GlobalsModRef.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This simple pass provides alias and mod/ref information for global values
11// that do not have their address taken, and keeps track of whether functions
12// read or write memory (are "pure").  For this simple (but very common) case,
13// we can provide pretty accurate and useful information.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Analysis/Passes.h"
18#include "llvm/ADT/SCCIterator.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/CallGraph.h"
22#include "llvm/Analysis/MemoryBuiltins.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/IR/Constants.h"
25#include "llvm/IR/DerivedTypes.h"
26#include "llvm/IR/InstIterator.h"
27#include "llvm/IR/Instructions.h"
28#include "llvm/IR/IntrinsicInst.h"
29#include "llvm/IR/Module.h"
30#include "llvm/Pass.h"
31#include "llvm/Support/CommandLine.h"
32#include <set>
33using namespace llvm;
34
35#define DEBUG_TYPE "globalsmodref-aa"
36
37STATISTIC(NumNonAddrTakenGlobalVars,
38          "Number of global vars without address taken");
39STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
40STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
41STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
42STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
43
44namespace {
45  /// FunctionRecord - One instance of this structure is stored for every
46  /// function in the program.  Later, the entries for these functions are
47  /// removed if the function is found to call an external function (in which
48  /// case we know nothing about it.
49  struct FunctionRecord {
50    /// GlobalInfo - Maintain mod/ref info for all of the globals without
51    /// addresses taken that are read or written (transitively) by this
52    /// function.
53    std::map<const GlobalValue*, unsigned> GlobalInfo;
54
55    /// MayReadAnyGlobal - May read global variables, but it is not known which.
56    bool MayReadAnyGlobal;
57
58    unsigned getInfoForGlobal(const GlobalValue *GV) const {
59      unsigned Effect = MayReadAnyGlobal ? AliasAnalysis::Ref : 0;
60      std::map<const GlobalValue*, unsigned>::const_iterator I =
61        GlobalInfo.find(GV);
62      if (I != GlobalInfo.end())
63        Effect |= I->second;
64      return Effect;
65    }
66
67    /// FunctionEffect - Capture whether or not this function reads or writes to
68    /// ANY memory.  If not, we can do a lot of aggressive analysis on it.
69    unsigned FunctionEffect;
70
71    FunctionRecord() : MayReadAnyGlobal (false), FunctionEffect(0) {}
72  };
73
74  /// GlobalsModRef - The actual analysis pass.
75  class GlobalsModRef : public ModulePass, public AliasAnalysis {
76    /// NonAddressTakenGlobals - The globals that do not have their addresses
77    /// taken.
78    std::set<const GlobalValue*> NonAddressTakenGlobals;
79
80    /// IndirectGlobals - The memory pointed to by this global is known to be
81    /// 'owned' by the global.
82    std::set<const GlobalValue*> IndirectGlobals;
83
84    /// AllocsForIndirectGlobals - If an instruction allocates memory for an
85    /// indirect global, this map indicates which one.
86    std::map<const Value*, const GlobalValue*> AllocsForIndirectGlobals;
87
88    /// FunctionInfo - For each function, keep track of what globals are
89    /// modified or read.
90    std::map<const Function*, FunctionRecord> FunctionInfo;
91
92  public:
93    static char ID;
94    GlobalsModRef() : ModulePass(ID) {
95      initializeGlobalsModRefPass(*PassRegistry::getPassRegistry());
96    }
97
98    bool runOnModule(Module &M) override {
99      InitializeAliasAnalysis(this);
100
101      // Find non-addr taken globals.
102      AnalyzeGlobals(M);
103
104      // Propagate on CG.
105      AnalyzeCallGraph(getAnalysis<CallGraphWrapperPass>().getCallGraph(), M);
106      return false;
107    }
108
109    void getAnalysisUsage(AnalysisUsage &AU) const override {
110      AliasAnalysis::getAnalysisUsage(AU);
111      AU.addRequired<CallGraphWrapperPass>();
112      AU.setPreservesAll();                         // Does not transform code
113    }
114
115    //------------------------------------------------
116    // Implement the AliasAnalysis API
117    //
118    AliasResult alias(const Location &LocA, const Location &LocB) override;
119    ModRefResult getModRefInfo(ImmutableCallSite CS,
120                               const Location &Loc) override;
121    ModRefResult getModRefInfo(ImmutableCallSite CS1,
122                               ImmutableCallSite CS2) override {
123      return AliasAnalysis::getModRefInfo(CS1, CS2);
124    }
125
126    /// getModRefBehavior - Return the behavior of the specified function if
127    /// called from the specified call site.  The call site may be null in which
128    /// case the most generic behavior of this function should be returned.
