ConstantFolding.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines routines for folding instructions into constants.
11//
12// Also, to supplement the basic IR ConstantExpr simplifications,
13// this file defines some additional folding routines that can make use of
14// DataLayout information. These functions cannot go in IR due to library
15// dependency issues.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/StringMap.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/IR/Constants.h"
25#include "llvm/IR/DataLayout.h"
26#include "llvm/IR/DerivedTypes.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/GetElementPtrTypeIterator.h"
29#include "llvm/IR/GlobalVariable.h"
30#include "llvm/IR/Instructions.h"
31#include "llvm/IR/Intrinsics.h"
32#include "llvm/IR/Operator.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/FEnv.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Target/TargetLibraryInfo.h"
37#include <cerrno>
38#include <cmath>
39using namespace llvm;
40
41//===----------------------------------------------------------------------===//
42// Constant Folding internal helper functions
43//===----------------------------------------------------------------------===//
44
45/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
46/// DataLayout.  This always returns a non-null constant, but it may be a
47/// ConstantExpr if unfoldable.
48static Constant *FoldBitCast(Constant *C, Type *DestTy,
49                             const DataLayout &TD) {
50  // Catch the obvious splat cases.
51  if (C->isNullValue() && !DestTy->isX86_MMXTy())
52    return Constant::getNullValue(DestTy);
53  if (C->isAllOnesValue() && !DestTy->isX86_MMXTy())
54    return Constant::getAllOnesValue(DestTy);
55
56  // Handle a vector->integer cast.
57  if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) {
58    VectorType *VTy = dyn_cast<VectorType>(C->getType());
59    if (!VTy)
60      return ConstantExpr::getBitCast(C, DestTy);
61
62    unsigned NumSrcElts = VTy->getNumElements();
63    Type *SrcEltTy = VTy->getElementType();
64
65    // If the vector is a vector of floating point, convert it to vector of int
66    // to simplify things.
67    if (SrcEltTy->isFloatingPointTy()) {
68      unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
69      Type *SrcIVTy =
70        VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
71      // Ask IR to do the conversion now that #elts line up.
72      C = ConstantExpr::getBitCast(C, SrcIVTy);
73    }
74
75    ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
76    if (!CDV)
77      return ConstantExpr::getBitCast(C, DestTy);
78
79    // Now that we know that the input value is a vector of integers, just shift
80    // and insert them into our result.
81    unsigned BitShift = TD.getTypeAllocSizeInBits(SrcEltTy);
82    APInt Result(IT->getBitWidth(), 0);
83    for (unsigned i = 0; i != NumSrcElts; ++i) {
84      Result <<= BitShift;
85      if (TD.isLittleEndian())
86        Result |= CDV->getElementAsInteger(NumSrcElts-i-1);
87      else
88        Result |= CDV->getElementAsInteger(i);
89    }
90
91    return ConstantInt::get(IT, Result);
92  }
93
94  // The code below only handles casts to vectors currently.
95  VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
96  if (!DestVTy)
97    return ConstantExpr::getBitCast(C, DestTy);
98
99  // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
100  // vector so the code below can handle it uniformly.
101  if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
102    Constant *Ops = C; // don't take the address of C!
103    return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
104  }
105
106  // If this is a bitcast from constant vector -> vector, fold it.
107  if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
108    return ConstantExpr::getBitCast(C, DestTy);
109
110  // If the element types match, IR can fold it.
111  unsigned NumDstElt = DestVTy->getNumElements();
112  unsigned NumSrcElt = C->getType()->getVectorNumElements();
113  if (NumDstElt == NumSrcElt)
114    return ConstantExpr::getBitCast(C, DestTy);
115
116  Type *SrcEltTy = C->getType()->getVectorElementType();
117  Type *DstEltTy = DestVTy->getElementType();
118
119  // Otherwise, we're changing the number of elements in a vector, which
120  // requires endianness information to do the right thing.  For example,
121  //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
122  // folds to (little endian):
123  //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
124  // and to (big endian):
125  //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
126
127  // First thing is first.  We only want to think about integer here, so if
128  // we have something in FP form, recast it as integer.
129  if (DstEltTy->isFloatingPointTy()) {
130    // Fold to an vector of integers with same size as our FP type.
131    unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
132    Type *DestIVTy =
133      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
134    // Recursively handle this integer conversion, if possible.
135    C = FoldBitCast(C, DestIVTy, TD);
136
137    // Finally, IR can handle this now that #elts line up.
138    return ConstantExpr::getBitCast(C, DestTy);
139  }
140
141  // Okay, we know the destination is integer, if the input is FP, convert
142  // it to integer first.
143  if (SrcEltTy->isFloatingPointTy()) {
144    unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
145    Type *SrcIVTy =
146      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
147    // Ask IR to do the conversion now that #elts line up.
148    C = ConstantExpr::getBitCast(C, SrcIVTy);
149    // If IR wasn't able to fold it, bail out.
150    if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
151        !isa<ConstantDataVector>(C))
152      return C;
153  }
154
155  // Now we know that the input and output vectors are both integer vectors
156  // of the same size, and that their #elements is not the same.  Do the
157  // conversion here, which depends on whether the input or output has
158  // more elements.
159  bool isLittleEndian = TD.isLittleEndian();
160
161  SmallVector<Constant*, 32> Result;
162  if (NumDstElt < NumSrcElt) {
163    // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
164    Constant *Zero = Constant::getNullValue(DstEltTy);
165    unsigned Ratio = NumSrcElt/NumDstElt;
166    unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
167    unsigned SrcElt = 0;
168    for (unsigned i = 0; i != NumDstElt; ++i) {
169      // Build each element of the result.
170      Constant *Elt = Zero;
171      unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
172      for (unsigned j = 0; j != Ratio; ++j) {
173        Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
174        if (!Src)  // Reject constantexpr elements.
175          return ConstantExpr::getBitCast(C, DestTy);
176
177        // Zero extend the element to the right size.
178        Src = ConstantExpr::getZExt(Src, Elt->getType());
179
180        // Shift it to the right place, depending on endianness.
181        Src = ConstantExpr::getShl(Src,
182                                   ConstantInt::get(Src->getType(), ShiftAmt));
183        ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
184
185        // Mix it in.
186        Elt = ConstantExpr::getOr(Elt, Src);
187      }
188      Result.push_back(Elt);
189    }
190    return ConstantVector::get(Result);
191  }
192
193  // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
194  unsigned Ratio = NumDstElt/NumSrcElt;
195  unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
196
197  // Loop over each source value, expanding into multiple results.
198  for (unsigned i = 0; i != NumSrcElt; ++i) {
199    Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
200    if (!Src)  // Reject constantexpr elements.
201      return ConstantExpr::getBitCast(C, DestTy);
202
203    unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
204    for (unsigned j = 0; j != Ratio; ++j) {
205      // Shift the piece of the value into the right place, depending on
206      // endianness.
207      Constant *Elt = ConstantExpr::getLShr(Src,
208                                  ConstantInt::get(Src->getType(), ShiftAmt));
209      ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
210
211      // Truncate and remember this piece.
212      Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
213    }
214  }
215
216  return ConstantVector::get(Result);
217}
218
219
220/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
221/// from a global, return the global and the constant.  Because of
222/// constantexprs, this function is recursive.
223static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
224                                       APInt &Offset, const DataLayout &TD) {
225  // Trivial case, constant is the global.
226  if ((GV = dyn_cast<GlobalValue>(C))) {
227    unsigned BitWidth = TD.getPointerTypeSizeInBits(GV->getType());
228    Offset = APInt(BitWidth, 0);
229    return true;
230  }
231
232  // Otherwise, if this isn't a constant expr, bail out.
