstantExpr simplifications,
13// this file defines some additional folding routines that can make use of
14// DataLayout information. These functions cannot go in IR due to library
15// dependency issues.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/StringMap.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/Config/config.h"
25#include "llvm/IR/Constants.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/GetElementPtrTypeIterator.h"
30#include "llvm/IR/GlobalVariable.h"
31#include "llvm/IR/Instructions.h"
32#include "llvm/IR/Intrinsics.h"
33#include "llvm/IR/Operator.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Target/TargetLibraryInfo.h"
37#include <cerrno>
38#include <cmath>
39
40#ifdef HAVE_FENV_H
41#include <fenv.h>
42#endif
43
44using namespace llvm;
45
46//===----------------------------------------------------------------------===//
47// Constant Folding internal helper functions
48//===----------------------------------------------------------------------===//
49
50/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
51/// DataLayout.  This always returns a non-null constant, but it may be a
52/// ConstantExpr if unfoldable.
53static Constant *FoldBitCast(Constant *C, Type *DestTy,
54                             const DataLayout &TD) {
55  // Catch the obvious splat cases.
56  if (C->isNullValue() && !DestTy->isX86_MMXTy())
57    return Constant::getNullValue(DestTy);
58  if (C->isAllOnesValue() && !DestTy->isX86_MMXTy())
59    return Constant::getAllOnesValue(DestTy);
60
61  // Handle a vector->integer cast.
62  if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) {
63    VectorType *VTy = dyn_cast<VectorType>(C->getType());
64    if (!VTy)
65      return ConstantExpr::getBitCast(C, DestTy);
66
67    unsigned NumSrcElts = VTy->getNumElements();
68    Type *SrcEltTy = VTy->getElementType();
69
70    // If the vector is a vector of floating point, convert it to vector of int
71    // to simplify things.
72    if (SrcEltTy->isFloatingPointTy()) {
73      unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
74      Type *SrcIVTy =
75        VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
76      // Ask IR to do the conversion now that #elts line up.
77      C = ConstantExpr::getBitCast(C, SrcIVTy);
78    }
79
80    ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
81    if (!CDV)
82      return ConstantExpr::getBitCast(C, DestTy);
83
84    // Now that we know that the input value is a vector of integers, just shift
85    // and insert them into our result.
86    unsigned BitShift = TD.getTypeAllocSizeInBits(SrcEltTy);
87    APInt Result(IT->getBitWidth(), 0);
88    for (unsigned i = 0; i != NumSrcElts; ++i) {
89      Result <<= BitShift;
90      if (TD.isLittleEndian())
91        Result |= CDV->getElementAsInteger(NumSrcElts-i-1);
92      else
93        Result |= CDV->getElementAsInteger(i);
94    }
95
96    return ConstantInt::get(IT, Result);
97  }
98
99  // The code below only handles casts to vectors currently.
100  VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
101  if (!DestVTy)
102    return ConstantExpr::getBitCast(C, DestTy);
103
104  // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
105  // vector so the code below can handle it uniformly.
106  if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
107    Constant *Ops = C; // don't take the address of C!
108    return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
109  }
110
111  // If this is a bitcast from constant vector -> vector, fold it.
112  if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
113    return ConstantExpr::getBitCast(C, DestTy);
114
115  // If the element types match, IR can fold it.
116  unsigned NumDstElt = DestVTy->getNumElements();
117  unsigned NumSrcElt = C->getType()->getVectorNumElements();
118  if (NumDstElt == NumSrcElt)
119    return ConstantExpr::getBitCast(C, DestTy);
120
121  Type *SrcEltTy = C->getType()->getVectorElementType();
122  Type *DstEltTy = DestVTy->getElementType();
123
124  // Otherwise, we're changing the number of elements in a vector, which
125  // requires endianness information to do the right thing.  For example,
126  //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
127  // folds to (little endian):
128  //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
129  // and to (big endian):
130  //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
131
132  // First thing is first.  We only want to think about integer here, so if
133  // we have something in FP form, recast it as integer.
134  if (DstEltTy->isFloatingPointTy()) {
135    // Fold to an vector of integers with same size as our FP type.
136    unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
137    Type *DestIVTy =
138      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
139    // Recursively handle this integer conversion, if possible.
140    C = FoldBitCast(C, DestIVTy, TD);
141
142    // Finally, IR can handle this now that #elts line up.
143    return ConstantExpr::getBitCast(C, DestTy);
144  }
145
146  // Okay, we know the destination is integer, if the input is FP, convert
147  // it to integer first.
148  if (SrcEltTy->isFloatingPointTy()) {
149    unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
150    Type *SrcIVTy =
151      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
152    // Ask IR to do the conversion now that #elts line up.
153    C = ConstantExpr::getBitCast(C, SrcIVTy);
154    // If IR wasn't able to fold it, bail out.
155    if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
156        !isa<ConstantDataVector>(C))
157      return C;
158  }
159
160  // Now we know that the input and output vectors are both integer vectors
161  // of the same size, and that their #elements is not the same.  Do the
162  // conversion here, which depends on whether the input or output has
163  // more elements.
164  bool isLittleEndian = TD.isLittleEndian();
165
166  SmallVector<Constant*, 32> Result;
167  if (NumDstElt < NumSrcElt) {
168    // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
169    Constant *Zero = Constant::getNullValue(DstEltTy);
170    unsigned Ratio = NumSrcElt/NumDstElt;
171    unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
172    unsigned SrcElt = 0;
173    for (unsigned i = 0; i != NumDstElt; ++i) {
174      // Build each element of the result.
175      Constant *Elt = Zero;
176      unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
177      for (unsigned j = 0; j != Ratio; ++j) {
178        Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
179        if (!Src)  // Reject constantexpr elements.
180          return ConstantExpr::getBitCast(C, DestTy);
181
182        // Zero extend the element to the right size.
183        Src = ConstantExpr::getZExt(Src, Elt->getType());
184
185        // Shift it to the right place, depending on endianness.
186        Src = ConstantExpr::getShl(Src,
187                                   ConstantInt::get(Src->getType(), ShiftAmt));
188        ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
189
190        // Mix it in.
191        Elt = ConstantExpr::getOr(Elt, Src);
192      }
193      Result.push_back(Elt);
194    }
195    return ConstantVector::get(Result);
196  }
197
198  // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
199  unsigned Ratio = NumDstElt/NumSrcElt;
200  unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
201
202  // Loop over each source value, expanding into multiple results.
203  for (unsigned i = 0; i != NumSrcElt; ++i) {
204    Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
205    if (!Src)  // Reject constantexpr elements.
206      return ConstantExpr::getBitCast(C, DestTy);
207
208    unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
209    for (unsigned j = 0; j != Ratio; ++j) {
210      // Shift the piece of the value into the right place, depending on
211      // endianness.
212      Constant *Elt = ConstantExpr::getLShr(Src,
213                                  ConstantInt::get(Src->getType(), ShiftAmt));
214      ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
215
216      // Truncate and remember this piece.
217      Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
218    }
219  }
220
221  return ConstantVector::get(Result);
222}
223
224
225/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
226/// from a global, return the global and the constant.  Because of
227/// constantexprs, this function is recursive.
228static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
229                                       APInt &Offset, const DataLayout &TD) {
230  // Trivial case, constant is the global.
231  if ((GV = dyn_cast<GlobalValue>(C))) {
232    unsigned BitWidth = TD.getPointerTypeSizeInBits(GV->getType());
233    Offset = APInt(BitWidth, 0);
234    return true;
235  }
236
237  // Otherwise, if this isn't a constant expr, bail out.
238  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
239  if (!CE) return false;
240
241  // Look through ptr->int and ptr->ptr casts.
