InlineCost.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inline cost analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "inline-cost"
15#include "llvm/Analysis/InlineCost.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SetVector.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Analysis/InstructionSimplify.h"
23#include "llvm/Analysis/TargetTransformInfo.h"
24#include "llvm/IR/CallSite.h"
25#include "llvm/IR/CallingConv.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/GetElementPtrTypeIterator.h"
28#include "llvm/IR/GlobalAlias.h"
29#include "llvm/IR/InstVisitor.h"
30#include "llvm/IR/IntrinsicInst.h"
31#include "llvm/IR/Operator.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/raw_ostream.h"
34
35using namespace llvm;
36
37STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
38
39namespace {
40
41class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
42  typedef InstVisitor<CallAnalyzer, bool> Base;
43  friend class InstVisitor<CallAnalyzer, bool>;
44
45  // DataLayout if available, or null.
46  const DataLayout *const DL;
47
48  /// The TargetTransformInfo available for this compilation.
49  const TargetTransformInfo &TTI;
50
51  // The called function.
52  Function &F;
53
54  int Threshold;
55  int Cost;
56
57  bool IsCallerRecursive;
58  bool IsRecursiveCall;
59  bool ExposesReturnsTwice;
60  bool HasDynamicAlloca;
61  bool ContainsNoDuplicateCall;
62  bool HasReturn;
63  bool HasIndirectBr;
64
65  /// Number of bytes allocated statically by the callee.
66  uint64_t AllocatedSize;
67  unsigned NumInstructions, NumVectorInstructions;
68  int FiftyPercentVectorBonus, TenPercentVectorBonus;
69  int VectorBonus;
70
71  // While we walk the potentially-inlined instructions, we build up and
72  // maintain a mapping of simplified values specific to this callsite. The
73  // idea is to propagate any special information we have about arguments to
74  // this call through the inlinable section of the function, and account for
75  // likely simplifications post-inlining. The most important aspect we track
76  // is CFG altering simplifications -- when we prove a basic block dead, that
77  // can cause dramatic shifts in the cost of inlining a function.
78  DenseMap<Value *, Constant *> SimplifiedValues;
79
80  // Keep track of the values which map back (through function arguments) to
81  // allocas on the caller stack which could be simplified through SROA.
82  DenseMap<Value *, Value *> SROAArgValues;
83
84  // The mapping of caller Alloca values to their accumulated cost savings. If
85  // we have to disable SROA for one of the allocas, this tells us how much
86  // cost must be added.
87  DenseMap<Value *, int> SROAArgCosts;
88
89  // Keep track of values which map to a pointer base and constant offset.
90  DenseMap<Value *, std::pair<Value *, APInt> > ConstantOffsetPtrs;
91
92  // Custom simplification helper routines.
93  bool isAllocaDerivedArg(Value *V);
94  bool lookupSROAArgAndCost(Value *V, Value *&Arg,
95                            DenseMap<Value *, int>::iterator &CostIt);
96  void disableSROA(DenseMap<Value *, int>::iterator CostIt);
97  void disableSROA(Value *V);
98  void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
99                          int InstructionCost);
100  bool handleSROACandidate(bool IsSROAValid,
101                           DenseMap<Value *, int>::iterator CostIt,
102                           int InstructionCost);
103  bool isGEPOffsetConstant(GetElementPtrInst &GEP);
104  bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
105  bool simplifyCallSite(Function *F, CallSite CS);
106  ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
107
108  // Custom analysis routines.
109  bool analyzeBlock(BasicBlock *BB);
110
111  // Disable several entry points to the visitor so we don't accidentally use
112  // them by declaring but not defining them here.
113  void visit(Module *);     void visit(Module &);
114  void visit(Function *);   void visit(Function &);
115  void visit(BasicBlock *); void visit(BasicBlock &);
116
117  // Provide base case for our instruction visit.
118  bool visitInstruction(Instruction &I);
119
120  // Our visit overrides.
121  bool visitAlloca(AllocaInst &I);
122  bool visitPHI(PHINode &I);
123  bool visitGetElementPtr(GetElementPtrInst &I);
124  bool visitBitCast(BitCastInst &I);
125  bool visitPtrToInt(PtrToIntInst &I);
126  bool visitIntToPtr(IntToPtrInst &I);
127  bool visitCastInst(CastInst &I);
128  bool visitUnaryInstruction(UnaryInstruction &I);
129  bool visitCmpInst(CmpInst &I);
130  bool visitSub(BinaryOperator &I);
131  bool visitBinaryOperator(BinaryOperator &I);
132  bool visitLoad(LoadInst &I);
133  bool visitStore(StoreInst &I);
134  bool visitExtractValue(ExtractValueInst &I);
135  bool visitInsertValue(InsertValueInst &I);
136  bool visitCallSite(CallSite CS);
137  bool visitReturnInst(ReturnInst &RI);
138  bool visitBranchInst(BranchInst &BI);
139  bool visitSwitchInst(SwitchInst &SI);
140  bool visitIndirectBrInst(IndirectBrInst &IBI);
141  bool visitResumeInst(ResumeInst &RI);
142  bool visitUnreachableInst(UnreachableInst &I);
143
144public:
145  CallAnalyzer(const DataLayout *DL, const TargetTransformInfo &TTI,
146               Function &Callee, int Threshold)
147      : DL(DL), TTI(TTI), F(Callee), Threshold(Threshold), Cost(0),
148        IsCallerRecursive(false), IsRecursiveCall(false),
149        ExposesReturnsTwice(false), HasDynamicAlloca(false),
150        ContainsNoDuplicateCall(false), HasReturn(false), HasIndirectBr(false),
151        AllocatedSize(0), NumInstructions(0), NumVectorInstructions(0),
152        FiftyPercentVectorBonus(0), TenPercentVectorBonus(0), VectorBonus(0),
153        NumConstantArgs(0), NumConstantOffsetPtrArgs(0), NumAllocaArgs(0),
154        NumConstantPtrCmps(0), NumConstantPtrDiffs(0),
155        NumInstructionsSimplified(0), SROACostSavings(0),
156        SROACostSavingsLost(0) {}
157
158  bool analyzeCall(CallSite CS);
159
160  int getThreshold() { return Threshold; }
161  int getCost() { return Cost; }
162
163  // Keep a bunch of stats about the cost savings found so we can print them
164  // out when debugging.