233  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
234  if (!CE) return false;
235
236  // Look through ptr->int and ptr->ptr casts.
237  if (CE->getOpcode() == Instruction::PtrToInt ||
238      CE->getOpcode() == Instruction::BitCast)
239    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
240
241  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
242  GEPOperator *GEP = dyn_cast<GEPOperator>(CE);
243  if (!GEP)
244    return false;
245
246  unsigned BitWidth = TD.getPointerTypeSizeInBits(GEP->getType());
247  APInt TmpOffset(BitWidth, 0);
248
249  // If the base isn't a global+constant, we aren't either.
250  if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, TD))
251    return false;
252
253  // Otherwise, add any offset that our operands provide.
254  if (!GEP->accumulateConstantOffset(TD, TmpOffset))
255    return false;
256
257  Offset = TmpOffset;
258  return true;
259}
260
261/// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
262/// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
263/// pointer to copy results into and BytesLeft is the number of bytes left in
264/// the CurPtr buffer.  TD is the target data.
265static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
266                               unsigned char *CurPtr, unsigned BytesLeft,
267                               const DataLayout &TD) {
268  assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
269         "Out of range access");
270
271  // If this element is zero or undefined, we can just return since *CurPtr is
272  // zero initialized.
273  if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
274    return true;
275
276  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
277    if (CI->getBitWidth() > 64 ||
278        (CI->getBitWidth() & 7) != 0)
279      return false;
280
281    uint64_t Val = CI->getZExtValue();
282    unsigned IntBytes = unsigned(CI->getBitWidth()/8);
283
284    for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
285      int n = ByteOffset;
286      if (!TD.isLittleEndian())
287        n = IntBytes - n - 1;
288      CurPtr[i] = (unsigned char)(Val >> (n * 8));
289      ++ByteOffset;
290    }
291    return true;
292  }
293
294  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
295    if (CFP->getType()->isDoubleTy()) {
296      C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
297      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
298    }
299    if (CFP->getType()->isFloatTy()){
300      C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
301      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
302    }
303    if (CFP->getType()->isHalfTy()){
304      C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), TD);
305      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
306    }
307    return false;
308  }
309
310  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
311    const StructLayout *SL = TD.getStructLayout(CS->getType());
312    unsigned Index = SL->getElementContainingOffset(ByteOffset);
313    uint64_t CurEltOffset = SL->getElementOffset(Index);
314    ByteOffset -= CurEltOffset;
315
316    while (1) {
317      // If the element access is to the element itself and not to tail padding,
318      // read the bytes from the element.
319      uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
320
321      if (ByteOffset < EltSize &&
322          !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
323                              BytesLeft, TD))
324        return false;
325
326      ++Index;
327
328      // Check to see if we read from the last struct element, if so we're done.
329      if (Index == CS->getType()->getNumElements())
330        return true;
331
332      // If we read all of the bytes we needed from this element we're done.
333      uint64_t NextEltOffset = SL->getElementOffset(Index);
334
335      if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
336        return true;
337
338      // Move to the next element of the struct.
339      CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
340      BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
341      ByteOffset = 0;
342      CurEltOffset = NextEltOffset;
343    }
344    // not reached.
345  }
346
347  if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
348      isa<ConstantDataSequential>(C)) {
349    Type *EltTy = C->getType()->getSequentialElementType();
350    uint64_t EltSize = TD.getTypeAllocSize(EltTy);
351    uint64_t Index = ByteOffset / EltSize;
352    uint64_t Offset = ByteOffset - Index * EltSize;
353    uint64_t NumElts;
354    if (ArrayType *AT = dyn_cast<ArrayType>(C->getType()))
355      NumElts = AT->getNumElements();
356    else
357      NumElts = C->getType()->getVectorNumElements();
358
359    for (; Index != NumElts; ++Index) {
360      if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
361                              BytesLeft, TD))
362        return false;
363
364      uint64_t BytesWritten = EltSize - Offset;
365      assert(BytesWritten <= EltSize && "Not indexing into this element?");
366      if (BytesWritten >= BytesLeft)
367        return true;
368
369      Offset = 0;
370      BytesLeft -= BytesWritten;
371      CurPtr += BytesWritten;
372    }
373    return true;
374  }
375
376  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
377    if (CE->getOpcode() == Instruction::IntToPtr &&
378        CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getType())) {
379      return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
380                                BytesLeft, TD);
381    }
382  }
383
384  // Otherwise, unknown initializer type.
385  return false;
386}
387
388static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
389                                                 const DataLayout &TD) {
390  PointerType *PTy = cast<PointerType>(C->getType());
391  Type *LoadTy = PTy->getElementType();
392  IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
393
394  // If this isn't an integer load we can't fold it directly.
395  if (!IntType) {
396    unsigned AS = PTy->getAddressSpace();
397
398    // If this is a float/double load, we can try folding it as an int32/64 load
399    // and then bitcast the result.  This can be useful for union cases.  Note
400    // that address spaces don't matter here since we're not going to result in
401    // an actual new load.
402    Type *MapTy;
403    if (LoadTy->isHalfTy())
404      MapTy = Type::getInt16PtrTy(C->getContext(), AS);
405    else if (LoadTy->isFloatTy())
406      MapTy = Type::getInt32PtrTy(C->getContext(), AS);
407    else if (LoadTy->isDoubleTy())
408      MapTy = Type::getInt64PtrTy(C->getContext(), AS);
409    else if (LoadTy->isVectorTy()) {
410      MapTy = PointerType::getIntNPtrTy(C->getContext(),
411                                        TD.getTypeAllocSizeInBits(LoadTy),
412                                        AS);
413    } else
414      return nullptr;
415
416    C = FoldBitCast(C, MapTy, TD);
417    if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
418      return FoldBitCast(Res, LoadTy, TD);
419    return nullptr;
420  }
421
422  unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
423  if (BytesLoaded > 32 || BytesLoaded == 0)
424    return nullptr;
425
426  GlobalValue *GVal;
427  APInt Offset;
428  if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
429    return nullptr;
430
431  GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
432  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
433      !GV->getInitializer()->getType()->isSized())
434    return nullptr;
435
436  // If we're loading off the beginning of the global, some bytes may be valid,
437  // but we don't try to handle this.
438  if (Offset.isNegative())
439    return nullptr;
440
441  // If we're not accessing anything in this constant, the result is undefined.
442  if (Offset.getZExtValue() >=
443      TD.getTypeAllocSize(GV->getInitializer()->getType()))
444    return UndefValue::get(IntType);
445
446  unsigned char RawBytes[32] = {0};
447  if (!ReadDataFromGlobal(GV->getInitializer(), Offset.getZExtValue(), RawBytes,
448                          BytesLoaded, TD))
449    return nullptr;
450
451  APInt ResultVal = APInt(IntType->getBitWidth(), 0);
452  if (TD.isLittleEndian()) {
453    ResultVal = RawBytes[BytesLoaded - 1];
454    for (unsigned i = 1; i != BytesLoaded; ++i) {
455      ResultVal <<= 8;
456      ResultVal |= RawBytes[BytesLoaded - 1 - i];
457    }
458  } else {
459    ResultVal = RawBytes[0];
460    for (unsigned i = 1; i != BytesLoaded; ++i) {
461      ResultVal <<= 8;
462      ResultVal |= RawBytes[i];
463    }
464  }
465
466  return ConstantInt::get(IntType->getContext(), ResultVal);
467}
468
469static Constant *ConstantFoldLoadThroughBitcast(ConstantExpr *CE,
470                                                const DataLayout *DL) {
471  if (!DL)
472    return nullptr;
473  auto *DestPtrTy = dyn_cast<PointerType>(CE->getType());
474  if (!DestPtrTy)
475    return nullptr;
476  Type *DestTy = DestPtrTy->getElementType();
477
478  Constant *C = ConstantFoldLoadFromConstPtr(CE->getOperand(0), DL);
479  if (!C)
480    return nullptr;
481
482  do {
483    Type *SrcTy = C->getType();
484
485    // If the type sizes are the same and a cast is legal, just directly
486    // cast the constant.