242  if (CE->getOpcode() == Instruction::PtrToInt ||
243      CE->getOpcode() == Instruction::BitCast)
244    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
245
246  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
247  GEPOperator *GEP = dyn_cast<GEPOperator>(CE);
248  if (!GEP)
249    return false;
250
251  unsigned BitWidth = TD.getPointerTypeSizeInBits(GEP->getType());
252  APInt TmpOffset(BitWidth, 0);
253
254  // If the base isn't a global+constant, we aren't either.
255  if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, TD))
256    return false;
257
258  // Otherwise, add any offset that our operands provide.
259  if (!GEP->accumulateConstantOffset(TD, TmpOffset))
260    return false;
261
262  Offset = TmpOffset;
263  return true;
264}
265
266/// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
267/// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
268/// pointer to copy results into and BytesLeft is the number of bytes left in
269/// the CurPtr buffer.  TD is the target data.
270static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
271                               unsigned char *CurPtr, unsigned BytesLeft,
272                               const DataLayout &TD) {
273  assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
274         "Out of range access");
275
276  // If this element is zero or undefined, we can just return since *CurPtr is
277  // zero initialized.
278  if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
279    return true;
280
281  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
282    if (CI->getBitWidth() > 64 ||
283        (CI->getBitWidth() & 7) != 0)
284      return false;
285
286    uint64_t Val = CI->getZExtValue();
287    unsigned IntBytes = unsigned(CI->getBitWidth()/8);
288
289    for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
290      int n = ByteOffset;
291      if (!TD.isLittleEndian())
292        n = IntBytes - n - 1;
293      CurPtr[i] = (unsigned char)(Val >> (n * 8));
294      ++ByteOffset;
295    }
296    return true;
297  }
298
299  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
300    if (CFP->getType()->isDoubleTy()) {
301      C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
302      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
303    }
304    if (CFP->getType()->isFloatTy()){
305      C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
306      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
307    }
308    if (CFP->getType()->isHalfTy()){
309      C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), TD);
310      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
311    }
312    return false;
313  }
314
315  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
316    const StructLayout *SL = TD.getStructLayout(CS->getType());
317    unsigned Index = SL->getElementContainingOffset(ByteOffset);
318    uint64_t CurEltOffset = SL->getElementOffset(Index);
319    ByteOffset -= CurEltOffset;
320
321    while (1) {
322      // If the element access is to the element itself and not to tail padding,
323      // read the bytes from the element.
324      uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
325
326      if (ByteOffset < EltSize &&
327          !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
328                              BytesLeft, TD))
329        return false;
330
331      ++Index;
332
333      // Check to see if we read from the last struct element, if so we're done.
334      if (Index == CS->getType()->getNumElements())
335        return true;
336
337      // If we read all of the bytes we needed from this element we're done.
338      uint64_t NextEltOffset = SL->getElementOffset(Index);
339
340      if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
341        return true;
342
343      // Move to the next element of the struct.
344      CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
345      BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
346      ByteOffset = 0;
347      CurEltOffset = NextEltOffset;
348    }
349    // not reached.
350  }
351
352  if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
353      isa<ConstantDataSequential>(C)) {
354    Type *EltTy = C->getType()->getSequentialElementType();
355    uint64_t EltSize = TD.getTypeAllocSize(EltTy);
356    uint64_t Index = ByteOffset / EltSize;
357    uint64_t Offset = ByteOffset - Index * EltSize;
358    uint64_t NumElts;
359    if (ArrayType *AT = dyn_cast<ArrayType>(C->getType()))
360      NumElts = AT->getNumElements();
361    else
362      NumElts = C->getType()->getVectorNumElements();
363
364    for (; Index != NumElts; ++Index) {
365      if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
366                              BytesLeft, TD))
367        return false;
368
369      uint64_t BytesWritten = EltSize - Offset;
370      assert(BytesWritten <= EltSize && "Not indexing into this element?");
371      if (BytesWritten >= BytesLeft)
372        return true;
373
374      Offset = 0;
375      BytesLeft -= BytesWritten;
376      CurPtr += BytesWritten;
377    }
378    return true;
379  }
380
381  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
382    if (CE->getOpcode() == Instruction::IntToPtr &&
383        CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getType())) {
384      return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
385                                BytesLeft, TD);
386    }
387  }
388
389  // Otherwise, unknown initializer type.
390  return false;
391}
392
393static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
394                                                 const DataLayout &TD) {
395  PointerType *PTy = cast<PointerType>(C->getType());
396  Type *LoadTy = PTy->getElementType();
397  IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
398
399  // If this isn't an integer load we can't fold it directly.
400  if (!IntType) {
401    unsigned AS = PTy->getAddressSpace();
402
403    // If this is a float/double load, we can try folding it as an int32/64 load
404    // and then bitcast the result.  This can be useful for union cases.  Note
405    // that address spaces don't matter here since we're not going to result in
406    // an actual new load.
407    Type *MapTy;
408    if (LoadTy->isHalfTy())
409      MapTy = Type::getInt16PtrTy(C->getContext(), AS);
410    else if (LoadTy->isFloatTy())
411      MapTy = Type::getInt32PtrTy(C->getContext(), AS);
412    else if (LoadTy->isDoubleTy())
413      MapTy = Type::getInt64PtrTy(C->getContext(), AS);
414    else if (LoadTy->isVectorTy()) {
415      MapTy = PointerType::getIntNPtrTy(C->getContext(),
416                                        TD.getTypeAllocSizeInBits(LoadTy),
417                                        AS);
418    } else
419      return nullptr;
420
421    C = FoldBitCast(C, MapTy, TD);
422    if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
423      return FoldBitCast(Res, LoadTy, TD);
424    return nullptr;
425  }
426
427  unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
428  if (BytesLoaded > 32 || BytesLoaded == 0)
429    return nullptr;
430
431  GlobalValue *GVal;
432  APInt Offset;
433  if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
434    return nullptr;
435
436  GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
437  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
438      !GV->getInitializer()->getType()->isSized())
439    return nullptr;
440
441  // If we're loading off the beginning of the global, some bytes may be valid,
442  // but we don't try to handle this.
443  if (Offset.isNegative())
444    return nullptr;
445
446  // If we're not accessing anything in this constant, the result is undefined.
447  if (Offset.getZExtValue() >=
448      TD.getTypeAllocSize(GV->getInitializer()->getType()))
449    return UndefValue::get(IntType);
450
451  unsigned char RawBytes[32] = {0};
452  if (!ReadDataFromGlobal(GV->getInitializer(), Offset.getZExtValue(), RawBytes,
453                          BytesLoaded, TD))
454    return nullptr;
455
456  APInt ResultVal = APInt(IntType->getBitWidth(), 0);
457  if (TD.isLittleEndian()) {
458    ResultVal = RawBytes[BytesLoaded - 1];
459    for (unsigned i = 1; i != BytesLoaded; ++i) {
460      ResultVal <<= 8;
461      ResultVal |= RawBytes[BytesLoaded - 1 - i];
462    }
463  } else {
464    ResultVal = RawBytes[0];
465    for (unsigned i = 1; i != BytesLoaded; ++i) {
466      ResultVal <<= 8;
467      ResultVal |= RawBytes[i];
468    }
469  }
470
471  return ConstantInt::get(IntType->getContext(), ResultVal);
472}
473
474static Constant *ConstantFoldLoadThroughBitcast(ConstantExpr *CE,
475                                                const DataLayout *DL) {
476  if (!DL)
477    return nullptr;
478  auto *DestPtrTy = dyn_cast<PointerType>(CE->getType());
479  if (!DestPtrTy)
480    return nullptr;
481  Type *DestTy = DestPtrTy->getElementType();
482
483  Constant *C = ConstantFoldLoadFromConstPtr(CE->getOperand(0), DL);
484  if (!C)
485    return nullptr;
486
487  do {
488    Type *SrcTy = C->getType();
489
490    // If the type sizes are the same and a cast is legal, just directly
491    // cast the constant.