165  unsigned NumConstantArgs;
166  unsigned NumConstantOffsetPtrArgs;
167  unsigned NumAllocaArgs;
168  unsigned NumConstantPtrCmps;
169  unsigned NumConstantPtrDiffs;
170  unsigned NumInstructionsSimplified;
171  unsigned SROACostSavings;
172  unsigned SROACostSavingsLost;
173
174  void dump();
175};
176
177} // namespace
178
179/// \brief Test whether the given value is an Alloca-derived function argument.
180bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
181  return SROAArgValues.count(V);
182}
183
184/// \brief Lookup the SROA-candidate argument and cost iterator which V maps to.
185/// Returns false if V does not map to a SROA-candidate.
186bool CallAnalyzer::lookupSROAArgAndCost(
187    Value *V, Value *&Arg, DenseMap<Value *, int>::iterator &CostIt) {
188  if (SROAArgValues.empty() || SROAArgCosts.empty())
189    return false;
190
191  DenseMap<Value *, Value *>::iterator ArgIt = SROAArgValues.find(V);
192  if (ArgIt == SROAArgValues.end())
193    return false;
194
195  Arg = ArgIt->second;
196  CostIt = SROAArgCosts.find(Arg);
197  return CostIt != SROAArgCosts.end();
198}
199
200/// \brief Disable SROA for the candidate marked by this cost iterator.
201///
202/// This marks the candidate as no longer viable for SROA, and adds the cost
203/// savings associated with it back into the inline cost measurement.
204void CallAnalyzer::disableSROA(DenseMap<Value *, int>::iterator CostIt) {
205  // If we're no longer able to perform SROA we need to undo its cost savings
206  // and prevent subsequent analysis.
207  Cost += CostIt->second;
208  SROACostSavings -= CostIt->second;
209  SROACostSavingsLost += CostIt->second;
210  SROAArgCosts.erase(CostIt);
211}
212
213/// \brief If 'V' maps to a SROA candidate, disable SROA for it.
214void CallAnalyzer::disableSROA(Value *V) {
215  Value *SROAArg;
216  DenseMap<Value *, int>::iterator CostIt;
217  if (lookupSROAArgAndCost(V, SROAArg, CostIt))
218    disableSROA(CostIt);
219}
220
221/// \brief Accumulate the given cost for a particular SROA candidate.
222void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
223                                      int InstructionCost) {
224  CostIt->second += InstructionCost;
225  SROACostSavings += InstructionCost;
226}
227
228/// \brief Helper for the common pattern of handling a SROA candidate.
229/// Either accumulates the cost savings if the SROA remains valid, or disables
230/// SROA for the candidate.
231bool CallAnalyzer::handleSROACandidate(bool IsSROAValid,
232                                       DenseMap<Value *, int>::iterator CostIt,
233                                       int InstructionCost) {
234  if (IsSROAValid) {
235    accumulateSROACost(CostIt, InstructionCost);
236    return true;
237  }
238
239  disableSROA(CostIt);
240  return false;
241}
242
243/// \brief Check whether a GEP's indices are all constant.
244///
245/// Respects any simplified values known during the analysis of this callsite.
246bool CallAnalyzer::isGEPOffsetConstant(GetElementPtrInst &GEP) {
247  for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
248    if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I))
249      return false;
250
251  return true;
252}
253
254/// \brief Accumulate a constant GEP offset into an APInt if possible.
255///
256/// Returns false if unable to compute the offset for any reason. Respects any
257/// simplified values known during the analysis of this callsite.
258bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
259  if (!DL)
260    return false;
261
262  unsigned IntPtrWidth = DL->getPointerSizeInBits();
263  assert(IntPtrWidth == Offset.getBitWidth());
264
265  for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
266       GTI != GTE; ++GTI) {
267    ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
268    if (!OpC)
269      if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
270        OpC = dyn_cast<ConstantInt>(SimpleOp);
271    if (!OpC)
272      return false;
273    if (OpC->isZero()) continue;
274
275    // Handle a struct index, which adds its field offset to the pointer.
276    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
277      unsigned ElementIdx = OpC->getZExtValue();
278      const StructLayout *SL = DL->getStructLayout(STy);
279      Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
280      continue;
281    }
282
283    APInt TypeSize(IntPtrWidth, DL->getTypeAllocSize(GTI.getIndexedType()));
284    Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
285  }
286  return true;
287}
288
289bool CallAnalyzer::visitAlloca(AllocaInst &I) {
290  // FIXME: Check whether inlining will turn a dynamic alloca into a static
291  // alloca, and handle that case.
292
293  // Accumulate the allocated size.
294  if (I.isStaticAlloca()) {
295    Type *Ty = I.getAllocatedType();
296    AllocatedSize += (DL ? DL->getTypeAllocSize(Ty) :
297                      Ty->getPrimitiveSizeInBits());
298  }
299
300  // We will happily inline static alloca instructions.
301  if (I.isStaticAlloca())
302    return Base::visitAlloca(I);
303
304  // FIXME: This is overly conservative. Dynamic allocas are inefficient for
305  // a variety of reasons, and so we would like to not inline them into
306  // functions which don't currently have a dynamic alloca. This simply
307  // disables inlining altogether in the presence of a dynamic alloca.
308  HasDynamicAlloca = true;
309  return false;
310}
311
312bool CallAnalyzer::visitPHI(PHINode &I) {
313  // FIXME: We should potentially be tracking values through phi nodes,
314  // especially when they collapse to a single value due to deleted CFG edges
315  // during inlining.
316
317  // FIXME: We need to propagate SROA *disabling* through phi nodes, even
318  // though we don't want to propagate it's bonuses. The idea is to disable
319  // SROA if it *might* be used in an inappropriate manner.