487    if (DL->getTypeSizeInBits(DestTy) == DL->getTypeSizeInBits(SrcTy)) {
488      Instruction::CastOps Cast = Instruction::BitCast;
489      // If we are going from a pointer to int or vice versa, we spell the cast
490      // differently.
491      if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
492        Cast = Instruction::IntToPtr;
493      else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
494        Cast = Instruction::PtrToInt;
495
496      if (CastInst::castIsValid(Cast, C, DestTy))
497        return ConstantExpr::getCast(Cast, C, DestTy);
498    }
499
500    // If this isn't an aggregate type, there is nothing we can do to drill down
501    // and find a bitcastable constant.
502    if (!SrcTy->isAggregateType())
503      return nullptr;
504
505    // We're simulating a load through a pointer that was bitcast to point to
506    // a different type, so we can try to walk down through the initial
507    // elements of an aggregate to see if some part of th e aggregate is
508    // castable to implement the "load" semantic model.
509    C = C->getAggregateElement(0u);
510  } while (C);
511
512  return nullptr;
513}
514
515/// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
516/// produce if it is constant and determinable.  If this is not determinable,
517/// return null.
518Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
519                                             const DataLayout *TD) {
520  // First, try the easy cases:
521  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
522    if (GV->isConstant() && GV->hasDefinitiveInitializer())
523      return GV->getInitializer();
524
525  // If the loaded value isn't a constant expr, we can't handle it.
526  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
527  if (!CE)
528    return nullptr;
529
530  if (CE->getOpcode() == Instruction::GetElementPtr) {
531    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
532      if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
533        if (Constant *V =
534             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
535          return V;
536      }
537    }
538  }
539
540  if (CE->getOpcode() == Instruction::BitCast)
541    if (Constant *LoadedC = ConstantFoldLoadThroughBitcast(CE, TD))
542      return LoadedC;
543
544  // Instead of loading constant c string, use corresponding integer value
545  // directly if string length is small enough.
546  StringRef Str;
547  if (TD && getConstantStringInfo(CE, Str) && !Str.empty()) {
548    unsigned StrLen = Str.size();
549    Type *Ty = cast<PointerType>(CE->getType())->getElementType();
550    unsigned NumBits = Ty->getPrimitiveSizeInBits();
551    // Replace load with immediate integer if the result is an integer or fp
552    // value.
553    if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
554        (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
555      APInt StrVal(NumBits, 0);
556      APInt SingleChar(NumBits, 0);
557      if (TD->isLittleEndian()) {
558        for (signed i = StrLen-1; i >= 0; i--) {
559          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
560          StrVal = (StrVal << 8) | SingleChar;
561        }
562      } else {
563        for (unsigned i = 0; i < StrLen; i++) {
564          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
565          StrVal = (StrVal << 8) | SingleChar;
566        }
567        // Append NULL at the end.
568        SingleChar = 0;
569        StrVal = (StrVal << 8) | SingleChar;
570      }
571
572      Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
573      if (Ty->isFloatingPointTy())
574        Res = ConstantExpr::getBitCast(Res, Ty);
575      return Res;
576    }
577  }
578
579  // If this load comes from anywhere in a constant global, and if the global
580  // is all undef or zero, we know what it loads.
581  if (GlobalVariable *GV =
582        dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
583    if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
584      Type *ResTy = cast<PointerType>(C->getType())->getElementType();
585      if (GV->getInitializer()->isNullValue())
586        return Constant::getNullValue(ResTy);
587      if (isa<UndefValue>(GV->getInitializer()))
588        return UndefValue::get(ResTy);
589    }
590  }
591
592  // Try hard to fold loads from bitcasted strange and non-type-safe things.
593  if (TD)
594    return FoldReinterpretLoadFromConstPtr(CE, *TD);
595  return nullptr;
596}
597
598static Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout *TD){
599  if (LI->isVolatile()) return nullptr;
600
601  if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
602    return ConstantFoldLoadFromConstPtr(C, TD);
603
604  return nullptr;
605}
606
607/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
608/// Attempt to symbolically evaluate the result of a binary operator merging
609/// these together.  If target data info is available, it is provided as DL,
610/// otherwise DL is null.
611static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
612                                           Constant *Op1, const DataLayout *DL){
613  // SROA
614
615  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
616  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
617  // bits.
618
619
620  if (Opc == Instruction::And && DL) {
621    unsigned BitWidth = DL->getTypeSizeInBits(Op0->getType()->getScalarType());
622    APInt KnownZero0(BitWidth, 0), KnownOne0(BitWidth, 0);
623    APInt KnownZero1(BitWidth, 0), KnownOne1(BitWidth, 0);
624    computeKnownBits(Op0, KnownZero0, KnownOne0, DL);
625    computeKnownBits(Op1, KnownZero1, KnownOne1, DL);
626    if ((KnownOne1 | KnownZero0).isAllOnesValue()) {
627      // All the bits of Op0 that the 'and' could be masking are already zero.
628      return Op0;
629    }
630    if ((KnownOne0 | KnownZero1).isAllOnesValue()) {
631      // All the bits of Op1 that the 'and' could be masking are already zero.
632      return Op1;
633    }
634
635    APInt KnownZero = KnownZero0 | KnownZero1;
636    APInt KnownOne = KnownOne0 & KnownOne1;
637    if ((KnownZero | KnownOne).isAllOnesValue()) {
638      return ConstantInt::get(Op0->getType(), KnownOne);
639    }
640  }
641
642  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
643  // constant.  This happens frequently when iterating over a global array.
644  if (Opc == Instruction::Sub && DL) {
645    GlobalValue *GV1, *GV2;
646    APInt Offs1, Offs2;
647
648    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *DL))
649      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *DL) &&
650          GV1 == GV2) {
651        unsigned OpSize = DL->getTypeSizeInBits(Op0->getType());
652
653        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
654        // PtrToInt may change the bitwidth so we have convert to the right size
655        // first.
656        return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
657                                                Offs2.zextOrTrunc(OpSize));
658      }
659  }
660
661  return nullptr;
662}
663
664/// CastGEPIndices - If array indices are not pointer-sized integers,
665/// explicitly cast them so that they aren't implicitly casted by the
666/// getelementptr.
667static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
668                                Type *ResultTy, const DataLayout *TD,
669                                const TargetLibraryInfo *TLI) {
670  if (!TD)
671    return nullptr;
672
673  Type *IntPtrTy = TD->getIntPtrType(ResultTy);
674
675  bool Any = false;
676  SmallVector<Constant*, 32> NewIdxs;
677  for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
678    if ((i == 1 ||
679         !isa<StructType>(GetElementPtrInst::getIndexedType(
680                            Ops[0]->getType(),
681                            Ops.slice(1, i - 1)))) &&
682        Ops[i]->getType() != IntPtrTy) {
683      Any = true;
684      NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
685                                                                      true,
686                                                                      IntPtrTy,
687                                                                      true),
688                                              Ops[i], IntPtrTy));
689    } else
690      NewIdxs.push_back(Ops[i]);
691  }
692
693  if (!Any)
694    return nullptr;
695
696  Constant *C = ConstantExpr::getGetElementPtr(Ops[0], NewIdxs);
697  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
698    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
699      C = Folded;
700  }
701
702  return C;
703}
704
705/// Strip the pointer casts, but preserve the address space information.