492    if (DL->getTypeSizeInBits(DestTy) == DL->getTypeSizeInBits(SrcTy)) {
493      Instruction::CastOps Cast = Instruction::BitCast;
494      // If we are going from a pointer to int or vice versa, we spell the cast
495      // differently.
496      if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
497        Cast = Instruction::IntToPtr;
498      else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
499        Cast = Instruction::PtrToInt;
500
501      if (CastInst::castIsValid(Cast, C, DestTy))
502        return ConstantExpr::getCast(Cast, C, DestTy);
503    }
504
505    // If this isn't an aggregate type, there is nothing we can do to drill down
506    // and find a bitcastable constant.
507    if (!SrcTy->isAggregateType())
508      return nullptr;
509
510    // We're simulating a load through a pointer that was bitcast to point to
511    // a different type, so we can try to walk down through the initial
512    // elements of an aggregate to see if some part of th e aggregate is
513    // castable to implement the "load" semantic model.
514    C = C->getAggregateElement(0u);
515  } while (C);
516
517  return nullptr;
518}
519
520/// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
521/// produce if it is constant and determinable.  If this is not determinable,
522/// return null.
523Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
524                                             const DataLayout *TD) {
525  // First, try the easy cases:
526  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
527    if (GV->isConstant() && GV->hasDefinitiveInitializer())
528      return GV->getInitializer();
529
530  // If the loaded value isn't a constant expr, we can't handle it.
531  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
532  if (!CE)
533    return nullptr;
534
535  if (CE->getOpcode() == Instruction::GetElementPtr) {
536    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
537      if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
538        if (Constant *V =
539             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
540          return V;
541      }
542    }
543  }
544
545  if (CE->getOpcode() == Instruction::BitCast)
546    if (Constant *LoadedC = ConstantFoldLoadThroughBitcast(CE, TD))
547      return LoadedC;
548
549  // Instead of loading constant c string, use corresponding integer value
550  // directly if string length is small enough.
551  StringRef Str;
552  if (TD && getConstantStringInfo(CE, Str) && !Str.empty()) {
553    unsigned StrLen = Str.size();
554    Type *Ty = cast<PointerType>(CE->getType())->getElementType();
555    unsigned NumBits = Ty->getPrimitiveSizeInBits();
556    // Replace load with immediate integer if the result is an integer or fp
557    // value.
558    if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
559        (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
560      APInt StrVal(NumBits, 0);
561      APInt SingleChar(NumBits, 0);
562      if (TD->isLittleEndian()) {
563        for (signed i = StrLen-1; i >= 0; i--) {
564          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
565          StrVal = (StrVal << 8) | SingleChar;
566        }
567      } else {
568        for (unsigned i = 0; i < StrLen; i++) {
569          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
570          StrVal = (StrVal << 8) | SingleChar;
571        }
572        // Append NULL at the end.
573        SingleChar = 0;
574        StrVal = (StrVal << 8) | SingleChar;
575      }
576
577      Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
578      if (Ty->isFloatingPointTy())
579        Res = ConstantExpr::getBitCast(Res, Ty);
580      return Res;
581    }
582  }
583
584  // If this load comes from anywhere in a constant global, and if the global
585  // is all undef or zero, we know what it loads.
586  if (GlobalVariable *GV =
587        dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
588    if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
589      Type *ResTy = cast<PointerType>(C->getType())->getElementType();
590      if (GV->getInitializer()->isNullValue())
591        return Constant::getNullValue(ResTy);
592      if (isa<UndefValue>(GV->getInitializer()))
593        return UndefValue::get(ResTy);
594    }
595  }
596
597  // Try hard to fold loads from bitcasted strange and non-type-safe things.
598  if (TD)
599    return FoldReinterpretLoadFromConstPtr(CE, *TD);
600  return nullptr;
601}
602
603static Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout *TD){
604  if (LI->isVolatile()) return nullptr;
605
606  if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
607    return ConstantFoldLoadFromConstPtr(C, TD);
608
609  return nullptr;
610}
611
612/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
613/// Attempt to symbolically evaluate the result of a binary operator merging
614/// these together.  If target data info is available, it is provided as DL,
615/// otherwise DL is null.
616static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
617                                           Constant *Op1, const DataLayout *DL){
618  // SROA
619
620  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
621  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
622  // bits.
623
624
625  if (Opc == Instruction::And && DL) {
626    unsigned BitWidth = DL->getTypeSizeInBits(Op0->getType()->getScalarType());
627    APInt KnownZero0(BitWidth, 0), KnownOne0(BitWidth, 0);
628    APInt KnownZero1(BitWidth, 0), KnownOne1(BitWidth, 0);
629    computeKnownBits(Op0, KnownZero0, KnownOne0, DL);
630    computeKnownBits(Op1, KnownZero1, KnownOne1, DL);
631    if ((KnownOne1 | KnownZero0).isAllOnesValue()) {
632      // All the bits of Op0 that the 'and' could be masking are already zero.
633      return Op0;
634    }
635    if ((KnownOne0 | KnownZero1).isAllOnesValue()) {
636      // All the bits of Op1 that the 'and' could be masking are already zero.
637      return Op1;
638    }
639
640    APInt KnownZero = KnownZero0 | KnownZero1;
641    APInt KnownOne = KnownOne0 & KnownOne1;
642    if ((KnownZero | KnownOne).isAllOnesValue()) {
643      return ConstantInt::get(Op0->getType(), KnownOne);
644    }
645  }
646
647  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
648  // constant.  This happens frequently when iterating over a global array.
649  if (Opc == Instruction::Sub && DL) {
650    GlobalValue *GV1, *GV2;
651    APInt Offs1, Offs2;
652
653    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *DL))
654      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *DL) &&
655          GV1 == GV2) {
656        unsigned OpSize = DL->getTypeSizeInBits(Op0->getType());
657
658        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
659        // PtrToInt may change the bitwidth so we have convert to the right size
660        // first.
661        return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
662                                                Offs2.zextOrTrunc(OpSize));
663      }
664  }
665
666  return nullptr;
667}
668
669/// CastGEPIndices - If array indices are not pointer-sized integers,
670/// explicitly cast them so that they aren't implicitly casted by the
671/// getelementptr.
672static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
673                                Type *ResultTy, const DataLayout *TD,
674                                const TargetLibraryInfo *TLI) {
675  if (!TD)
676    return nullptr;
677
678  Type *IntPtrTy = TD->getIntPtrType(ResultTy);
679
680  bool Any = false;
681  SmallVector<Constant*, 32> NewIdxs;
682  for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
683    if ((i == 1 ||
684         !isa<StructType>(GetElementPtrInst::getIndexedType(
685                            Ops[0]->getType(),
686                            Ops.slice(1, i - 1)))) &&
687        Ops[i]->getType() != IntPtrTy) {
688      Any = true;
689      NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
690                                                                      true,
691                                                                      IntPtrTy,
692                                                                      true),
693                                              Ops[i], IntPtrTy));
694    } else
695      NewIdxs.push_back(Ops[i]);
696  }
697
698  if (!Any)
699    return nullptr;
700
701  Constant *C = ConstantExpr::getGetElementPtr(Ops[0], NewIdxs);
702  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
703    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
704      C = Folded;
705  }
706
707  return C;
708}
709
710/// Strip the pointer casts, but preserve the address space information.
711static Constant* StripPtrCastKeepAS(Constant* Ptr) {
712  assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
713  PointerType *OldPtrTy = cast<PointerType>(Ptr->getType());
714  Ptr = Ptr->stripPointerCasts();
715  PointerType *NewPtrTy = cast<PointerType>(Ptr->getType());
716
717  // Preserve the address space number of the pointer.