320
321  // Phi nodes are always zero-cost.
322  return true;
323}
324
325bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
326  Value *SROAArg;
327  DenseMap<Value *, int>::iterator CostIt;
328  bool SROACandidate = lookupSROAArgAndCost(I.getPointerOperand(),
329                                            SROAArg, CostIt);
330
331  // Try to fold GEPs of constant-offset call site argument pointers. This
332  // requires target data and inbounds GEPs.
333  if (DL && I.isInBounds()) {
334    // Check if we have a base + offset for the pointer.
335    Value *Ptr = I.getPointerOperand();
336    std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Ptr);
337    if (BaseAndOffset.first) {
338      // Check if the offset of this GEP is constant, and if so accumulate it
339      // into Offset.
340      if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) {
341        // Non-constant GEPs aren't folded, and disable SROA.
342        if (SROACandidate)
343          disableSROA(CostIt);
344        return false;
345      }
346
347      // Add the result as a new mapping to Base + Offset.
348      ConstantOffsetPtrs[&I] = BaseAndOffset;
349
350      // Also handle SROA candidates here, we already know that the GEP is
351      // all-constant indexed.
352      if (SROACandidate)
353        SROAArgValues[&I] = SROAArg;
354
355      return true;
356    }
357  }
358
359  if (isGEPOffsetConstant(I)) {
360    if (SROACandidate)
361      SROAArgValues[&I] = SROAArg;
362
363    // Constant GEPs are modeled as free.
364    return true;
365  }
366
367  // Variable GEPs will require math and will disable SROA.
368  if (SROACandidate)
369    disableSROA(CostIt);
370  return false;
371}
372
373bool CallAnalyzer::visitBitCast(BitCastInst &I) {
374  // Propagate constants through bitcasts.
375  Constant *COp = dyn_cast<Constant>(I.getOperand(0));
376  if (!COp)
377    COp = SimplifiedValues.lookup(I.getOperand(0));
378  if (COp)
379    if (Constant *C = ConstantExpr::getBitCast(COp, I.getType())) {
380      SimplifiedValues[&I] = C;
381      return true;
382    }
383
384  // Track base/offsets through casts
385  std::pair<Value *, APInt> BaseAndOffset
386    = ConstantOffsetPtrs.lookup(I.getOperand(0));
387  // Casts don't change the offset, just wrap it up.
388  if (BaseAndOffset.first)
389    ConstantOffsetPtrs[&I] = BaseAndOffset;
390
391  // Also look for SROA candidates here.
392  Value *SROAArg;
393  DenseMap<Value *, int>::iterator CostIt;
394  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
395    SROAArgValues[&I] = SROAArg;
396
397  // Bitcasts are always zero cost.
398  return true;
399}
400
401bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
402  const DataLayout *DL = I.getDataLayout();
403  // Propagate constants through ptrtoint.
404  Constant *COp = dyn_cast<Constant>(I.getOperand(0));
405  if (!COp)
406    COp = SimplifiedValues.lookup(I.getOperand(0));
407  if (COp)
408    if (Constant *C = ConstantExpr::getPtrToInt(COp, I.getType())) {
409      SimplifiedValues[&I] = C;
410      return true;
411    }
412
413  // Track base/offset pairs when converted to a plain integer provided the
414  // integer is large enough to represent the pointer.
415  unsigned IntegerSize = I.getType()->getScalarSizeInBits();
416  if (DL && IntegerSize >= DL->getPointerSizeInBits()) {
417    std::pair<Value *, APInt> BaseAndOffset
418      = ConstantOffsetPtrs.lookup(I.getOperand(0));
419    if (BaseAndOffset.first)
420      ConstantOffsetPtrs[&I] = BaseAndOffset;
421  }
422
423  // This is really weird. Technically, ptrtoint will disable SROA. However,
424  // unless that ptrtoint is *used* somewhere in the live basic blocks after
425  // inlining, it will be nuked, and SROA should proceed. All of the uses which
426  // would block SROA would also block SROA if applied directly to a pointer,
427  // and so we can just add the integer in here. The only places where SROA is
428  // preserved either cannot fire on an integer, or won't in-and-of themselves
429  // disable SROA (ext) w/o some later use that we would see and disable.
430  Value *SROAArg;
431  DenseMap<Value *, int>::iterator CostIt;
432  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
433    SROAArgValues[&I] = SROAArg;
434
435  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
436}
437
438bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
439  const DataLayout *DL = I.getDataLayout();
440  // Propagate constants through ptrtoint.
441  Constant *COp = dyn_cast<Constant>(I.getOperand(0));
442  if (!COp)
443    COp = SimplifiedValues.lookup(I.getOperand(0));
444  if (COp)
445    if (Constant *C = ConstantExpr::getIntToPtr(COp, I.getType())) {
446      SimplifiedValues[&I] = C;
447      return true;
448    }
449
450  // Track base/offset pairs when round-tripped through a pointer without
451  // modifications provided the integer is not too large.
452  Value *Op = I.getOperand(0);
453  unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
454  if (DL && IntegerSize <= DL->getPointerSizeInBits()) {
455    std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
456    if (BaseAndOffset.first)
457      ConstantOffsetPtrs[&I] = BaseAndOffset;
458  }
459
460  // "Propagate" SROA here in the same manner as we do for ptrtoint above.
461  Value *SROAArg;
462  DenseMap<Value *, int>::iterator CostIt;
463  if (lookupSROAArgAndCost(Op, SROAArg, CostIt))
464    SROAArgValues[&I] = SROAArg;
465
466  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
467}
468
469bool CallAnalyzer::visitCastInst(CastInst &I) {
470  // Propagate constants through ptrtoint.
471  Constant *COp = dyn_cast<Constant>(I.getOperand(0));
472  if (!COp)
473    COp = SimplifiedValues.lookup(I.getOperand(0));
474  if (COp)
475    if (Constant *C = ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) {
476      SimplifiedValues[&I] = C;
477      return true;
478    }
479
480  // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere.