706static Constant* StripPtrCastKeepAS(Constant* Ptr) {
707  assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
708  PointerType *OldPtrTy = cast<PointerType>(Ptr->getType());
709  Ptr = cast<Constant>(Ptr->stripPointerCasts());
710  PointerType *NewPtrTy = cast<PointerType>(Ptr->getType());
711
712  // Preserve the address space number of the pointer.
713  if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
714    NewPtrTy = NewPtrTy->getElementType()->getPointerTo(
715      OldPtrTy->getAddressSpace());
716    Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
717  }
718  return Ptr;
719}
720
721/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
722/// constant expression, do so.
723static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
724                                         Type *ResultTy, const DataLayout *TD,
725                                         const TargetLibraryInfo *TLI) {
726  Constant *Ptr = Ops[0];
727  if (!TD || !Ptr->getType()->getPointerElementType()->isSized() ||
728      !Ptr->getType()->isPointerTy())
729    return nullptr;
730
731  Type *IntPtrTy = TD->getIntPtrType(Ptr->getType());
732  Type *ResultElementTy = ResultTy->getPointerElementType();
733
734  // If this is a constant expr gep that is effectively computing an
735  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
736  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
737    if (!isa<ConstantInt>(Ops[i])) {
738
739      // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
740      // "inttoptr (sub (ptrtoint Ptr), V)"
741      if (Ops.size() == 2 && ResultElementTy->isIntegerTy(8)) {
742        ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
743        assert((!CE || CE->getType() == IntPtrTy) &&
744               "CastGEPIndices didn't canonicalize index types!");
745        if (CE && CE->getOpcode() == Instruction::Sub &&
746            CE->getOperand(0)->isNullValue()) {
747          Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
748          Res = ConstantExpr::getSub(Res, CE->getOperand(1));
749          Res = ConstantExpr::getIntToPtr(Res, ResultTy);
750          if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
751            Res = ConstantFoldConstantExpression(ResCE, TD, TLI);
752          return Res;
753        }
754      }
755      return nullptr;
756    }
757
758  unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
759  APInt Offset =
760    APInt(BitWidth, TD->getIndexedOffset(Ptr->getType(),
761                                         makeArrayRef((Value *const*)
762                                                        Ops.data() + 1,
763                                                      Ops.size() - 1)));
764  Ptr = StripPtrCastKeepAS(Ptr);
765
766  // If this is a GEP of a GEP, fold it all into a single GEP.
767  while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
768    SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
769
770    // Do not try the incorporate the sub-GEP if some index is not a number.
771    bool AllConstantInt = true;
772    for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
773      if (!isa<ConstantInt>(NestedOps[i])) {
774        AllConstantInt = false;
775        break;
776      }
777    if (!AllConstantInt)
778      break;
779
780    Ptr = cast<Constant>(GEP->getOperand(0));
781    Offset += APInt(BitWidth,
782                    TD->getIndexedOffset(Ptr->getType(), NestedOps));
783    Ptr = StripPtrCastKeepAS(Ptr);
784  }
785
786  // If the base value for this address is a literal integer value, fold the
787  // getelementptr to the resulting integer value casted to the pointer type.
788  APInt BasePtr(BitWidth, 0);
789  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
790    if (CE->getOpcode() == Instruction::IntToPtr) {
791      if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
792        BasePtr = Base->getValue().zextOrTrunc(BitWidth);
793    }
794  }
795
796  if (Ptr->isNullValue() || BasePtr != 0) {
797    Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
798    return ConstantExpr::getIntToPtr(C, ResultTy);
799  }
800
801  // Otherwise form a regular getelementptr. Recompute the indices so that
802  // we eliminate over-indexing of the notional static type array bounds.
803  // This makes it easy to determine if the getelementptr is "inbounds".
804  // Also, this helps GlobalOpt do SROA on GlobalVariables.
805  Type *Ty = Ptr->getType();
806  assert(Ty->isPointerTy() && "Forming regular GEP of non-pointer type");
807  SmallVector<Constant *, 32> NewIdxs;
808
809  do {
810    if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
811      if (ATy->isPointerTy()) {
812        // The only pointer indexing we'll do is on the first index of the GEP.
813        if (!NewIdxs.empty())
814          break;
815
816        // Only handle pointers to sized types, not pointers to functions.
817        if (!ATy->getElementType()->isSized())
818          return nullptr;
819      }
820
821      // Determine which element of the array the offset points into.
822      APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
823      if (ElemSize == 0)
824        // The element size is 0. This may be [0 x Ty]*, so just use a zero
825        // index for this level and proceed to the next level to see if it can
826        // accommodate the offset.
827        NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
828      else {
829        // The element size is non-zero divide the offset by the element
830        // size (rounding down), to compute the index at this level.
831        APInt NewIdx = Offset.udiv(ElemSize);
832        Offset -= NewIdx * ElemSize;
833        NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
834      }
835      Ty = ATy->getElementType();
836    } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
837      // If we end up with an offset that isn't valid for this struct type, we
838      // can't re-form this GEP in a regular form, so bail out. The pointer
839      // operand likely went through casts that are necessary to make the GEP
840      // sensible.
841      const StructLayout &SL = *TD->getStructLayout(STy);
842      if (Offset.uge(SL.getSizeInBytes()))
843        break;
844
845      // Determine which field of the struct the offset points into. The
846      // getZExtValue is fine as we've already ensured that the offset is
847      // within the range representable by the StructLayout API.
848      unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
849      NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
850                                         ElIdx));
851      Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
852      Ty = STy->getTypeAtIndex(ElIdx);
853    } else {
854      // We've reached some non-indexable type.
855      break;
856    }
857  } while (Ty != ResultElementTy);
858
859  // If we haven't used up the entire offset by descending the static
860  // type, then the offset is pointing into the middle of an indivisible
861  // member, so we can't simplify it.
862  if (Offset != 0)
863    return nullptr;
864
865  // Create a GEP.
866  Constant *C = ConstantExpr::getGetElementPtr(Ptr, NewIdxs);
867  assert(C->getType()->getPointerElementType() == Ty &&
868         "Computed GetElementPtr has unexpected type!");
869
870  // If we ended up indexing a member with a type that doesn't match
871  // the type of what the original indices indexed, add a cast.
872  if (Ty != ResultElementTy)
873    C = FoldBitCast(C, ResultTy, *TD);
874
875  return C;
876}
877
878
879
880//===----------------------------------------------------------------------===//
881// Constant Folding public APIs
882//===----------------------------------------------------------------------===//
883
884/// ConstantFoldInstruction - Try to constant fold the specified instruction.
885/// If successful, the constant result is returned, if not, null is returned.
886/// Note that this fails if not all of the operands are constant.  Otherwise,
887/// this function can only fail when attempting to fold instructions like loads
888/// and stores, which have no constant expression form.
889Constant *llvm::ConstantFoldInstruction(Instruction *I,
890                                        const DataLayout *TD,
891                                        const TargetLibraryInfo *TLI) {
892  // Handle PHI nodes quickly here...
893  if (PHINode *PN = dyn_cast<PHINode>(I)) {
894    Constant *CommonValue = nullptr;
895
896    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
897      Value *Incoming = PN->getIncomingValue(i);
898      // If the incoming value is undef then skip it.  Note that while we could
899      // skip the value if it is equal to the phi node itself we choose not to
900      // because that would break the rule that constant folding only applies if
901      // all operands are constants.
902      if (isa<UndefValue>(Incoming))
903        continue;
904      // If the incoming value is not a constant, then give up.