718  if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
719    NewPtrTy = NewPtrTy->getElementType()->getPointerTo(
720      OldPtrTy->getAddressSpace());
721    Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
722  }
723  return Ptr;
724}
725
726/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
727/// constant expression, do so.
728static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
729                                         Type *ResultTy, const DataLayout *TD,
730                                         const TargetLibraryInfo *TLI) {
731  Constant *Ptr = Ops[0];
732  if (!TD || !Ptr->getType()->getPointerElementType()->isSized() ||
733      !Ptr->getType()->isPointerTy())
734    return nullptr;
735
736  Type *IntPtrTy = TD->getIntPtrType(Ptr->getType());
737  Type *ResultElementTy = ResultTy->getPointerElementType();
738
739  // If this is a constant expr gep that is effectively computing an
740  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
741  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
742    if (!isa<ConstantInt>(Ops[i])) {
743
744      // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
745      // "inttoptr (sub (ptrtoint Ptr), V)"
746      if (Ops.size() == 2 && ResultElementTy->isIntegerTy(8)) {
747        ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
748        assert((!CE || CE->getType() == IntPtrTy) &&
749               "CastGEPIndices didn't canonicalize index types!");
750        if (CE && CE->getOpcode() == Instruction::Sub &&
751            CE->getOperand(0)->isNullValue()) {
752          Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
753          Res = ConstantExpr::getSub(Res, CE->getOperand(1));
754          Res = ConstantExpr::getIntToPtr(Res, ResultTy);
755          if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
756            Res = ConstantFoldConstantExpression(ResCE, TD, TLI);
757          return Res;
758        }
759      }
760      return nullptr;
761    }
762
763  unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
764  APInt Offset =
765    APInt(BitWidth, TD->getIndexedOffset(Ptr->getType(),
766                                         makeArrayRef((Value *const*)
767                                                        Ops.data() + 1,
768                                                      Ops.size() - 1)));
769  Ptr = StripPtrCastKeepAS(Ptr);
770
771  // If this is a GEP of a GEP, fold it all into a single GEP.
772  while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
773    SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
774
775    // Do not try the incorporate the sub-GEP if some index is not a number.
776    bool AllConstantInt = true;
777    for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
778      if (!isa<ConstantInt>(NestedOps[i])) {
779        AllConstantInt = false;
780        break;
781      }
782    if (!AllConstantInt)
783      break;
784
785    Ptr = cast<Constant>(GEP->getOperand(0));
786    Offset += APInt(BitWidth,
787                    TD->getIndexedOffset(Ptr->getType(), NestedOps));
788    Ptr = StripPtrCastKeepAS(Ptr);
789  }
790
791  // If the base value for this address is a literal integer value, fold the
792  // getelementptr to the resulting integer value casted to the pointer type.
793  APInt BasePtr(BitWidth, 0);
794  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
795    if (CE->getOpcode() == Instruction::IntToPtr) {
796      if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
797        BasePtr = Base->getValue().zextOrTrunc(BitWidth);
798    }
799  }
800
801  if (Ptr->isNullValue() || BasePtr != 0) {
802    Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
803    return ConstantExpr::getIntToPtr(C, ResultTy);
804  }
805
806  // Otherwise form a regular getelementptr. Recompute the indices so that
807  // we eliminate over-indexing of the notional static type array bounds.
808  // This makes it easy to determine if the getelementptr is "inbounds".
809  // Also, this helps GlobalOpt do SROA on GlobalVariables.
810  Type *Ty = Ptr->getType();
811  assert(Ty->isPointerTy() && "Forming regular GEP of non-pointer type");
812  SmallVector<Constant *, 32> NewIdxs;
813
814  do {
815    if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
816      if (ATy->isPointerTy()) {
817        // The only pointer indexing we'll do is on the first index of the GEP.
818        if (!NewIdxs.empty())
819          break;
820
821        // Only handle pointers to sized types, not pointers to functions.
822        if (!ATy->getElementType()->isSized())
823          return nullptr;
824      }
825
826      // Determine which element of the array the offset points into.
827      APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
828      if (ElemSize == 0)
829        // The element size is 0. This may be [0 x Ty]*, so just use a zero
830        // index for this level and proceed to the next level to see if it can
831        // accommodate the offset.
832        NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
833      else {
834        // The element size is non-zero divide the offset by the element
835        // size (rounding down), to compute the index at this level.
836        APInt NewIdx = Offset.udiv(ElemSize);
837        Offset -= NewIdx * ElemSize;
838        NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
839      }
840      Ty = ATy->getElementType();
841    } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
842      // If we end up with an offset that isn't valid for this struct type, we
843      // can't re-form this GEP in a regular form, so bail out. The pointer
844      // operand likely went through casts that are necessary to make the GEP
845      // sensible.
846      const StructLayout &SL = *TD->getStructLayout(STy);
847      if (Offset.uge(SL.getSizeInBytes()))
848        break;
849
850      // Determine which field of the struct the offset points into. The
851      // getZExtValue is fine as we've already ensured that the offset is
852      // within the range representable by the StructLayout API.
853      unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
854      NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
855                                         ElIdx));
856      Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
857      Ty = STy->getTypeAtIndex(ElIdx);
858    } else {
859      // We've reached some non-indexable type.
860      break;
861    }
862  } while (Ty != ResultElementTy);
863
864  // If we haven't used up the entire offset by descending the static
865  // type, then the offset is pointing into the middle of an indivisible
866  // member, so we can't simplify it.
867  if (Offset != 0)
868    return nullptr;
869
870  // Create a GEP.
871  Constant *C = ConstantExpr::getGetElementPtr(Ptr, NewIdxs);
872  assert(C->getType()->getPointerElementType() == Ty &&
873         "Computed GetElementPtr has unexpected type!");
874
875  // If we ended up indexing a member with a type that doesn't match
876  // the type of what the original indices indexed, add a cast.
877  if (Ty != ResultElementTy)
878    C = FoldBitCast(C, ResultTy, *TD);
879
880  return C;
881}
882
883
884
885//===----------------------------------------------------------------------===//
886// Constant Folding public APIs
887//===----------------------------------------------------------------------===//
888
889/// ConstantFoldInstruction - Try to constant fold the specified instruction.
890/// If successful, the constant result is returned, if not, null is returned.
891/// Note that this fails if not all of the operands are constant.  Otherwise,
892/// this function can only fail when attempting to fold instructions like loads
893/// and stores, which have no constant expression form.
894Constant *llvm::ConstantFoldInstruction(Instruction *I,
895                                        const DataLayout *TD,
896                                        const TargetLibraryInfo *TLI) {
897  // Handle PHI nodes quickly here...
898  if (PHINode *PN = dyn_cast<PHINode>(I)) {
899    Constant *CommonValue = nullptr;
900
901    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
902      Value *Incoming = PN->getIncomingValue(i);
903      // If the incoming value is undef then skip it.  Note that while we could
904      // skip the value if it is equal to the phi node itself we choose not to
905      // because that would break the rule that constant folding only applies if
906      // all operands are constants.
907      if (isa<UndefValue>(Incoming))
908        continue;
909      // If the incoming value is not a constant, then give up.
910      Constant *C = dyn_cast<Constant>(Incoming);
911      if (!C)
912        return nullptr;
913      // Fold the PHI's operands.
914      if (ConstantExpr *NewC = dyn_cast<ConstantExpr>(C))
915        C = ConstantFoldConstantExpression(NewC, TD, TLI);
916      // If the incoming value is a different constant to
917      // the one we saw previously, then give up.