481  disableSROA(I.getOperand(0));
482
483  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
484}
485
486bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
487  Value *Operand = I.getOperand(0);
488  Constant *COp = dyn_cast<Constant>(Operand);
489  if (!COp)
490    COp = SimplifiedValues.lookup(Operand);
491  if (COp)
492    if (Constant *C = ConstantFoldInstOperands(I.getOpcode(), I.getType(),
493                                               COp, DL)) {
494      SimplifiedValues[&I] = C;
495      return true;
496    }
497
498  // Disable any SROA on the argument to arbitrary unary operators.
499  disableSROA(Operand);
500
501  return false;
502}
503
504bool CallAnalyzer::visitCmpInst(CmpInst &I) {
505  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
506  // First try to handle simplified comparisons.
507  if (!isa<Constant>(LHS))
508    if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
509      LHS = SimpleLHS;
510  if (!isa<Constant>(RHS))
511    if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
512      RHS = SimpleRHS;
513  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
514    if (Constant *CRHS = dyn_cast<Constant>(RHS))
515      if (Constant *C = ConstantExpr::getCompare(I.getPredicate(), CLHS, CRHS)) {
516        SimplifiedValues[&I] = C;
517        return true;
518      }
519  }
520
521  if (I.getOpcode() == Instruction::FCmp)
522    return false;
523
524  // Otherwise look for a comparison between constant offset pointers with
525  // a common base.
526  Value *LHSBase, *RHSBase;
527  APInt LHSOffset, RHSOffset;
528  std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
529  if (LHSBase) {
530    std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
531    if (RHSBase && LHSBase == RHSBase) {
532      // We have common bases, fold the icmp to a constant based on the
533      // offsets.
534      Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
535      Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
536      if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
537        SimplifiedValues[&I] = C;
538        ++NumConstantPtrCmps;
539        return true;
540      }
541    }
542  }
543
544  // If the comparison is an equality comparison with null, we can simplify it
545  // for any alloca-derived argument.
546  if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)))
547    if (isAllocaDerivedArg(I.getOperand(0))) {
548      // We can actually predict the result of comparisons between an
549      // alloca-derived value and null. Note that this fires regardless of
550      // SROA firing.
551      bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
552      SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
553                                        : ConstantInt::getFalse(I.getType());
554      return true;
555    }
556
557  // Finally check for SROA candidates in comparisons.
558  Value *SROAArg;
559  DenseMap<Value *, int>::iterator CostIt;
560  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
561    if (isa<ConstantPointerNull>(I.getOperand(1))) {
562      accumulateSROACost(CostIt, InlineConstants::InstrCost);
563      return true;
564    }
565
566    disableSROA(CostIt);
567  }
568
569  return false;
570}
571
572bool CallAnalyzer::visitSub(BinaryOperator &I) {
573  // Try to handle a special case: we can fold computing the difference of two
574  // constant-related pointers.
575  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
576  Value *LHSBase, *RHSBase;
577  APInt LHSOffset, RHSOffset;
578  std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
579  if (LHSBase) {
580    std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
581    if (RHSBase && LHSBase == RHSBase) {
582      // We have common bases, fold the subtract to a constant based on the
583      // offsets.
584      Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
585      Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
586      if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
587        SimplifiedValues[&I] = C;
588        ++NumConstantPtrDiffs;
589        return true;
590      }
591    }
592  }
593
594  // Otherwise, fall back to the generic logic for simplifying and handling
595  // instructions.
596  return Base::visitSub(I);
597}
598
599bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
600  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
601  if (!isa<Constant>(LHS))
602    if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
603      LHS = SimpleLHS;
604  if (!isa<Constant>(RHS))
605    if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
606      RHS = SimpleRHS;
607  Value *SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL);
608  if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) {
609    SimplifiedValues[&I] = C;
610    return true;
611  }
612
613  // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
614  disableSROA(LHS);
615  disableSROA(RHS);
616
617  return false;
618}
619
620bool CallAnalyzer::visitLoad(LoadInst &I) {
621  Value *SROAArg;
622  DenseMap<Value *, int>::iterator CostIt;
623  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
624    if (I.isSimple()) {
625      accumulateSROACost(CostIt, InlineConstants::InstrCost);
626      return true;
627    }
628
629    disableSROA(CostIt);
630  }
631
632  return false;
633}
634
635bool CallAnalyzer::visitStore(StoreInst &I) {
636  Value *SROAArg;
637  DenseMap<Value *, int>::iterator CostIt;
638  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
639    if (I.isSimple()) {
640      accumulateSROACost(CostIt, InlineConstants::InstrCost);
641      return true;
642    }
643
644    disableSROA(CostIt);
645  }
646
647  return false;
648}
649
650bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
651  // Constant folding for extract value is trivial.
652  Constant *C = dyn_cast<Constant>(I.getAggregateOperand());
653  if (!C)
654    C = SimplifiedValues.lookup(I.getAggregateOperand());
655  if (C) {
656    SimplifiedValues[&I] = ConstantExpr::getExtractValue(C, I.getIndices());
657    return true;
658  }
659
660  // SROA can look through these but give them a cost.
661  return false;
662}
663
664bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
665  // Constant folding for insert value is trivial.
666  Constant *AggC = dyn_cast<Constant>(I.getAggregateOperand());
667  if (!AggC)
668    AggC = SimplifiedValues.lookup(I.getAggregateOperand());
669  Constant *InsertedC = dyn_cast<Constant>(I.getInsertedValueOperand());
670  if (!InsertedC)
671    InsertedC = SimplifiedValues.lookup(I.getInsertedValueOperand());
672  if (AggC && InsertedC) {
673    SimplifiedValues[&I] = ConstantExpr::getInsertValue(AggC, InsertedC,
674                                                        I.getIndices());
675    return true;
676  }
677
678  // SROA can look through these but give them a cost.
679  return false;
680}
681
682/// \brief Try to simplify a call site.