905      Constant *C = dyn_cast<Constant>(Incoming);
906      if (!C)
907        return nullptr;
908      // Fold the PHI's operands.
909      if (ConstantExpr *NewC = dyn_cast<ConstantExpr>(C))
910        C = ConstantFoldConstantExpression(NewC, TD, TLI);
911      // If the incoming value is a different constant to
912      // the one we saw previously, then give up.
913      if (CommonValue && C != CommonValue)
914        return nullptr;
915      CommonValue = C;
916    }
917
918
919    // If we reach here, all incoming values are the same constant or undef.
920    return CommonValue ? CommonValue : UndefValue::get(PN->getType());
921  }
922
923  // Scan the operand list, checking to see if they are all constants, if so,
924  // hand off to ConstantFoldInstOperands.
925  SmallVector<Constant*, 8> Ops;
926  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
927    Constant *Op = dyn_cast<Constant>(*i);
928    if (!Op)
929      return nullptr;  // All operands not constant!
930
931    // Fold the Instruction's operands.
932    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(Op))
933      Op = ConstantFoldConstantExpression(NewCE, TD, TLI);
934
935    Ops.push_back(Op);
936  }
937
938  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
939    return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
940                                           TD, TLI);
941
942  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
943    return ConstantFoldLoadInst(LI, TD);
944
945  if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I)) {
946    return ConstantExpr::getInsertValue(
947                                cast<Constant>(IVI->getAggregateOperand()),
948                                cast<Constant>(IVI->getInsertedValueOperand()),
949                                IVI->getIndices());
950  }
951
952  if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I)) {
953    return ConstantExpr::getExtractValue(
954                                    cast<Constant>(EVI->getAggregateOperand()),
955                                    EVI->getIndices());
956  }
957
958  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD, TLI);
959}
960
961static Constant *
962ConstantFoldConstantExpressionImpl(const ConstantExpr *CE, const DataLayout *TD,
963                                   const TargetLibraryInfo *TLI,
964                                   SmallPtrSet<ConstantExpr *, 4> &FoldedOps) {
965  SmallVector<Constant *, 8> Ops;
966  for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end(); i != e;
967       ++i) {
968    Constant *NewC = cast<Constant>(*i);
969    // Recursively fold the ConstantExpr's operands. If we have already folded
970    // a ConstantExpr, we don't have to process it again.
971    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC)) {
972      if (FoldedOps.insert(NewCE))
973        NewC = ConstantFoldConstantExpressionImpl(NewCE, TD, TLI, FoldedOps);
974    }
975    Ops.push_back(NewC);
976  }
977
978  if (CE->isCompare())
979    return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
980                                           TD, TLI);
981  return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, TD, TLI);
982}
983
984/// ConstantFoldConstantExpression - Attempt to fold the constant expression
985/// using the specified DataLayout.  If successful, the constant result is
986/// result is returned, if not, null is returned.
987Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
988                                               const DataLayout *TD,
989                                               const TargetLibraryInfo *TLI) {
990  SmallPtrSet<ConstantExpr *, 4> FoldedOps;
991  return ConstantFoldConstantExpressionImpl(CE, TD, TLI, FoldedOps);
992}
993
994/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
995/// specified opcode and operands.  If successful, the constant result is
996/// returned, if not, null is returned.  Note that this function can fail when
997/// attempting to fold instructions like loads and stores, which have no
998/// constant expression form.
999///
1000/// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
1001/// information, due to only being passed an opcode and operands. Constant
1002/// folding using this function strips this information.
1003///
1004Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
1005                                         ArrayRef<Constant *> Ops,
1006                                         const DataLayout *TD,
1007                                         const TargetLibraryInfo *TLI) {
1008  // Handle easy binops first.
1009  if (Instruction::isBinaryOp(Opcode)) {
1010    if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1])) {
1011      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
1012        return C;
1013    }
1014
1015    return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
1016  }
1017
1018  switch (Opcode) {
1019  default: return nullptr;
1020  case Instruction::ICmp:
1021  case Instruction::FCmp: llvm_unreachable("Invalid for compares");
1022  case Instruction::Call:
1023    if (Function *F = dyn_cast<Function>(Ops.back()))
1024      if (canConstantFoldCallTo(F))
1025        return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
1026    return nullptr;
1027  case Instruction::PtrToInt:
1028    // If the input is a inttoptr, eliminate the pair.  This requires knowing
1029    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1030    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
1031      if (TD && CE->getOpcode() == Instruction::IntToPtr) {
1032        Constant *Input = CE->getOperand(0);
1033        unsigned InWidth = Input->getType()->getScalarSizeInBits();
1034        unsigned PtrWidth = TD->getPointerTypeSizeInBits(CE->getType());
1035        if (PtrWidth < InWidth) {
1036          Constant *Mask =
1037            ConstantInt::get(CE->getContext(),
1038                             APInt::getLowBitsSet(InWidth, PtrWidth));
1039          Input = ConstantExpr::getAnd(Input, Mask);
1040        }
1041        // Do a zext or trunc to get to the dest size.
1042        return ConstantExpr::getIntegerCast(Input, DestTy, false);
1043      }
1044    }
1045    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1046  case Instruction::IntToPtr:
1047    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1048    // the int size is >= the ptr size and the address spaces are the same.
1049    // This requires knowing the width of a pointer, so it can't be done in
1050    // ConstantExpr::getCast.
1051    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
1052      if (TD && CE->getOpcode() == Instruction::PtrToInt) {
1053        Constant *SrcPtr = CE->getOperand(0);
1054        unsigned SrcPtrSize = TD->getPointerTypeSizeInBits(SrcPtr->getType());
1055        unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1056
1057        if (MidIntSize >= SrcPtrSize) {
1058          unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1059          if (SrcAS == DestTy->getPointerAddressSpace())
1060            return FoldBitCast(CE->getOperand(0), DestTy, *TD);
1061        }
1062      }
1063    }
1064
1065    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1066  case Instruction::Trunc:
1067  case Instruction::ZExt:
1068  case Instruction::SExt:
1069  case Instruction::FPTrunc:
1070  case Instruction::FPExt:
1071  case Instruction::UIToFP:
1072  case Instruction::SIToFP:
1073  case Instruction::FPToUI:
1074  case Instruction::FPToSI:
1075  case Instruction::AddrSpaceCast:
1076      return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1077  case Instruction::BitCast:
1078    if (TD)
1079      return FoldBitCast(Ops[0], DestTy, *TD);
1080    return ConstantExpr::getBitCast(Ops[0], DestTy);
1081  case Instruction::Select:
1082    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1083  case Instruction::ExtractElement:
1084    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1085  case Instruction::InsertElement:
1086    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1087  case Instruction::ShuffleVector:
1088    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1089  case Instruction::GetElementPtr:
1090    if (Constant *C = CastGEPIndices(Ops, DestTy, TD, TLI))
1091      return C;
1092    if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, TD, TLI))
1093      return C;
1094
1095    return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1));
1096  }
1097}
1098
1099/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
1100/// instruction (icmp/fcmp) with the specified operands.  If it fails, it
1101/// returns a constant expression of the specified operands.
1102///
1103Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
1104                                                Constant *Ops0, Constant *Ops1,
1105                                                const DataLayout *TD,
1106                                                const TargetLibraryInfo *TLI) {
1107  // fold: icmp (inttoptr x), null         -> icmp x, 0
1108  // fold: icmp (ptrtoint x), 0            -> icmp x, null
1109  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1110  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1111  //
1112  // ConstantExpr::getCompare cannot do this, because it doesn't have TD
1113  // around to know if bit truncation is happening.