918      if (CommonValue && C != CommonValue)
919        return nullptr;
920      CommonValue = C;
921    }
922
923
924    // If we reach here, all incoming values are the same constant or undef.
925    return CommonValue ? CommonValue : UndefValue::get(PN->getType());
926  }
927
928  // Scan the operand list, checking to see if they are all constants, if so,
929  // hand off to ConstantFoldInstOperands.
930  SmallVector<Constant*, 8> Ops;
931  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
932    Constant *Op = dyn_cast<Constant>(*i);
933    if (!Op)
934      return nullptr;  // All operands not constant!
935
936    // Fold the Instruction's operands.
937    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(Op))
938      Op = ConstantFoldConstantExpression(NewCE, TD, TLI);
939
940    Ops.push_back(Op);
941  }
942
943  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
944    return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
945                                           TD, TLI);
946
947  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
948    return ConstantFoldLoadInst(LI, TD);
949
950  if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I)) {
951    return ConstantExpr::getInsertValue(
952                                cast<Constant>(IVI->getAggregateOperand()),
953                                cast<Constant>(IVI->getInsertedValueOperand()),
954                                IVI->getIndices());
955  }
956
957  if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I)) {
958    return ConstantExpr::getExtractValue(
959                                    cast<Constant>(EVI->getAggregateOperand()),
960                                    EVI->getIndices());
961  }
962
963  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD, TLI);
964}
965
966static Constant *
967ConstantFoldConstantExpressionImpl(const ConstantExpr *CE, const DataLayout *TD,
968                                   const TargetLibraryInfo *TLI,
969                                   SmallPtrSet<ConstantExpr *, 4> &FoldedOps) {
970  SmallVector<Constant *, 8> Ops;
971  for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end(); i != e;
972       ++i) {
973    Constant *NewC = cast<Constant>(*i);
974    // Recursively fold the ConstantExpr's operands. If we have already folded
975    // a ConstantExpr, we don't have to process it again.
976    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC)) {
977      if (FoldedOps.insert(NewCE))
978        NewC = ConstantFoldConstantExpressionImpl(NewCE, TD, TLI, FoldedOps);
979    }
980    Ops.push_back(NewC);
981  }
982
983  if (CE->isCompare())
984    return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
985                                           TD, TLI);
986  return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, TD, TLI);
987}
988
989/// ConstantFoldConstantExpression - Attempt to fold the constant expression
990/// using the specified DataLayout.  If successful, the constant result is
991/// result is returned, if not, null is returned.
992Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
993                                               const DataLayout *TD,
994                                               const TargetLibraryInfo *TLI) {
995  SmallPtrSet<ConstantExpr *, 4> FoldedOps;
996  return ConstantFoldConstantExpressionImpl(CE, TD, TLI, FoldedOps);
997}
998
999/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
1000/// specified opcode and operands.  If successful, the constant result is
1001/// returned, if not, null is returned.  Note that this function can fail when
1002/// attempting to fold instructions like loads and stores, which have no
1003/// constant expression form.
1004///
1005/// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
1006/// information, due to only being passed an opcode and operands. Constant
1007/// folding using this function strips this information.
1008///
1009Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
1010                                         ArrayRef<Constant *> Ops,
1011                                         const DataLayout *TD,
1012                                         const TargetLibraryInfo *TLI) {
1013  // Handle easy binops first.
1014  if (Instruction::isBinaryOp(Opcode)) {
1015    if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1])) {
1016      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
1017        return C;
1018    }
1019
1020    return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
1021  }
1022
1023  switch (Opcode) {
1024  default: return nullptr;
1025  case Instruction::ICmp:
1026  case Instruction::FCmp: llvm_unreachable("Invalid for compares");
1027  case Instruction::Call:
1028    if (Function *F = dyn_cast<Function>(Ops.back()))
1029      if (canConstantFoldCallTo(F))
1030        return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
1031    return nullptr;
1032  case Instruction::PtrToInt:
1033    // If the input is a inttoptr, eliminate the pair.  This requires knowing
1034    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1035    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
1036      if (TD && CE->getOpcode() == Instruction::IntToPtr) {
1037        Constant *Input = CE->getOperand(0);
1038        unsigned InWidth = Input->getType()->getScalarSizeInBits();
1039        unsigned PtrWidth = TD->getPointerTypeSizeInBits(CE->getType());
1040        if (PtrWidth < InWidth) {
1041          Constant *Mask =
1042            ConstantInt::get(CE->getContext(),
1043                             APInt::getLowBitsSet(InWidth, PtrWidth));
1044          Input = ConstantExpr::getAnd(Input, Mask);
1045        }
1046        // Do a zext or trunc to get to the dest size.
1047        return ConstantExpr::getIntegerCast(Input, DestTy, false);
1048      }
1049    }
1050    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1051  case Instruction::IntToPtr:
1052    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1053    // the int size is >= the ptr size and the address spaces are the same.
1054    // This requires knowing the width of a pointer, so it can't be done in
1055    // ConstantExpr::getCast.
1056    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
1057      if (TD && CE->getOpcode() == Instruction::PtrToInt) {
1058        Constant *SrcPtr = CE->getOperand(0);
1059        unsigned SrcPtrSize = TD->getPointerTypeSizeInBits(SrcPtr->getType());
1060        unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1061
1062        if (MidIntSize >= SrcPtrSize) {
1063          unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1064          if (SrcAS == DestTy->getPointerAddressSpace())
1065            return FoldBitCast(CE->getOperand(0), DestTy, *TD);
1066        }
1067      }
1068    }
1069
1070    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1071  case Instruction::Trunc:
1072  case Instruction::ZExt:
1073  case Instruction::SExt:
1074  case Instruction::FPTrunc:
1075  case Instruction::FPExt:
1076  case Instruction::UIToFP:
1077  case Instruction::SIToFP:
1078  case Instruction::FPToUI:
1079  case Instruction::FPToSI:
1080  case Instruction::AddrSpaceCast:
1081      return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1082  case Instruction::BitCast:
1083    if (TD)
1084      return FoldBitCast(Ops[0], DestTy, *TD);
1085    return ConstantExpr::getBitCast(Ops[0], DestTy);
1086  case Instruction::Select:
1087    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1088  case Instruction::ExtractElement:
1089    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1090  case Instruction::InsertElement:
1091    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1092  case Instruction::ShuffleVector:
1093    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1094  case Instruction::GetElementPtr:
1095    if (Constant *C = CastGEPIndices(Ops, DestTy, TD, TLI))
1096      return C;
1097    if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, TD, TLI))
1098      return C;
1099
1100    return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1));
1101  }
1102}
1103
1104/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
1105/// instruction (icmp/fcmp) with the specified operands.  If it fails, it
1106/// returns a constant expression of the specified operands.
1107///
1108Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
1109                                                Constant *Ops0, Constant *Ops1,
1110                                                const DataLayout *TD,
1111                                                const TargetLibraryInfo *TLI) {
1112  // fold: icmp (inttoptr x), null         -> icmp x, 0
1113  // fold: icmp (ptrtoint x), 0            -> icmp x, null
1114  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1115  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1116  //
1117  // ConstantExpr::getCompare cannot do this, because it doesn't have TD
1118  // around to know if bit truncation is happening.
1119  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1120    if (TD && Ops1->isNullValue()) {
1121      if (CE0->getOpcode() == Instruction::IntToPtr) {
1122        Type *IntPtrTy = TD->getIntPtrType(CE0->getType());
1123        // Convert the integer value to the right size to ensure we get the
1124        // proper extension or truncation.
1125        Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1126                                                   IntPtrTy, false);
1127        Constant *Null = Constant::getNullValue(C->getType());
1128        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
1129      }
1130
1131      // Only do this transformation if the int is intptrty in size, otherwise
1132      // there is a truncation or extension that we aren't modeling.