683///
684/// Takes a concrete function and callsite and tries to actually simplify it by
685/// analyzing the arguments and call itself with instsimplify. Returns true if
686/// it has simplified the callsite to some other entity (a constant), making it
687/// free.
688bool CallAnalyzer::simplifyCallSite(Function *F, CallSite CS) {
689  // FIXME: Using the instsimplify logic directly for this is inefficient
690  // because we have to continually rebuild the argument list even when no
691  // simplifications can be performed. Until that is fixed with remapping
692  // inside of instsimplify, directly constant fold calls here.
693  if (!canConstantFoldCallTo(F))
694    return false;
695
696  // Try to re-map the arguments to constants.
697  SmallVector<Constant *, 4> ConstantArgs;
698  ConstantArgs.reserve(CS.arg_size());
699  for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
700       I != E; ++I) {
701    Constant *C = dyn_cast<Constant>(*I);
702    if (!C)
703      C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(*I));
704    if (!C)
705      return false; // This argument doesn't map to a constant.
706
707    ConstantArgs.push_back(C);
708  }
709  if (Constant *C = ConstantFoldCall(F, ConstantArgs)) {
710    SimplifiedValues[CS.getInstruction()] = C;
711    return true;
712  }
713
714  return false;
715}
716
717bool CallAnalyzer::visitCallSite(CallSite CS) {
718  if (CS.hasFnAttr(Attribute::ReturnsTwice) &&
719      !F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
720                                      Attribute::ReturnsTwice)) {
721    // This aborts the entire analysis.
722    ExposesReturnsTwice = true;
723    return false;
724  }
725  if (CS.isCall() &&
726      cast<CallInst>(CS.getInstruction())->cannotDuplicate())
727    ContainsNoDuplicateCall = true;
728
729  if (Function *F = CS.getCalledFunction()) {
730    // When we have a concrete function, first try to simplify it directly.
731    if (simplifyCallSite(F, CS))
732      return true;
733
734    // Next check if it is an intrinsic we know about.
735    // FIXME: Lift this into part of the InstVisitor.
736    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
737      switch (II->getIntrinsicID()) {
738      default:
739        return Base::visitCallSite(CS);
740
741      case Intrinsic::memset:
742      case Intrinsic::memcpy:
743      case Intrinsic::memmove:
744        // SROA can usually chew through these intrinsics, but they aren't free.
745        return false;
746      }
747    }
748
749    if (F == CS.getInstruction()->getParent()->getParent()) {
750      // This flag will fully abort the analysis, so don't bother with anything
751      // else.
752      IsRecursiveCall = true;
753      return false;
754    }
755
756    if (TTI.isLoweredToCall(F)) {
757      // We account for the average 1 instruction per call argument setup
758      // here.
759      Cost += CS.arg_size() * InlineConstants::InstrCost;
760
761      // Everything other than inline ASM will also have a significant cost
762      // merely from making the call.
763      if (!isa<InlineAsm>(CS.getCalledValue()))
764        Cost += InlineConstants::CallPenalty;
765    }
766
767    return Base::visitCallSite(CS);
768  }
769
770  // Otherwise we're in a very special case -- an indirect function call. See
771  // if we can be particularly clever about this.
772  Value *Callee = CS.getCalledValue();
773
774  // First, pay the price of the argument setup. We account for the average
775  // 1 instruction per call argument setup here.
776  Cost += CS.arg_size() * InlineConstants::InstrCost;
777
778  // Next, check if this happens to be an indirect function call to a known
779  // function in this inline context. If not, we've done all we can.
780  Function *F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
781  if (!F)
782    return Base::visitCallSite(CS);
783
784  // If we have a constant that we are calling as a function, we can peer
785  // through it and see the function target. This happens not infrequently
786  // during devirtualization and so we want to give it a hefty bonus for
787  // inlining, but cap that bonus in the event that inlining wouldn't pan
788  // out. Pretend to inline the function, with a custom threshold.
789  CallAnalyzer CA(DL, TTI, *F, InlineConstants::IndirectCallThreshold);
790  if (CA.analyzeCall(CS)) {
791    // We were able to inline the indirect call! Subtract the cost from the
792    // bonus we want to apply, but don't go below zero.
793    Cost -= std::max(0, InlineConstants::IndirectCallThreshold - CA.getCost());
794  }
795
796  return Base::visitCallSite(CS);
797}
798
799bool CallAnalyzer::visitReturnInst(ReturnInst &RI) {
800  // At least one return instruction will be free after inlining.
801  bool Free = !HasReturn;
802  HasReturn = true;
803  return Free;
804}
805
806bool CallAnalyzer::visitBranchInst(BranchInst &BI) {
807  // We model unconditional branches as essentially free -- they really
808  // shouldn't exist at all, but handling them makes the behavior of the
809  // inliner more regular and predictable. Interestingly, conditional branches
810  // which will fold away are also free.
811  return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) ||
812         dyn_cast_or_null<ConstantInt>(
813             SimplifiedValues.lookup(BI.getCondition()));
814}
815
816bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) {
817  // We model unconditional switches as free, see the comments on handling
818  // branches.
819  return isa<ConstantInt>(SI.getCondition()) ||
820         dyn_cast_or_null<ConstantInt>(
821             SimplifiedValues.lookup(SI.getCondition()));
822}
823
824bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) {
825  // We never want to inline functions that contain an indirectbr.  This is
826  // incorrect because all the blockaddress's (in static global initializers
827  // for example) would be referring to the original function, and this
828  // indirect jump would jump from the inlined copy of the function into the
829  // original function which is extremely undefined behavior.
830  // FIXME: This logic isn't really right; we can safely inline functions with
831  // indirectbr's as long as no other function or global references the
832  // blockaddress of a block within the current function.  And as a QOI issue,
833  // if someone is using a blockaddress without an indirectbr, and that
834  // reference somehow ends up in another function or global, we probably don't
835  // want to inline this function.
836  HasIndirectBr = true;
837  return false;
838}
839
840bool CallAnalyzer::visitResumeInst(ResumeInst &RI) {
841  // FIXME: It's not clear that a single instruction is an accurate model for
842  // the inline cost of a resume instruction.