1114  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1115    if (TD && Ops1->isNullValue()) {
1116      if (CE0->getOpcode() == Instruction::IntToPtr) {
1117        Type *IntPtrTy = TD->getIntPtrType(CE0->getType());
1118        // Convert the integer value to the right size to ensure we get the
1119        // proper extension or truncation.
1120        Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1121                                                   IntPtrTy, false);
1122        Constant *Null = Constant::getNullValue(C->getType());
1123        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
1124      }
1125
1126      // Only do this transformation if the int is intptrty in size, otherwise
1127      // there is a truncation or extension that we aren't modeling.
1128      if (CE0->getOpcode() == Instruction::PtrToInt) {
1129        Type *IntPtrTy = TD->getIntPtrType(CE0->getOperand(0)->getType());
1130        if (CE0->getType() == IntPtrTy) {
1131          Constant *C = CE0->getOperand(0);
1132          Constant *Null = Constant::getNullValue(C->getType());
1133          return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
1134        }
1135      }
1136    }
1137
1138    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1139      if (TD && CE0->getOpcode() == CE1->getOpcode()) {
1140        if (CE0->getOpcode() == Instruction::IntToPtr) {
1141          Type *IntPtrTy = TD->getIntPtrType(CE0->getType());
1142
1143          // Convert the integer value to the right size to ensure we get the
1144          // proper extension or truncation.
1145          Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1146                                                      IntPtrTy, false);
1147          Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1148                                                      IntPtrTy, false);
1149          return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD, TLI);
1150        }
1151
1152        // Only do this transformation if the int is intptrty in size, otherwise
1153        // there is a truncation or extension that we aren't modeling.
1154        if (CE0->getOpcode() == Instruction::PtrToInt) {
1155          Type *IntPtrTy = TD->getIntPtrType(CE0->getOperand(0)->getType());
1156          if (CE0->getType() == IntPtrTy &&
1157              CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1158            return ConstantFoldCompareInstOperands(Predicate,
1159                                                   CE0->getOperand(0),
1160                                                   CE1->getOperand(0),
1161                                                   TD,
1162                                                   TLI);
1163          }
1164        }
1165      }
1166    }
1167
1168    // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1169    // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1170    if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1171        CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1172      Constant *LHS =
1173        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,
1174                                        TD, TLI);
1175      Constant *RHS =
1176        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,
1177                                        TD, TLI);
1178      unsigned OpC =
1179        Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1180      Constant *Ops[] = { LHS, RHS };
1181      return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, TD, TLI);
1182    }
1183  }
1184
1185  return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1186}
1187
1188
1189/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
1190/// getelementptr constantexpr, return the constant value being addressed by the
1191/// constant expression, or null if something is funny and we can't decide.
1192Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1193                                                       ConstantExpr *CE) {
1194  if (!CE->getOperand(1)->isNullValue())
1195    return nullptr;  // Do not allow stepping over the value!
1196
1197  // Loop over all of the operands, tracking down which value we are
1198  // addressing.
1199  for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1200    C = C->getAggregateElement(CE->getOperand(i));
1201    if (!C)
1202      return nullptr;
1203  }
1204  return C;
1205}
1206
1207/// ConstantFoldLoadThroughGEPIndices - Given a constant and getelementptr
1208/// indices (with an *implied* zero pointer index that is not in the list),
1209/// return the constant value being addressed by a virtual load, or null if
1210/// something is funny and we can't decide.
1211Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
1212                                                  ArrayRef<Constant*> Indices) {
1213  // Loop over all of the operands, tracking down which value we are
1214  // addressing.
1215  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1216    C = C->getAggregateElement(Indices[i]);
1217    if (!C)
1218      return nullptr;
1219  }
1220  return C;
1221}
1222
1223
1224//===----------------------------------------------------------------------===//
1225//  Constant Folding for Calls
1226//
1227
1228/// canConstantFoldCallTo - Return true if its even possible to fold a call to
1229/// the specified function.
1230bool llvm::canConstantFoldCallTo(const Function *F) {
1231  switch (F->getIntrinsicID()) {
1232  case Intrinsic::fabs:
1233  case Intrinsic::log:
1234  case Intrinsic::log2:
1235  case Intrinsic::log10:
1236  case Intrinsic::exp:
1237  case Intrinsic::exp2:
1238  case Intrinsic::floor:
1239  case Intrinsic::ceil:
1240  case Intrinsic::sqrt:
1241  case Intrinsic::pow:
1242  case Intrinsic::powi:
1243  case Intrinsic::bswap:
1244  case Intrinsic::ctpop:
1245  case Intrinsic::ctlz:
1246  case Intrinsic::cttz:
1247  case Intrinsic::fma:
1248  case Intrinsic::fmuladd:
1249  case Intrinsic::copysign:
1250  case Intrinsic::round:
1251  case Intrinsic::sadd_with_overflow:
1252  case Intrinsic::uadd_with_overflow:
1253  case Intrinsic::ssub_with_overflow:
1254  case Intrinsic::usub_with_overflow:
1255  case Intrinsic::smul_with_overflow:
1256  case Intrinsic::umul_with_overflow:
1257  case Intrinsic::convert_from_fp16:
1258  case Intrinsic::convert_to_fp16:
1259  case Intrinsic::x86_sse_cvtss2si:
1260  case Intrinsic::x86_sse_cvtss2si64:
1261  case Intrinsic::x86_sse_cvttss2si:
1262  case Intrinsic::x86_sse_cvttss2si64:
1263  case Intrinsic::x86_sse2_cvtsd2si:
1264  case Intrinsic::x86_sse2_cvtsd2si64:
1265  case Intrinsic::x86_sse2_cvttsd2si:
1266  case Intrinsic::x86_sse2_cvttsd2si64:
1267    return true;
1268  default:
1269    return false;
1270  case 0: break;
1271  }
1272
1273  if (!F->hasName())
1274    return false;
1275  StringRef Name = F->getName();
1276
1277  // In these cases, the check of the length is required.  We don't want to
1278  // return true for a name like "cos\0blah" which strcmp would return equal to
1279  // "cos", but has length 8.
1280  switch (Name[0]) {
1281  default: return false;
1282  case 'a':
1283    return Name == "acos" || Name == "asin" || Name == "atan" || Name =="atan2";
1284  case 'c':
1285    return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
1286  case 'e':
1287    return Name == "exp" || Name == "exp2";
1288  case 'f':
1289    return Name == "fabs" || Name == "fmod" || Name == "floor";
1290  case 'l':
1291    return Name == "log" || Name == "log10";
1292  case 'p':
1293    return Name == "pow";
1294  case 's':
1295    return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
1296      Name == "sinf" || Name == "sqrtf";
1297  case 't':
1298    return Name == "tan" || Name == "tanh";
1299  }
1300}
1301
1302static Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1303  if (Ty->isHalfTy()) {
1304    APFloat APF(V);
1305    bool unused;
1306    APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
1307    return ConstantFP::get(Ty->getContext(), APF);
1308  }
1309  if (Ty->isFloatTy())
1310    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1311  if (Ty->isDoubleTy())
1312    return ConstantFP::get(Ty->getContext(), APFloat(V));
1313  llvm_unreachable("Can only constant fold half/float/double");
1314
1315}
1316
1317static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
1318                                Type *Ty) {
1319  sys::llvm_fenv_clearexcept();
1320  V = NativeFP(V);
1321  if (sys::llvm_fenv_testexcept()) {
1322    sys::llvm_fenv_clearexcept();
1323    return nullptr;
1324  }
1325
1326  return GetConstantFoldFPValue(V, Ty);
1327}
1328
1329static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1330                                      double V, double W, Type *Ty) {
1331  sys::llvm_fenv_clearexcept();
1332  V = NativeFP(V, W);
1333  if (sys::llvm_fenv_testexcept()) {
1334    sys::llvm_fenv_clearexcept();
1335    return nullptr;
1336  }
1337
1338  return GetConstantFoldFPValue(V, Ty);
1339}
1340
1341/// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
1342/// conversion of a constant floating point. If roundTowardZero is false, the
1343/// default IEEE rounding is used (toward nearest, ties to even). This matches
1344/// the behavior of the non-truncating SSE instructions in the default rounding
1345/// mode. The desired integer type Ty is used to select how many bits are
1346/// available for the result. Returns null if the conversion cannot be
1347/// performed, otherwise returns the Constant value resulting from the
1348/// conversion.