1133      if (CE0->getOpcode() == Instruction::PtrToInt) {
1134        Type *IntPtrTy = TD->getIntPtrType(CE0->getOperand(0)->getType());
1135        if (CE0->getType() == IntPtrTy) {
1136          Constant *C = CE0->getOperand(0);
1137          Constant *Null = Constant::getNullValue(C->getType());
1138          return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
1139        }
1140      }
1141    }
1142
1143    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1144      if (TD && CE0->getOpcode() == CE1->getOpcode()) {
1145        if (CE0->getOpcode() == Instruction::IntToPtr) {
1146          Type *IntPtrTy = TD->getIntPtrType(CE0->getType());
1147
1148          // Convert the integer value to the right size to ensure we get the
1149          // proper extension or truncation.
1150          Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1151                                                      IntPtrTy, false);
1152          Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1153                                                      IntPtrTy, false);
1154          return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD, TLI);
1155        }
1156
1157        // Only do this transformation if the int is intptrty in size, otherwise
1158        // there is a truncation or extension that we aren't modeling.
1159        if (CE0->getOpcode() == Instruction::PtrToInt) {
1160          Type *IntPtrTy = TD->getIntPtrType(CE0->getOperand(0)->getType());
1161          if (CE0->getType() == IntPtrTy &&
1162              CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1163            return ConstantFoldCompareInstOperands(Predicate,
1164                                                   CE0->getOperand(0),
1165                                                   CE1->getOperand(0),
1166                                                   TD,
1167                                                   TLI);
1168          }
1169        }
1170      }
1171    }
1172
1173    // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1174    // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1175    if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1176        CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1177      Constant *LHS =
1178        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,
1179                                        TD, TLI);
1180      Constant *RHS =
1181        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,
1182                                        TD, TLI);
1183      unsigned OpC =
1184        Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1185      Constant *Ops[] = { LHS, RHS };
1186      return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, TD, TLI);
1187    }
1188  }
1189
1190  return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1191}
1192
1193
1194/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
1195/// getelementptr constantexpr, return the constant value being addressed by the
1196/// constant expression, or null if something is funny and we can't decide.
1197Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1198                                                       ConstantExpr *CE) {
1199  if (!CE->getOperand(1)->isNullValue())
1200    return nullptr;  // Do not allow stepping over the value!
1201
1202  // Loop over all of the operands, tracking down which value we are
1203  // addressing.
1204  for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1205    C = C->getAggregateElement(CE->getOperand(i));
1206    if (!C)
1207      return nullptr;
1208  }
1209  return C;
1210}
1211
1212/// ConstantFoldLoadThroughGEPIndices - Given a constant and getelementptr
1213/// indices (with an *implied* zero pointer index that is not in the list),
1214/// return the constant value being addressed by a virtual load, or null if
1215/// something is funny and we can't decide.
1216Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
1217                                                  ArrayRef<Constant*> Indices) {
1218  // Loop over all of the operands, tracking down which value we are
1219  // addressing.
1220  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1221    C = C->getAggregateElement(Indices[i]);
1222    if (!C)
1223      return nullptr;
1224  }
1225  return C;
1226}
1227
1228
1229//===----------------------------------------------------------------------===//
1230//  Constant Folding for Calls
1231//
1232
1233/// canConstantFoldCallTo - Return true if its even possible to fold a call to
1234/// the specified function.
1235bool llvm::canConstantFoldCallTo(const Function *F) {
1236  switch (F->getIntrinsicID()) {
1237  case Intrinsic::fabs:
1238  case Intrinsic::log:
1239  case Intrinsic::log2:
1240  case Intrinsic::log10:
1241  case Intrinsic::exp:
1242  case Intrinsic::exp2:
1243  case Intrinsic::floor:
1244  case Intrinsic::ceil:
1245  case Intrinsic::sqrt:
1246  case Intrinsic::pow:
1247  case Intrinsic::powi:
1248  case Intrinsic::bswap:
1249  case Intrinsic::ctpop:
1250  case Intrinsic::ctlz:
1251  case Intrinsic::cttz:
1252  case Intrinsic::fma:
1253  case Intrinsic::fmuladd:
1254  case Intrinsic::copysign:
1255  case Intrinsic::round:
1256  case Intrinsic::sadd_with_overflow:
1257  case Intrinsic::uadd_with_overflow:
1258  case Intrinsic::ssub_with_overflow:
1259  case Intrinsic::usub_with_overflow:
1260  case Intrinsic::smul_with_overflow:
1261  case Intrinsic::umul_with_overflow:
1262  case Intrinsic::convert_from_fp16:
1263  case Intrinsic::convert_to_fp16:
1264  case Intrinsic::x86_sse_cvtss2si:
1265  case Intrinsic::x86_sse_cvtss2si64:
1266  case Intrinsic::x86_sse_cvttss2si:
1267  case Intrinsic::x86_sse_cvttss2si64:
1268  case Intrinsic::x86_sse2_cvtsd2si:
1269  case Intrinsic::x86_sse2_cvtsd2si64:
1270  case Intrinsic::x86_sse2_cvttsd2si:
1271  case Intrinsic::x86_sse2_cvttsd2si64:
1272    return true;
1273  default:
1274    return false;
1275  case 0: break;
1276  }
1277
1278  if (!F->hasName())
1279    return false;
1280  StringRef Name = F->getName();
1281
1282  // In these cases, the check of the length is required.  We don't want to
1283  // return true for a name like "cos\0blah" which strcmp would return equal to
1284  // "cos", but has length 8.
1285  switch (Name[0]) {
1286  default: return false;
1287  case 'a':
1288    return Name == "acos" || Name == "asin" || Name == "atan" || Name =="atan2";
1289  case 'c':
1290    return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
1291  case 'e':
1292    return Name == "exp" || Name == "exp2";
1293  case 'f':
1294    return Name == "fabs" || Name == "fmod" || Name == "floor";
1295  case 'l':
1296    return Name == "log" || Name == "log10";
1297  case 'p':
1298    return Name == "pow";
1299  case 's':
1300    return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
1301      Name == "sinf" || Name == "sqrtf";
1302  case 't':
1303    return Name == "tan" || Name == "tanh";
1304  }
1305}
1306
1307static Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1308  if (Ty->isHalfTy()) {
1309    APFloat APF(V);
1310    bool unused;
1311    APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
1312    return ConstantFP::get(Ty->getContext(), APF);
1313  }
1314  if (Ty->isFloatTy())
1315    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1316  if (Ty->isDoubleTy())
1317    return ConstantFP::get(Ty->getContext(), APFloat(V));
1318  llvm_unreachable("Can only constant fold half/float/double");
1319
1320}
1321
1322namespace {
1323/// llvm_fenv_clearexcept - Clear the floating-point exception state.
1324static inline void llvm_fenv_clearexcept() {
1325#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1326  feclearexcept(FE_ALL_EXCEPT);
1327#endif
1328  errno = 0;
1329}
1330
1331/// llvm_fenv_testexcept - Test if a floating-point exception was raised.