843  return false;
844}
845
846bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) {
847  // FIXME: It might be reasonably to discount the cost of instructions leading
848  // to unreachable as they have the lowest possible impact on both runtime and
849  // code size.
850  return true; // No actual code is needed for unreachable.
851}
852
853bool CallAnalyzer::visitInstruction(Instruction &I) {
854  // Some instructions are free. All of the free intrinsics can also be
855  // handled by SROA, etc.
856  if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I))
857    return true;
858
859  // We found something we don't understand or can't handle. Mark any SROA-able
860  // values in the operand list as no longer viable.
861  for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI)
862    disableSROA(*OI);
863
864  return false;
865}
866
867
868/// \brief Analyze a basic block for its contribution to the inline cost.
869///
870/// This method walks the analyzer over every instruction in the given basic
871/// block and accounts for their cost during inlining at this callsite. It
872/// aborts early if the threshold has been exceeded or an impossible to inline
873/// construct has been detected. It returns false if inlining is no longer
874/// viable, and true if inlining remains viable.
875bool CallAnalyzer::analyzeBlock(BasicBlock *BB) {
876  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
877    // FIXME: Currently, the number of instructions in a function regardless of
878    // our ability to simplify them during inline to constants or dead code,
879    // are actually used by the vector bonus heuristic. As long as that's true,
880    // we have to special case debug intrinsics here to prevent differences in
881    // inlining due to debug symbols. Eventually, the number of unsimplified
882    // instructions shouldn't factor into the cost computation, but until then,
883    // hack around it here.
884    if (isa<DbgInfoIntrinsic>(I))
885      continue;
886
887    ++NumInstructions;
888    if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy())
889      ++NumVectorInstructions;
890
891    // If the instruction simplified to a constant, there is no cost to this
892    // instruction. Visit the instructions using our InstVisitor to account for
893    // all of the per-instruction logic. The visit tree returns true if we
894    // consumed the instruction in any way, and false if the instruction's base
895    // cost should count against inlining.
896    if (Base::visit(I))
897      ++NumInstructionsSimplified;
898    else
899      Cost += InlineConstants::InstrCost;
900
901    // If the visit this instruction detected an uninlinable pattern, abort.
902    if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca ||
903        HasIndirectBr)
904      return false;
905
906    // If the caller is a recursive function then we don't want to inline
907    // functions which allocate a lot of stack space because it would increase
908    // the caller stack usage dramatically.
909    if (IsCallerRecursive &&
910        AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller)
911      return false;
912
913    if (NumVectorInstructions > NumInstructions/2)
914      VectorBonus = FiftyPercentVectorBonus;
915    else if (NumVectorInstructions > NumInstructions/10)
916      VectorBonus = TenPercentVectorBonus;
917    else
918      VectorBonus = 0;
919
920    // Check if we've past the threshold so we don't spin in huge basic
921    // blocks that will never inline.
922    if (Cost > (Threshold + VectorBonus))
923      return false;
924  }
925
926  return true;
927}
928
929/// \brief Compute the base pointer and cumulative constant offsets for V.
930///
931/// This strips all constant offsets off of V, leaving it the base pointer, and
932/// accumulates the total constant offset applied in the returned constant. It
933/// returns 0 if V is not a pointer, and returns the constant '0' if there are
934/// no constant offsets applied.
935ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
936  if (!DL || !V->getType()->isPointerTy())
937    return 0;
938
939  unsigned IntPtrWidth = DL->getPointerSizeInBits();
940  APInt Offset = APInt::getNullValue(IntPtrWidth);
941
942  // Even though we don't look through PHI nodes, we could be called on an
943  // instruction in an unreachable block, which may be on a cycle.
944  SmallPtrSet<Value *, 4> Visited;
945  Visited.insert(V);
946  do {
947    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
948      if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
949        return 0;
950      V = GEP->getPointerOperand();
951    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
952      V = cast<Operator>(V)->getOperand(0);
953    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
954      if (GA->mayBeOverridden())
955        break;
956      V = GA->getAliasee();
957    } else {
958      break;
959    }
960    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
961  } while (Visited.insert(V));
962
963  Type *IntPtrTy = DL->getIntPtrType(V->getContext());
964  return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset));
965}
966
967/// \brief Analyze a call site for potential inlining.
968///
969/// Returns true if inlining this call is viable, and false if it is not
970/// viable. It computes the cost and adjusts the threshold based on numerous
971/// factors and heuristics. If this method returns false but the computed cost
972/// is below the computed threshold, then inlining was forcibly disabled by
973/// some artifact of the routine.
974bool CallAnalyzer::analyzeCall(CallSite CS) {
975  ++NumCallsAnalyzed;
976
977  // Track whether the post-inlining function would have more than one basic
978  // block. A single basic block is often intended for inlining. Balloon the
979  // threshold by 50% until we pass the single-BB phase.
980  bool SingleBB = true;
981  int SingleBBBonus = Threshold / 2;
982  Threshold += SingleBBBonus;
983
984  // Perform some tweaks to the cost and threshold based on the direct
985  // callsite information.
986
987  // We want to more aggressively inline vector-dense kernels, so up the
988  // threshold, and we'll lower it if the % of vector instructions gets too
989  // low.
990  assert(NumInstructions == 0);
991  assert(NumVectorInstructions == 0);
992  FiftyPercentVectorBonus = Threshold;
993  TenPercentVectorBonus = Threshold / 2;
994
995  // Give out bonuses per argument, as the instructions setting them up will
996  // be gone after inlining.
997  for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) {
998    if (DL && CS.isByValArgument(I)) {
999      // We approximate the number of loads and stores needed by dividing the
1000      // size of the byval type by the target's pointer size.
1001      PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType());
1002      unsigned TypeSize = DL->getTypeSizeInBits(PTy->getElementType());
1003      unsigned PointerSize = DL->getPointerSizeInBits();
1004      // Ceiling division.