1349static Constant *ConstantFoldConvertToInt(const APFloat &Val,
1350                                          bool roundTowardZero, Type *Ty) {
1351  // All of these conversion intrinsics form an integer of at most 64bits.
1352  unsigned ResultWidth = Ty->getIntegerBitWidth();
1353  assert(ResultWidth <= 64 &&
1354         "Can only constant fold conversions to 64 and 32 bit ints");
1355
1356  uint64_t UIntVal;
1357  bool isExact = false;
1358  APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1359                                              : APFloat::rmNearestTiesToEven;
1360  APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
1361                                                  /*isSigned=*/true, mode,
1362                                                  &isExact);
1363  if (status != APFloat::opOK && status != APFloat::opInexact)
1364    return nullptr;
1365  return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
1366}
1367
1368static double getValueAsDouble(ConstantFP *Op) {
1369  Type *Ty = Op->getType();
1370
1371  if (Ty->isFloatTy())
1372    return Op->getValueAPF().convertToFloat();
1373
1374  if (Ty->isDoubleTy())
1375    return Op->getValueAPF().convertToDouble();
1376
1377  bool unused;
1378  APFloat APF = Op->getValueAPF();
1379  APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
1380  return APF.convertToDouble();
1381}
1382
1383static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID,
1384                                        Type *Ty, ArrayRef<Constant *> Operands,
1385                                        const TargetLibraryInfo *TLI) {
1386  if (Operands.size() == 1) {
1387    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
1388      if (IntrinsicID == Intrinsic::convert_to_fp16) {
1389        APFloat Val(Op->getValueAPF());
1390
1391        bool lost = false;
1392        Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
1393
1394        return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
1395      }
1396
1397      if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1398        return nullptr;
1399
1400      if (IntrinsicID == Intrinsic::round) {
1401        APFloat V = Op->getValueAPF();
1402        V.roundToIntegral(APFloat::rmNearestTiesToAway);
1403        return ConstantFP::get(Ty->getContext(), V);
1404      }
1405
1406      /// We only fold functions with finite arguments. Folding NaN and inf is
1407      /// likely to be aborted with an exception anyway, and some host libms
1408      /// have known errors raising exceptions.
1409      if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1410        return nullptr;
1411
1412      /// Currently APFloat versions of these functions do not exist, so we use
1413      /// the host native double versions.  Float versions are not called
1414      /// directly but for all these it is true (float)(f((double)arg)) ==
1415      /// f(arg).  Long double not supported yet.
1416      double V = getValueAsDouble(Op);
1417
1418      switch (IntrinsicID) {
1419        default: break;
1420        case Intrinsic::fabs:
1421          return ConstantFoldFP(fabs, V, Ty);
1422#if HAVE_LOG2
1423        case Intrinsic::log2:
1424          return ConstantFoldFP(log2, V, Ty);
1425#endif
1426#if HAVE_LOG
1427        case Intrinsic::log:
1428          return ConstantFoldFP(log, V, Ty);
1429#endif
1430#if HAVE_LOG10
1431        case Intrinsic::log10:
1432          return ConstantFoldFP(log10, V, Ty);
1433#endif
1434#if HAVE_EXP
1435        case Intrinsic::exp:
1436          return ConstantFoldFP(exp, V, Ty);
1437#endif
1438#if HAVE_EXP2
1439        case Intrinsic::exp2:
1440          return ConstantFoldFP(exp2, V, Ty);
1441#endif
1442        case Intrinsic::floor:
1443          return ConstantFoldFP(floor, V, Ty);
1444        case Intrinsic::ceil:
1445          return ConstantFoldFP(ceil, V, Ty);
1446      }
1447
1448      if (!TLI)
1449        return nullptr;
1450
1451      switch (Name[0]) {
1452      case 'a':
1453        if (Name == "acos" && TLI->has(LibFunc::acos))
1454          return ConstantFoldFP(acos, V, Ty);
1455        else if (Name == "asin" && TLI->has(LibFunc::asin))
1456          return ConstantFoldFP(asin, V, Ty);
1457        else if (Name == "atan" && TLI->has(LibFunc::atan))
1458          return ConstantFoldFP(atan, V, Ty);
1459        break;
1460      case 'c':
1461        if (Name == "ceil" && TLI->has(LibFunc::ceil))
1462          return ConstantFoldFP(ceil, V, Ty);
1463        else if (Name == "cos" && TLI->has(LibFunc::cos))
1464          return ConstantFoldFP(cos, V, Ty);
1465        else if (Name == "cosh" && TLI->has(LibFunc::cosh))
1466          return ConstantFoldFP(cosh, V, Ty);
1467        else if (Name == "cosf" && TLI->has(LibFunc::cosf))
1468          return ConstantFoldFP(cos, V, Ty);
1469        break;
1470      case 'e':
1471        if (Name == "exp" && TLI->has(LibFunc::exp))
1472          return ConstantFoldFP(exp, V, Ty);
1473
1474        if (Name == "exp2" && TLI->has(LibFunc::exp2)) {
1475          // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
1476          // C99 library.
1477          return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1478        }
1479        break;
1480      case 'f':
1481        if (Name == "fabs" && TLI->has(LibFunc::fabs))
1482          return ConstantFoldFP(fabs, V, Ty);
1483        else if (Name == "floor" && TLI->has(LibFunc::floor))
1484          return ConstantFoldFP(floor, V, Ty);
1485        break;
1486      case 'l':
1487        if (Name == "log" && V > 0 && TLI->has(LibFunc::log))
1488          return ConstantFoldFP(log, V, Ty);
1489        else if (Name == "log10" && V > 0 && TLI->has(LibFunc::log10))
1490          return ConstantFoldFP(log10, V, Ty);
1491        else if (IntrinsicID == Intrinsic::sqrt &&
1492                 (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())) {
1493          if (V >= -0.0)
1494            return ConstantFoldFP(sqrt, V, Ty);
1495          else // Undefined
1496            return Constant::getNullValue(Ty);
1497        }
1498        break;
1499      case 's':
1500        if (Name == "sin" && TLI->has(LibFunc::sin))
1501          return ConstantFoldFP(sin, V, Ty);
1502        else if (Name == "sinh" && TLI->has(LibFunc::sinh))
1503          return ConstantFoldFP(sinh, V, Ty);
1504        else if (Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt))
1505          return ConstantFoldFP(sqrt, V, Ty);
1506        else if (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf))
1507          return ConstantFoldFP(sqrt, V, Ty);
1508        else if (Name == "sinf" && TLI->has(LibFunc::sinf))
1509          return ConstantFoldFP(sin, V, Ty);
1510        break;
1511      case 't':
1512        if (Name == "tan" && TLI->has(LibFunc::tan))
1513          return ConstantFoldFP(tan, V, Ty);
1514        else if (Name == "tanh" && TLI->has(LibFunc::tanh))
1515          return ConstantFoldFP(tanh, V, Ty);
1516        break;
1517      default:
1518        break;
1519      }
1520      return nullptr;
1521    }
1522
1523    if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
1524      switch (IntrinsicID) {
1525      case Intrinsic::bswap:
1526        return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
1527      case Intrinsic::ctpop:
1528        return ConstantInt::get(Ty, Op->getValue().countPopulation());
1529      case Intrinsic::convert_from_fp16: {
1530        APFloat Val(APFloat::IEEEhalf, Op->getValue());
1531
1532        bool lost = false;
1533        APFloat::opStatus status =
1534          Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
1535
1536        // Conversion is always precise.