1332static inline bool llvm_fenv_testexcept() {
1333  int errno_val = errno;
1334  if (errno_val == ERANGE || errno_val == EDOM)
1335    return true;
1336#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1337  if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1338    return true;
1339#endif
1340  return false;
1341}
1342} // End namespace
1343
1344static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
1345                                Type *Ty) {
1346  llvm_fenv_clearexcept();
1347  V = NativeFP(V);
1348  if (llvm_fenv_testexcept()) {
1349    llvm_fenv_clearexcept();
1350    return nullptr;
1351  }
1352
1353  return GetConstantFoldFPValue(V, Ty);
1354}
1355
1356static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1357                                      double V, double W, Type *Ty) {
1358  llvm_fenv_clearexcept();
1359  V = NativeFP(V, W);
1360  if (llvm_fenv_testexcept()) {
1361    llvm_fenv_clearexcept();
1362    return nullptr;
1363  }
1364
1365  return GetConstantFoldFPValue(V, Ty);
1366}
1367
1368/// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
1369/// conversion of a constant floating point. If roundTowardZero is false, the
1370/// default IEEE rounding is used (toward nearest, ties to even). This matches
1371/// the behavior of the non-truncating SSE instructions in the default rounding
1372/// mode. The desired integer type Ty is used to select how many bits are
1373/// available for the result. Returns null if the conversion cannot be
1374/// performed, otherwise returns the Constant value resulting from the
1375/// conversion.
1376static Constant *ConstantFoldConvertToInt(const APFloat &Val,
1377                                          bool roundTowardZero, Type *Ty) {
1378  // All of these conversion intrinsics form an integer of at most 64bits.
1379  unsigned ResultWidth = Ty->getIntegerBitWidth();
1380  assert(ResultWidth <= 64 &&
1381         "Can only constant fold conversions to 64 and 32 bit ints");
1382
1383  uint64_t UIntVal;
1384  bool isExact = false;
1385  APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1386                                              : APFloat::rmNearestTiesToEven;
1387  APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
1388                                                  /*isSigned=*/true, mode,
1389                                                  &isExact);
1390  if (status != APFloat::opOK && status != APFloat::opInexact)
1391    return nullptr;
1392  return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
1393}
1394
1395static double getValueAsDouble(ConstantFP *Op) {
1396  Type *Ty = Op->getType();
1397
1398  if (Ty->isFloatTy())
1399    return Op->getValueAPF().convertToFloat();
1400
1401  if (Ty->isDoubleTy())
1402    return Op->getValueAPF().convertToDouble();
1403
1404  bool unused;
1405  APFloat APF = Op->getValueAPF();
1406  APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
1407  return APF.convertToDouble();
1408}
1409
1410static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID,
1411                                        Type *Ty, ArrayRef<Constant *> Operands,
1412                                        const TargetLibraryInfo *TLI) {
1413  if (Operands.size() == 1) {
1414    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
1415      if (IntrinsicID == Intrinsic::convert_to_fp16) {
1416        APFloat Val(Op->getValueAPF());
1417
1418        bool lost = false;
1419        Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
1420
1421        return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
1422      }
1423
1424      if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1425        return nullptr;
1426
1427      if (IntrinsicID == Intrinsic::round) {
1428        APFloat V = Op->getValueAPF();
1429        V.roundToIntegral(APFloat::rmNearestTiesToAway);
1430        return ConstantFP::get(Ty->getContext(), V);
1431      }
1432
1433      /// We only fold functions with finite arguments. Folding NaN and inf is
1434      /// likely to be aborted with an exception anyway, and some host libms
1435      /// have known errors raising exceptions.
1436      if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1437        return nullptr;
1438
1439      /// Currently APFloat versions of these functions do not exist, so we use
1440      /// the host native double versions.  Float versions are not called
1441      /// directly but for all these it is true (float)(f((double)arg)) ==
1442      /// f(arg).  Long double not supported yet.
1443      double V = getValueAsDouble(Op);
1444
1445      switch (IntrinsicID) {
1446        default: break;
1447        case Intrinsic::fabs:
1448          return ConstantFoldFP(fabs, V, Ty);
1449#if HAVE_LOG2
1450        case Intrinsic::log2:
1451          return ConstantFoldFP(log2, V, Ty);
1452#endif
1453#if HAVE_LOG
1454        case Intrinsic::log:
1455          return ConstantFoldFP(log, V, Ty);
1456#endif
1457#if HAVE_LOG10
1458        case Intrinsic::log10:
1459          return ConstantFoldFP(log10, V, Ty);
1460#endif
1461#if HAVE_EXP
1462        case Intrinsic::exp:
1463          return ConstantFoldFP(exp, V, Ty);
1464#endif
1465#if HAVE_EXP2
1466        case Intrinsic::exp2:
1467          return ConstantFoldFP(exp2, V, Ty);
1468#endif
1469        case Intrinsic::floor:
1470          return ConstantFoldFP(floor, V, Ty);
1471        case Intrinsic::ceil:
1472          return ConstantFoldFP(ceil, V, Ty);
1473      }
1474
1475      if (!TLI)
1476        return nullptr;
1477
1478      switch (Name[0]) {
1479      case 'a':
1480        if (Name == "acos" && TLI->has(LibFunc::acos))
1481          return ConstantFoldFP(acos, V, Ty);
1482        else if (Name == "asin" && TLI->has(LibFunc::asin))
1483          return ConstantFoldFP(asin, V, Ty);
1484        else if (Name == "atan" && TLI->has(LibFunc::atan))
1485          return ConstantFoldFP(atan, V, Ty);
1486        break;
1487      case 'c':
1488        if (Name == "ceil" && TLI->has(LibFunc::ceil))
1489          return ConstantFoldFP(ceil, V, Ty);
1490        else if (Name == "cos" && TLI->has(LibFunc::cos))
1491          return ConstantFoldFP(cos, V, Ty);
1492        else if (Name == "cosh" && TLI->has(LibFunc::cosh))
1493          return ConstantFoldFP(cosh, V, Ty);
1494        else if (Name == "cosf" && TLI->has(LibFunc::cosf))
1495          return ConstantFoldFP(cos, V, Ty);
1496        break;
1497      case 'e':
1498        if (Name == "exp" && TLI->has(LibFunc::exp))
1499          return ConstantFoldFP(exp, V, Ty);
1500
1501        if (Name == "exp2" && TLI->has(LibFunc::exp2)) {
1502          // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
1503          // C99 library.
1504          return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1505        }
1506        break;
1507      case 'f':
1508        if (Name == "fabs" && TLI->has(LibFunc::fabs))
1509          return ConstantFoldFP(fabs, V, Ty);
1510        else if (Name == "floor" && TLI->has(LibFunc::floor))
1511          return ConstantFoldFP(floor, V, Ty);
1512        break;
1513      case 'l':
1514        if (Name == "log" && V > 0 && TLI->has(LibFunc::log))
1515          return ConstantFoldFP(log, V, Ty);
1516        else if (Name == "log10" && V > 0 && TLI->has(LibFunc::log10))
1517          return ConstantFoldFP(log10, V, Ty);
1518        else if (IntrinsicID == Intrinsic::sqrt &&
1519                 (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())) {
1520          if (V >= -0.0)
1521            return ConstantFoldFP(sqrt, V, Ty);
1522          else // Undefined
1523            return Constant::getNullValue(Ty);
1524        }
1525        break;
1526      case 's':
1527        if (Name == "sin" && TLI->has(LibFunc::sin))
1528          return ConstantFoldFP(sin, V, Ty);
1529        else if (Name == "sinh" && TLI->has(LibFunc::sinh))
1530          return ConstantFoldFP(sinh, V, Ty);
1531        else if (Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt))
1532          return ConstantFoldFP(sqrt, V, Ty);
1533        else if (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf))
1534          return ConstantFoldFP(sqrt, V, Ty);
1535        else if (Name == "sinf" && TLI->has(LibFunc::sinf))
1536          return ConstantFoldFP(sin, V, Ty);
1537        break;
1538      case 't':
1539        if (Name == "tan" && TLI->has(LibFunc::tan))
1540          return ConstantFoldFP(tan, V, Ty);
1541        else if (Name == "tanh" && TLI->has(LibFunc::tanh))
1542          return ConstantFoldFP(tanh, V, Ty);
1543        break;
1544      default:
1545        break;
1546      }
1547      return nullptr;
1548    }
1549
1550    if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
1551      switch (IntrinsicID) {
1552      case Intrinsic::bswap:
1553        return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
1554      case Intrinsic::ctpop:
1555        return ConstantInt::get(Ty, Op->getValue().countPopulation());
1556      case Intrinsic::convert_from_fp16: {
1557        APFloat Val(APFloat::IEEEhalf, Op->getValue());
1558
1559        bool lost = false;
1560        APFloat::opStatus status =
1561          Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
1562
1563        // Conversion is always precise.