1005      unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
1006
1007      // If it generates more than 8 stores it is likely to be expanded as an
1008      // inline memcpy so we take that as an upper bound. Otherwise we assume
1009      // one load and one store per word copied.
1010      // FIXME: The maxStoresPerMemcpy setting from the target should be used
1011      // here instead of a magic number of 8, but it's not available via
1012      // DataLayout.
1013      NumStores = std::min(NumStores, 8U);
1014
1015      Cost -= 2 * NumStores * InlineConstants::InstrCost;
1016    } else {
1017      // For non-byval arguments subtract off one instruction per call
1018      // argument.
1019      Cost -= InlineConstants::InstrCost;
1020    }
1021  }
1022
1023  // If there is only one call of the function, and it has internal linkage,
1024  // the cost of inlining it drops dramatically.
1025  bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() &&
1026    &F == CS.getCalledFunction();
1027  if (OnlyOneCallAndLocalLinkage)
1028    Cost += InlineConstants::LastCallToStaticBonus;
1029
1030  // If the instruction after the call, or if the normal destination of the
1031  // invoke is an unreachable instruction, the function is noreturn. As such,
1032  // there is little point in inlining this unless there is literally zero
1033  // cost.
1034  Instruction *Instr = CS.getInstruction();
1035  if (InvokeInst *II = dyn_cast<InvokeInst>(Instr)) {
1036    if (isa<UnreachableInst>(II->getNormalDest()->begin()))
1037      Threshold = 1;
1038  } else if (isa<UnreachableInst>(++BasicBlock::iterator(Instr)))
1039    Threshold = 1;
1040
1041  // If this function uses the coldcc calling convention, prefer not to inline
1042  // it.
1043  if (F.getCallingConv() == CallingConv::Cold)
1044    Cost += InlineConstants::ColdccPenalty;
1045
1046  // Check if we're done. This can happen due to bonuses and penalties.
1047  if (Cost > Threshold)
1048    return false;
1049
1050  if (F.empty())
1051    return true;
1052
1053  Function *Caller = CS.getInstruction()->getParent()->getParent();
1054  // Check if the caller function is recursive itself.
1055  for (User *U : Caller->users()) {
1056    CallSite Site(U);
1057    if (!Site)
1058      continue;
1059    Instruction *I = Site.getInstruction();
1060    if (I->getParent()->getParent() == Caller) {
1061      IsCallerRecursive = true;
1062      break;
1063    }
1064  }
1065
1066  // Populate our simplified values by mapping from function arguments to call
1067  // arguments with known important simplifications.
1068  CallSite::arg_iterator CAI = CS.arg_begin();
1069  for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end();
1070       FAI != FAE; ++FAI, ++CAI) {
1071    assert(CAI != CS.arg_end());
1072    if (Constant *C = dyn_cast<Constant>(CAI))
1073      SimplifiedValues[FAI] = C;
1074
1075    Value *PtrArg = *CAI;
1076    if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
1077      ConstantOffsetPtrs[FAI] = std::make_pair(PtrArg, C->getValue());
1078
1079      // We can SROA any pointer arguments derived from alloca instructions.
1080      if (isa<AllocaInst>(PtrArg)) {
1081        SROAArgValues[FAI] = PtrArg;
1082        SROAArgCosts[PtrArg] = 0;
1083      }
1084    }
1085  }
1086  NumConstantArgs = SimplifiedValues.size();
1087  NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
1088  NumAllocaArgs = SROAArgValues.size();
1089
1090  // The worklist of live basic blocks in the callee *after* inlining. We avoid
1091  // adding basic blocks of the callee which can be proven to be dead for this
1092  // particular call site in order to get more accurate cost estimates. This
1093  // requires a somewhat heavyweight iteration pattern: we need to walk the
1094  // basic blocks in a breadth-first order as we insert live successors. To
1095  // accomplish this, prioritizing for small iterations because we exit after
1096  // crossing our threshold, we use a small-size optimized SetVector.
1097  typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>,
1098                                  SmallPtrSet<BasicBlock *, 16> > BBSetVector;
1099  BBSetVector BBWorklist;
1100  BBWorklist.insert(&F.getEntryBlock());
1101  // Note that we *must not* cache the size, this loop grows the worklist.
1102  for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
1103    // Bail out the moment we cross the threshold. This means we'll under-count
1104    // the cost, but only when undercounting doesn't matter.
1105    if (Cost > (Threshold + VectorBonus))
1106      break;
1107
1108    BasicBlock *BB = BBWorklist[Idx];
1109    if (BB->empty())
1110      continue;
1111
1112    // Analyze the cost of this block. If we blow through the threshold, this
1113    // returns false, and we can bail on out.
1114    if (!analyzeBlock(BB)) {
1115      if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca ||
1116          HasIndirectBr)
1117        return false;
1118
1119      // If the caller is a recursive function then we don't want to inline
1120      // functions which allocate a lot of stack space because it would increase
1121      // the caller stack usage dramatically.
1122      if (IsCallerRecursive &&
1123          AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller)
1124        return false;
1125
1126      break;
1127    }
1128
1129    TerminatorInst *TI = BB->getTerminator();
1130
1131    // Add in the live successors by first checking whether we have terminator
1132    // that may be simplified based on the values simplified by this call.
1133    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1134      if (BI->isConditional()) {
1135        Value *Cond = BI->getCondition();
1136        if (ConstantInt *SimpleCond
1137              = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
1138          BBWorklist.insert(BI->getSuccessor(SimpleCond->isZero() ? 1 : 0));
1139          continue;
1140        }
1141      }
1142    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1143      Value *Cond = SI->getCondition();
1144      if (ConstantInt *SimpleCond
1145            = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
1146        BBWorklist.insert(SI->findCaseValue(SimpleCond).getCaseSuccessor());
1147        continue;
1148      }
1149    }
1150
1151    // If we're unable to select a particular successor, just count all of
1152    // them.