1537        (void)status;
1538        assert(status == APFloat::opOK && !lost &&
1539               "Precision lost during fp16 constfolding");
1540
1541        return ConstantFP::get(Ty->getContext(), Val);
1542      }
1543      default:
1544        return nullptr;
1545      }
1546    }
1547
1548    // Support ConstantVector in case we have an Undef in the top.
1549    if (isa<ConstantVector>(Operands[0]) ||
1550        isa<ConstantDataVector>(Operands[0])) {
1551      Constant *Op = cast<Constant>(Operands[0]);
1552      switch (IntrinsicID) {
1553      default: break;
1554      case Intrinsic::x86_sse_cvtss2si:
1555      case Intrinsic::x86_sse_cvtss2si64:
1556      case Intrinsic::x86_sse2_cvtsd2si:
1557      case Intrinsic::x86_sse2_cvtsd2si64:
1558        if (ConstantFP *FPOp =
1559              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1560          return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1561                                          /*roundTowardZero=*/false, Ty);
1562      case Intrinsic::x86_sse_cvttss2si:
1563      case Intrinsic::x86_sse_cvttss2si64:
1564      case Intrinsic::x86_sse2_cvttsd2si:
1565      case Intrinsic::x86_sse2_cvttsd2si64:
1566        if (ConstantFP *FPOp =
1567              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1568          return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1569                                          /*roundTowardZero=*/true, Ty);
1570      }
1571    }
1572
1573    if (isa<UndefValue>(Operands[0])) {
1574      if (IntrinsicID == Intrinsic::bswap)
1575        return Operands[0];
1576      return nullptr;
1577    }
1578
1579    return nullptr;
1580  }
1581
1582  if (Operands.size() == 2) {
1583    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1584      if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1585        return nullptr;
1586      double Op1V = getValueAsDouble(Op1);
1587
1588      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1589        if (Op2->getType() != Op1->getType())
1590          return nullptr;
1591
1592        double Op2V = getValueAsDouble(Op2);
1593        if (IntrinsicID == Intrinsic::pow) {
1594          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1595        }
1596        if (IntrinsicID == Intrinsic::copysign) {
1597          APFloat V1 = Op1->getValueAPF();
1598          APFloat V2 = Op2->getValueAPF();
1599          V1.copySign(V2);
1600          return ConstantFP::get(Ty->getContext(), V1);
1601        }
1602        if (!TLI)
1603          return nullptr;
1604        if (Name == "pow" && TLI->has(LibFunc::pow))
1605          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1606        if (Name == "fmod" && TLI->has(LibFunc::fmod))
1607          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
1608        if (Name == "atan2" && TLI->has(LibFunc::atan2))
1609          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
1610      } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1611        if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
1612          return ConstantFP::get(Ty->getContext(),
1613                                 APFloat((float)std::pow((float)Op1V,
1614                                                 (int)Op2C->getZExtValue())));
1615        if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
1616          return ConstantFP::get(Ty->getContext(),
1617                                 APFloat((float)std::pow((float)Op1V,
1618                                                 (int)Op2C->getZExtValue())));
1619        if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
1620          return ConstantFP::get(Ty->getContext(),
1621                                 APFloat((double)std::pow((double)Op1V,
1622                                                   (int)Op2C->getZExtValue())));
1623      }
1624      return nullptr;
1625    }
1626
1627    if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1628      if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1629        switch (IntrinsicID) {
1630        default: break;
1631        case Intrinsic::sadd_with_overflow:
1632        case Intrinsic::uadd_with_overflow:
1633        case Intrinsic::ssub_with_overflow:
1634        case Intrinsic::usub_with_overflow:
1635        case Intrinsic::smul_with_overflow:
1636        case Intrinsic::umul_with_overflow: {
1637          APInt Res;
1638          bool Overflow;
1639          switch (IntrinsicID) {
1640          default: llvm_unreachable("Invalid case");
1641          case Intrinsic::sadd_with_overflow:
1642            Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
1643            break;
1644          case Intrinsic::uadd_with_overflow:
1645            Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
1646            break;
1647          case Intrinsic::ssub_with_overflow:
1648            Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
1649            break;
1650          case Intrinsic::usub_with_overflow:
1651            Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
1652            break;
1653          case Intrinsic::smul_with_overflow:
1654            Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
1655            break;
1656          case Intrinsic::umul_with_overflow:
1657            Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
1658            break;
1659          }
1660          Constant *Ops[] = {
1661            ConstantInt::get(Ty->getContext(), Res),
1662            ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
1663          };
1664          return ConstantStruct::get(cast<StructType>(Ty), Ops);
1665        }
1666        case Intrinsic::cttz:
1667          if (Op2->isOne() && Op1->isZero()) // cttz(0, 1) is undef.
1668            return UndefValue::get(Ty);
1669          return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
1670        case Intrinsic::ctlz:
1671          if (Op2->isOne() && Op1->isZero()) // ctlz(0, 1) is undef.
1672            return UndefValue::get(Ty);
1673          return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
1674        }
1675      }
1676
1677      return nullptr;
1678    }
1679    return nullptr;
1680  }
1681
1682  if (Operands.size() != 3)
1683    return nullptr;
1684
1685  if (const ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1686    if (const ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1687      if (const ConstantFP *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
1688        switch (IntrinsicID) {
1689        default: break;
1690        case Intrinsic::fma:
1691        case Intrinsic::fmuladd: {
1692          APFloat V = Op1->getValueAPF();
1693          APFloat::opStatus s = V.fusedMultiplyAdd(Op2->getValueAPF(),
1694                                                   Op3->getValueAPF(),
1695                                                   APFloat::rmNearestTiesToEven);
1696          if (s != APFloat::opInvalidOp)
1697            return ConstantFP::get(Ty->getContext(), V);
1698
1699          return nullptr;
1700        }
1701        }
1702      }
1703    }
1704  }
1705
1706  return nullptr;
1707}
1708
1709static Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID,
1710                                        VectorType *VTy,
1711                                        ArrayRef<Constant *> Operands,
1712                                        const TargetLibraryInfo *TLI) {
1713  SmallVector<Constant *, 4> Result(VTy->getNumElements());
1714  SmallVector<Constant *, 4> Lane(Operands.size());
1715  Type *Ty = VTy->getElementType();
1716
1717  for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
1718    // Gather a column of constants.
1719    for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
1720      Constant *Agg = Operands[J]->getAggregateElement(I);
1721      if (!Agg)
1722        return nullptr;
1723
1724      Lane[J] = Agg;
1725    }
1726
1727    // Use the regular scalar folding to simplify this column.
1728    Constant *Folded = ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI);
1729    if (!Folded)
1730      return nullptr;
1731    Result[I] = Folded;
1732  }
1733
1734  return ConstantVector::get(Result);
1735}
1736
1737/// ConstantFoldCall - Attempt to constant fold a call to the specified function
1738/// with the specified arguments, returning null if unsuccessful.
1739Constant *
1740llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
1741                       const TargetLibraryInfo *TLI) {
1742  if (!F->hasName())
1743    return nullptr;
1744  StringRef Name = F->getName();
1745
1746  Type *Ty = F->getReturnType();
1747
1748  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1749    return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands, TLI);
1750
1751  return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI);
1752}
1753