129    ModRefBehavior getModRefBehavior(const Function *F) override {
130      ModRefBehavior Min = UnknownModRefBehavior;
131
132      if (FunctionRecord *FR = getFunctionInfo(F)) {
133        if (FR->FunctionEffect == 0)
134          Min = DoesNotAccessMemory;
135        else if ((FR->FunctionEffect & Mod) == 0)
136          Min = OnlyReadsMemory;
137      }
138
139      return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
140    }
141
142    /// getModRefBehavior - Return the behavior of the specified function if
143    /// called from the specified call site.  The call site may be null in which
144    /// case the most generic behavior of this function should be returned.
145    ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override {
146      ModRefBehavior Min = UnknownModRefBehavior;
147
148      if (const Function* F = CS.getCalledFunction())
149        if (FunctionRecord *FR = getFunctionInfo(F)) {
150          if (FR->FunctionEffect == 0)
151            Min = DoesNotAccessMemory;
152          else if ((FR->FunctionEffect & Mod) == 0)
153            Min = OnlyReadsMemory;
154        }
155
156      return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
157    }
158
159    void deleteValue(Value *V) override;
160    void copyValue(Value *From, Value *To) override;
161    void addEscapingUse(Use &U) override;
162
163    /// getAdjustedAnalysisPointer - This method is used when a pass implements
164    /// an analysis interface through multiple inheritance.  If needed, it
165    /// should override this to adjust the this pointer as needed for the
166    /// specified pass info.
167    void *getAdjustedAnalysisPointer(AnalysisID PI) override {
168      if (PI == &AliasAnalysis::ID)
169        return (AliasAnalysis*)this;
170      return this;
171    }
172
173  private:
174    /// getFunctionInfo - Return the function info for the function, or null if
175    /// we don't have anything useful to say about it.
176    FunctionRecord *getFunctionInfo(const Function *F) {
177      std::map<const Function*, FunctionRecord>::iterator I =
178        FunctionInfo.find(F);
179      if (I != FunctionInfo.end())
180        return &I->second;
181      return nullptr;
182    }
183
184    void AnalyzeGlobals(Module &M);
185    void AnalyzeCallGraph(CallGraph &CG, Module &M);
186    bool AnalyzeUsesOfPointer(Value *V, std::vector<Function*> &Readers,
187                              std::vector<Function*> &Writers,
188                              GlobalValue *OkayStoreDest = nullptr);
189    bool AnalyzeIndirectGlobalMemory(GlobalValue *GV);
190  };
191}
192
193char GlobalsModRef::ID = 0;
194INITIALIZE_AG_PASS_BEGIN(GlobalsModRef, AliasAnalysis,
195                "globalsmodref-aa", "Simple mod/ref analysis for globals",
196                false, true, false)
197INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
198INITIALIZE_AG_PASS_END(GlobalsModRef, AliasAnalysis,
199                "globalsmodref-aa", "Simple mod/ref analysis for globals",
200                false, true, false)
201
202Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
203
204/// AnalyzeGlobals - Scan through the users of all of the internal
205/// GlobalValue's in the program.  If none of them have their "address taken"
206/// (really, their address passed to something nontrivial), record this fact,
207/// and record the functions that they are used directly in.
208void GlobalsModRef::AnalyzeGlobals(Module &M) {
209  std::vector<Function*> Readers, Writers;
210  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
211    if (I->hasLocalLinkage()) {
212      if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
213        // Remember that we are tracking this global.
214        NonAddressTakenGlobals.insert(I);
215        ++NumNonAddrTakenFunctions;
216      }
217      Readers.clear(); Writers.clear();
218    }
219
220  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
221       I != E; ++I)
222    if (I->hasLocalLinkage()) {
223      if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
224        // Remember that we are tracking this global, and the mod/ref fns
225        NonAddressTakenGlobals.insert(I);
226
227        for (unsigned i = 0, e = Readers.size(); i != e; ++i)
228          FunctionInfo[Readers[i]].GlobalInfo[I] |= Ref;
229
230        if (!I->isConstant())  // No need to keep track of writers to constants
231          for (unsigned i = 0, e = Writers.size(); i != e; ++i)
232            FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod;
233        ++NumNonAddrTakenGlobalVars;
234
235        // If this global holds a pointer type, see if it is an indirect global.
236        if (I->getType()->getElementType()->isPointerTy() &&
237            AnalyzeIndirectGlobalMemory(I))
238          ++NumIndirectGlobalVars;
239      }
240      Readers.clear(); Writers.clear();
241    }
242}
243
244/// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
245/// If this is used by anything complex (i.e., the address escapes), return
246/// true.  Also, while we are at it, keep track of those functions that read and
247/// write to the value.