1564        (void)status;
1565        assert(status == APFloat::opOK && !lost &&
1566               "Precision lost during fp16 constfolding");
1567
1568        return ConstantFP::get(Ty->getContext(), Val);
1569      }
1570      default:
1571        return nullptr;
1572      }
1573    }
1574
1575    // Support ConstantVector in case we have an Undef in the top.
1576    if (isa<ConstantVector>(Operands[0]) ||
1577        isa<ConstantDataVector>(Operands[0])) {
1578      Constant *Op = cast<Constant>(Operands[0]);
1579      switch (IntrinsicID) {
1580      default: break;
1581      case Intrinsic::x86_sse_cvtss2si:
1582      case Intrinsic::x86_sse_cvtss2si64:
1583      case Intrinsic::x86_sse2_cvtsd2si:
1584      case Intrinsic::x86_sse2_cvtsd2si64:
1585        if (ConstantFP *FPOp =
1586              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1587          return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1588                                          /*roundTowardZero=*/false, Ty);
1589      case Intrinsic::x86_sse_cvttss2si:
1590      case Intrinsic::x86_sse_cvttss2si64:
1591      case Intrinsic::x86_sse2_cvttsd2si:
1592      case Intrinsic::x86_sse2_cvttsd2si64:
1593        if (ConstantFP *FPOp =
1594              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1595          return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1596                                          /*roundTowardZero=*/true, Ty);
1597      }
1598    }
1599
1600    if (isa<UndefValue>(Operands[0])) {
1601      if (IntrinsicID == Intrinsic::bswap)
1602        return Operands[0];
1603      return nullptr;
1604    }
1605
1606    return nullptr;
1607  }
1608
1609  if (Operands.size() == 2) {
1610    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1611      if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1612        return nullptr;
1613      double Op1V = getValueAsDouble(Op1);
1614
1615      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1616        if (Op2->getType() != Op1->getType())
1617          return nullptr;
1618
1619        double Op2V = getValueAsDouble(Op2);
1620        if (IntrinsicID == Intrinsic::pow) {
1621          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1622        }
1623        if (IntrinsicID == Intrinsic::copysign) {
1624          APFloat V1 = Op1->getValueAPF();
1625          APFloat V2 = Op2->getValueAPF();
1626          V1.copySign(V2);
1627          return ConstantFP::get(Ty->getContext(), V1);
1628        }
1629        if (!TLI)
1630          return nullptr;
1631        if (Name == "pow" && TLI->has(LibFunc::pow))
1632          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1633        if (Name == "fmod" && TLI->has(LibFunc::fmod))
1634          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
1635        if (Name == "atan2" && TLI->has(LibFunc::atan2))
1636          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
1637      } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1638        if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
1639          return ConstantFP::get(Ty->getContext(),
1640                                 APFloat((float)std::pow((float)Op1V,
1641                                                 (int)Op2C->getZExtValue())));
1642        if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
1643          return ConstantFP::get(Ty->getContext(),
1644                                 APFloat((float)std::pow((float)Op1V,
1645                                                 (int)Op2C->getZExtValue())));
1646        if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
1647          return ConstantFP::get(Ty->getContext(),
1648                                 APFloat((double)std::pow((double)Op1V,
1649                                                   (int)Op2C->getZExtValue())));
1650      }
1651      return nullptr;
1652    }
1653
1654    if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1655      if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1656        switch (IntrinsicID) {
1657        default: break;
1658        case Intrinsic::sadd_with_overflow:
1659        case Intrinsic::uadd_with_overflow:
1660        case Intrinsic::ssub_with_overflow:
1661        case Intrinsic::usub_with_overflow:
1662        case Intrinsic::smul_with_overflow:
1663        case Intrinsic::umul_with_overflow: {
1664          APInt Res;
1665          bool Overflow;
1666          switch (IntrinsicID) {
1667          default: llvm_unreachable("Invalid case");
1668          case Intrinsic::sadd_with_overflow:
1669            Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
1670            break;
1671          case Intrinsic::uadd_with_overflow:
1672            Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
1673            break;
1674          case Intrinsic::ssub_with_overflow:
1675            Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
1676            break;
1677          case Intrinsic::usub_with_overflow:
1678            Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
1679            break;
1680          case Intrinsic::smul_with_overflow:
1681            Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
1682            break;
1683          case Intrinsic::umul_with_overflow:
1684            Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
1685            break;
1686          }
1687          Constant *Ops[] = {
1688            ConstantInt::get(Ty->getContext(), Res),
1689            ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
1690          };
1691          return ConstantStruct::get(cast<StructType>(Ty), Ops);
1692        }
1693        case Intrinsic::cttz:
1694          if (Op2->isOne() && Op1->isZero()) // cttz(0, 1) is undef.
1695            return UndefValue::get(Ty);
1696          return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
1697        case Intrinsic::ctlz:
1698          if (Op2->isOne() && Op1->isZero()) // ctlz(0, 1) is undef.
1699            return UndefValue::get(Ty);
1700          return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
1701        }
1702      }
1703
1704      return nullptr;
1705    }
1706    return nullptr;
1707  }
1708
1709  if (Operands.size() != 3)
1710    return nullptr;
1711
1712  if (const ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1713    if (const ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1714      if (const ConstantFP *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
1715        switch (IntrinsicID) {
1716        default: break;
1717        case Intrinsic::fma:
1718        case Intrinsic::fmuladd: {
1719          APFloat V = Op1->getValueAPF();
1720          APFloat::opStatus s = V.fusedMultiplyAdd(Op2->getValueAPF(),
1721                                                   Op3->getValueAPF(),
1722                                                   APFloat::rmNearestTiesToEven);
1723          if (s != APFloat::opInvalidOp)
1724            return ConstantFP::get(Ty->getContext(), V);
1725
1726          return nullptr;
1727        }
1728        }
1729      }
1730    }
1731  }
1732
1733  return nullptr;
1734}
1735
1736static Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID,
1737                                        VectorType *VTy,
1738                                        ArrayRef<Constant *> Operands,
1739                                        const TargetLibraryInfo *TLI) {
1740  SmallVector<Constant *, 4> Result(VTy->getNumElements());
1741  SmallVector<Constant *, 4> Lane(Operands.size());
1742  Type *Ty = VTy->getElementType();
1743
1744  for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
1745    // Gather a column of constants.
1746    for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
1747      Constant *Agg = Operands[J]->getAggregateElement(I);
1748      if (!Agg)
1749        return nullptr;
1750
1751      Lane[J] = Agg;
1752    }
1753
1754    // Use the regular scalar folding to simplify this column.
1755    Constant *Folded = ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI);
1756    if (!Folded)
1757      return nullptr;
1758    Result[I] = Folded;
1759  }
1760
1761  return ConstantVector::get(Result);
1762}
1763
1764/// ConstantFoldCall - Attempt to constant fold a call to the specified function
1765/// with the specified arguments, returning null if unsuccessful.
1766Constant *
1767llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
1768                       const TargetLibraryInfo *TLI) {
1769  if (!F->hasName())
1770    return nullptr;
1771  StringRef Name = F->getName();
1772
1773  Type *Ty = F->getReturnType();
1774
1775  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1776    return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands, TLI);
1777
1778  return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI);
1779}
1780