248///
249/// If OkayStoreDest is non-null, stores into this global are allowed.
250bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V,
251                                         std::vector<Function*> &Readers,
252                                         std::vector<Function*> &Writers,
253                                         GlobalValue *OkayStoreDest) {
254  if (!V->getType()->isPointerTy()) return true;
255
256  for (Use &U : V->uses()) {
257    User *I = U.getUser();
258    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
259      Readers.push_back(LI->getParent()->getParent());
260    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
261      if (V == SI->getOperand(1)) {
262        Writers.push_back(SI->getParent()->getParent());
263      } else if (SI->getOperand(1) != OkayStoreDest) {
264        return true;  // Storing the pointer
265      }
266    } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) {
267      if (AnalyzeUsesOfPointer(I, Readers, Writers))
268        return true;
269    } else if (Operator::getOpcode(I) == Instruction::BitCast) {
270      if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest))
271        return true;
272    } else if (CallSite CS = I) {
273      // Make sure that this is just the function being called, not that it is
274      // passing into the function.
275      if (!CS.isCallee(&U)) {
276        // Detect calls to free.
277        if (isFreeCall(I, TLI))
278          Writers.push_back(CS->getParent()->getParent());
279        else
280          return true; // Argument of an unknown call.
281      }
282    } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
283      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
284        return true;  // Allow comparison against null.
285    } else {
286      return true;
287    }
288  }
289
290  return false;
291}
292
293/// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
294/// which holds a pointer type.  See if the global always points to non-aliased
295/// heap memory: that is, all initializers of the globals are allocations, and
296/// those allocations have no use other than initialization of the global.
297/// Further, all loads out of GV must directly use the memory, not store the
298/// pointer somewhere.  If this is true, we consider the memory pointed to by
299/// GV to be owned by GV and can disambiguate other pointers from it.
300bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
301  // Keep track of values related to the allocation of the memory, f.e. the
302  // value produced by the malloc call and any casts.
303  std::vector<Value*> AllocRelatedValues;
304
305  // Walk the user list of the global.  If we find anything other than a direct
306  // load or store, bail out.
307  for (User *U : GV->users()) {
308    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
309      // The pointer loaded from the global can only be used in simple ways:
310      // we allow addressing of it and loading storing to it.  We do *not* allow
311      // storing the loaded pointer somewhere else or passing to a function.
312      std::vector<Function*> ReadersWriters;
313      if (AnalyzeUsesOfPointer(LI, ReadersWriters, ReadersWriters))
314        return false;  // Loaded pointer escapes.
315      // TODO: Could try some IP mod/ref of the loaded pointer.
316    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
317      // Storing the global itself.
318      if (SI->getOperand(0) == GV) return false;
319
320      // If storing the null pointer, ignore it.
321      if (isa<ConstantPointerNull>(SI->getOperand(0)))
322        continue;
323
324      // Check the value being stored.
325      Value *Ptr = GetUnderlyingObject(SI->getOperand(0));
326
327      if (!isAllocLikeFn(Ptr, TLI))
328        return false;  // Too hard to analyze.
329
330      // Analyze all uses of the allocation.  If any of them are used in a
331      // non-simple way (e.g. stored to another global) bail out.
332      std::vector<Function*> ReadersWriters;
333      if (AnalyzeUsesOfPointer(Ptr, ReadersWriters, ReadersWriters, GV))
334        return false;  // Loaded pointer escapes.
335
336      // Remember that this allocation is related to the indirect global.
337      AllocRelatedValues.push_back(Ptr);
338    } else {
339      // Something complex, bail out.
340      return false;
341    }
342  }
343
344  // Okay, this is an indirect global.  Remember all of the allocations for
345  // this global in AllocsForIndirectGlobals.
346  while (!AllocRelatedValues.empty()) {
347    AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
348    AllocRelatedValues.pop_back();
349  }
350  IndirectGlobals.insert(GV);
351  return true;
352}
353
354/// AnalyzeCallGraph - At this point, we know the functions where globals are
355/// immediately stored to and read from.  Propagate this information up the call
356/// graph to all callers and compute the mod/ref info for all memory for each
357/// function.
358void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
359  // We do a bottom-up SCC traversal of the call graph.  In other words, we
360  // visit all callees before callers (leaf-first).
361  for (scc_iterator<CallGraph*> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
362    const std::vector<CallGraphNode *> &SCC = *I;
363    assert(!SCC.empty() && "SCC with no functions?");
364
365    if (!SCC[0]->getFunction()) {
366      // Calls externally - can't say anything useful.  Remove any existing
367      // function records (may have been created when scanning globals).
368      for (unsigned i = 0, e = SCC.size(); i != e; ++i)
369        FunctionInfo.erase(SCC[i]->getFunction());
370      continue;
371    }
372
373    FunctionRecord &FR = FunctionInfo[SCC[0]->getFunction()];
374
375    bool KnowNothing = false;
376    unsigned FunctionEffect = 0;
377
378    // Collect the mod/ref properties due to called functions.  We only compute
379    // one mod-ref set.
380    for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
381      Function *F = SCC[i]->getFunction();
382      if (!F) {
383        KnowNothing = true;
384        break;
385      }
386
387      if (F->isDeclaration()) {
388        // Try to get mod/ref behaviour from function attributes.
389        if (F->doesNotAccessMemory()) {
390          // Can't do better than that!
391        } else if (F->onlyReadsMemory()) {
392          FunctionEffect |= Ref;
393          if (!F->isIntrinsic())
394            // This function might call back into the module and read a global -
395            // consider every global as possibly being read by this function.
396            FR.MayReadAnyGlobal = true;
397        } else {
398          FunctionEffect |= ModRef;
399          // Can't say anything useful unless it's an intrinsic - they don't
400          // read or write global variables of the kind considered here.
401          KnowNothing = !F->isIntrinsic();
402        }
403        continue;
404      }
405
406      for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
407           CI != E && !KnowNothing; ++CI)
408        if (Function *Callee = CI->second->getFunction()) {
409          if (FunctionRecord *CalleeFR = getFunctionInfo(Callee)) {
410            // Propagate function effect up.
411            FunctionEffect |= CalleeFR->FunctionEffect;
412
413            // Incorporate callee's effects on globals into our info.
414            for (const auto &G : CalleeFR->GlobalInfo)
415              FR.GlobalInfo[G.first] |= G.second;
416            FR.MayReadAnyGlobal |= CalleeFR->MayReadAnyGlobal;
417          } else {
418            // Can't say anything about it.  However, if it is inside our SCC,
419            // then nothing needs to be done.
420            CallGraphNode *CalleeNode = CG[Callee];
421            if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end())
422              KnowNothing = true;
423          }
424        } else {
425          KnowNothing = true;
426        }
427    }
428
429    // If we can't say anything useful about this SCC, remove all SCC functions
430    // from the FunctionInfo map.
431    if (KnowNothing) {
432      for (unsigned i = 0, e = SCC.size(); i != e; ++i)
433        FunctionInfo.erase(SCC[i]->getFunction());
434      continue;
435    }
436
437    // Scan the function bodies for explicit loads or stores.
438    for (unsigned i = 0, e = SCC.size(); i != e && FunctionEffect != ModRef;++i)
439      for (inst_iterator II = inst_begin(SCC[i]->getFunction()),
440             E = inst_end(SCC[i]->getFunction());
441           II != E && FunctionEffect != ModRef; ++II)
442        if (LoadInst *LI = dyn_cast<LoadInst>(&*II)) {
443          FunctionEffect |= Ref;
444          if (LI->isVolatile())
445            // Volatile loads may have side-effects, so mark them as writing
446            // memory (for example, a flag inside the processor).
447            FunctionEffect |= Mod;
448        } else if (StoreInst *SI = dyn_cast<StoreInst>(&*II)) {
449          FunctionEffect |= Mod;
450          if (SI->isVolatile())
451            // Treat volatile stores as reading memory somewhere.
452            FunctionEffect |= Ref;
453        } else if (isAllocationFn(&*II, TLI) || isFreeCall(&*II, TLI)) {
454          FunctionEffect |= ModRef;
455        } else if (IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(&*II)) {
456          // The callgraph doesn't include intrinsic calls.
457          Function *Callee = Intrinsic->getCalledFunction();
458          ModRefBehavior Behaviour = AliasAnalysis::getModRefBehavior(Callee);
459          FunctionEffect |= (Behaviour & ModRef);
460        }
461
462    if ((FunctionEffect & Mod) == 0)
463      ++NumReadMemFunctions;
464    if (FunctionEffect == 0)
465      ++NumNoMemFunctions;
466    FR.FunctionEffect = FunctionEffect;
467
468    // Finally, now that we know the full effect on this SCC, clone the
469    // information to each function in the SCC.
470    for (unsigned i = 1, e = SCC.size(); i != e; ++i)
471      FunctionInfo[SCC[i]->getFunction()] = FR;
472  }
473}
474
475
476
477/// alias - If one of the pointers is to a global that we are tracking, and the
478/// other is some random pointer, we know there cannot be an alias, because the
479/// address of the global isn't taken.
480AliasAnalysis::AliasResult
481GlobalsModRef::alias(const Location &LocA,
482                     const Location &LocB) {
483  // Get the base object these pointers point to.
484  const Value *UV1 = GetUnderlyingObject(LocA.Ptr);
485  const Value *UV2 = GetUnderlyingObject(LocB.Ptr);
486
487  // If either of the underlying values is a global, they may be non-addr-taken
488  // globals, which we can answer queries about.
489  const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
490  const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
491  if (GV1 || GV2) {
492    // If the global's address is taken, pretend we don't know it's a pointer to
493    // the global.
494    if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = nullptr;
495    if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = nullptr;
496
497    // If the two pointers are derived from two different non-addr-taken
498    // globals, or if one is and the other isn't, we know these can't alias.
499    if ((GV1 || GV2) && GV1 != GV2)
500      return NoAlias;
501
502    // Otherwise if they are both derived from the same addr-taken global, we
503    // can't know the two accesses don't overlap.
504  }
505
506  // These pointers may be based on the memory owned by an indirect global.  If
507  // so, we may be able to handle this.  First check to see if the base pointer
508  // is a direct load from an indirect global.
509  GV1 = GV2 = nullptr;
510  if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
511    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
512      if (IndirectGlobals.count(GV))
513        GV1 = GV;
514  if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
515    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
516      if (IndirectGlobals.count(GV))
517        GV2 = GV;
518
519  // These pointers may also be from an allocation for the indirect global.  If
520  // so, also handle them.
521  if (AllocsForIndirectGlobals.count(UV1))
522    GV1 = AllocsForIndirectGlobals[UV1];
523  if (AllocsForIndirectGlobals.count(UV2))
524    GV2 = AllocsForIndirectGlobals[UV2];
525
526  // Now that we know whether the two pointers are related to indirect globals,
527  // use this to disambiguate the pointers.  If either pointer is based on an
528  // indirect global and if they are not both based on the same indirect global,
529  // they cannot alias.
530  if ((GV1 || GV2) && GV1 != GV2)
531    return NoAlias;
532
533  return AliasAnalysis::alias(LocA, LocB);
534}
535
536AliasAnalysis::ModRefResult
537GlobalsModRef::getModRefInfo(ImmutableCallSite CS,
538                             const Location &Loc) {
539  unsigned Known = ModRef;
540
541  // If we are asking for mod/ref info of a direct call with a pointer to a
542  // global we are tracking, return information if we have it.
543  if (const GlobalValue *GV =
544        dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr)))
545    if (GV->hasLocalLinkage())
546      if (const Function *F = CS.getCalledFunction())
547        if (NonAddressTakenGlobals.count(GV))
548          if (const FunctionRecord *FR = getFunctionInfo(F))
549            Known = FR->getInfoForGlobal(GV);
550
551  if (Known == NoModRef)
552    return NoModRef; // No need to query other mod/ref analyses
553  return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, Loc));
554}
555
556
557//===----------------------------------------------------------------------===//
558// Methods to update the analysis as a result of the client transformation.
559//
560void GlobalsModRef::deleteValue(Value *V) {
561  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
562    if (NonAddressTakenGlobals.erase(GV)) {
563      // This global might be an indirect global.  If so, remove it and remove
564      // any AllocRelatedValues for it.
565      if (IndirectGlobals.erase(GV)) {
566        // Remove any entries in AllocsForIndirectGlobals for this global.
567        for (std::map<const Value*, const GlobalValue*>::iterator
568             I = AllocsForIndirectGlobals.begin(),
569             E = AllocsForIndirectGlobals.end(); I != E; ) {
570          if (I->second == GV) {
571            AllocsForIndirectGlobals.erase(I++);
572          } else {
573            ++I;
574          }
575        }
576      }
577    }
578  }
579
580  // Otherwise, if this is an allocation related to an indirect global, remove
581  // it.
582  AllocsForIndirectGlobals.erase(V);
583
584  AliasAnalysis::deleteValue(V);
585}
586
587void GlobalsModRef::copyValue(Value *From, Value *To) {
588  AliasAnalysis::copyValue(From, To);
589}
590
591void GlobalsModRef::addEscapingUse(Use &U) {
592  // For the purposes of this analysis, it is conservatively correct to treat
593  // a newly escaping value equivalently to a deleted one.  We could perhaps
594  // be more precise by processing the new use and attempting to update our
595  // saved analysis results to accommodate it.
596  deleteValue(U);
597
598  AliasAnalysis::addEscapingUse(U);
599}
600