1153    for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize;
1154         ++TIdx)
1155      BBWorklist.insert(TI->getSuccessor(TIdx));
1156
1157    // If we had any successors at this point, than post-inlining is likely to
1158    // have them as well. Note that we assume any basic blocks which existed
1159    // due to branches or switches which folded above will also fold after
1160    // inlining.
1161    if (SingleBB && TI->getNumSuccessors() > 1) {
1162      // Take off the bonus we applied to the threshold.
1163      Threshold -= SingleBBBonus;
1164      SingleBB = false;
1165    }
1166  }
1167
1168  // If this is a noduplicate call, we can still inline as long as
1169  // inlining this would cause the removal of the caller (so the instruction
1170  // is not actually duplicated, just moved).
1171  if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall)
1172    return false;
1173
1174  Threshold += VectorBonus;
1175
1176  return Cost < Threshold;
1177}
1178
1179#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1180/// \brief Dump stats about this call's analysis.
1181void CallAnalyzer::dump() {
1182#define DEBUG_PRINT_STAT(x) dbgs() << "      " #x ": " << x << "\n"
1183  DEBUG_PRINT_STAT(NumConstantArgs);
1184  DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
1185  DEBUG_PRINT_STAT(NumAllocaArgs);
1186  DEBUG_PRINT_STAT(NumConstantPtrCmps);
1187  DEBUG_PRINT_STAT(NumConstantPtrDiffs);
1188  DEBUG_PRINT_STAT(NumInstructionsSimplified);
1189  DEBUG_PRINT_STAT(SROACostSavings);
1190  DEBUG_PRINT_STAT(SROACostSavingsLost);
1191  DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
1192  DEBUG_PRINT_STAT(Cost);
1193  DEBUG_PRINT_STAT(Threshold);
1194  DEBUG_PRINT_STAT(VectorBonus);
1195#undef DEBUG_PRINT_STAT
1196}
1197#endif
1198
1199INITIALIZE_PASS_BEGIN(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis",
1200                      true, true)
1201INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
1202INITIALIZE_PASS_END(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis",
1203                    true, true)
1204
1205char InlineCostAnalysis::ID = 0;
1206
1207InlineCostAnalysis::InlineCostAnalysis() : CallGraphSCCPass(ID) {}
1208
1209InlineCostAnalysis::~InlineCostAnalysis() {}
1210
1211void InlineCostAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
1212  AU.setPreservesAll();
1213  AU.addRequired<TargetTransformInfo>();
1214  CallGraphSCCPass::getAnalysisUsage(AU);
1215}
1216
1217bool InlineCostAnalysis::runOnSCC(CallGraphSCC &SCC) {
1218  TTI = &getAnalysis<TargetTransformInfo>();
1219  return false;
1220}
1221
1222InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, int Threshold) {
1223  return getInlineCost(CS, CS.getCalledFunction(), Threshold);
1224}
1225
1226/// \brief Test that two functions either have or have not the given attribute
1227///        at the same time.
1228static bool attributeMatches(Function *F1, Function *F2,
1229                             Attribute::AttrKind Attr) {
1230  return F1->hasFnAttribute(Attr) == F2->hasFnAttribute(Attr);
1231}
1232
1233/// \brief Test that there are no attribute conflicts between Caller and Callee
1234///        that prevent inlining.
1235static bool functionsHaveCompatibleAttributes(Function *Caller,
1236                                              Function *Callee) {
1237  return attributeMatches(Caller, Callee, Attribute::SanitizeAddress) &&
1238         attributeMatches(Caller, Callee, Attribute::SanitizeMemory) &&
1239         attributeMatches(Caller, Callee, Attribute::SanitizeThread);
1240}
1241
1242InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, Function *Callee,
1243                                             int Threshold) {
1244  // Cannot inline indirect calls.
1245  if (!Callee)
1246    return llvm::InlineCost::getNever();
1247
1248  // Calls to functions with always-inline attributes should be inlined
1249  // whenever possible.
1250  if (Callee->hasFnAttribute(Attribute::AlwaysInline)) {
1251    if (isInlineViable(*Callee))
1252      return llvm::InlineCost::getAlways();
1253    return llvm::InlineCost::getNever();
1254  }
1255
1256  // Never inline functions with conflicting attributes (unless callee has
1257  // always-inline attribute).
1258  if (!functionsHaveCompatibleAttributes(CS.getCaller(), Callee))
1259    return llvm::InlineCost::getNever();
1260
1261  // Don't inline this call if the caller has the optnone attribute.
1262  if (CS.getCaller()->hasFnAttribute(Attribute::OptimizeNone))
1263    return llvm::InlineCost::getNever();
1264
1265  // Don't inline functions which can be redefined at link-time to mean
1266  // something else.  Don't inline functions marked noinline or call sites
1267  // marked noinline.
1268  if (Callee->mayBeOverridden() ||
1269      Callee->hasFnAttribute(Attribute::NoInline) || CS.isNoInline())
1270    return llvm::InlineCost::getNever();
1271
1272  DEBUG(llvm::dbgs() << "      Analyzing call of " << Callee->getName()
1273        << "...\n");
1274
1275  CallAnalyzer CA(Callee->getDataLayout(), *TTI, *Callee, Threshold);
1276  bool ShouldInline = CA.analyzeCall(CS);
1277
1278  DEBUG(CA.dump());
1279
1280  // Check if there was a reason to force inlining or no inlining.
1281  if (!ShouldInline && CA.getCost() < CA.getThreshold())
1282    return InlineCost::getNever();
1283  if (ShouldInline && CA.getCost() >= CA.getThreshold())
1284    return InlineCost::getAlways();
1285
1286  return llvm::InlineCost::get(CA.getCost(), CA.getThreshold());
1287}
1288
1289bool InlineCostAnalysis::isInlineViable(Function &F) {
1290  bool ReturnsTwice =
1291    F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
1292                                   Attribute::ReturnsTwice);
1293  for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
1294    // Disallow inlining of functions which contain an indirect branch.
1295    if (isa<IndirectBrInst>(BI->getTerminator()))
1296      return false;
1297
1298    for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;
1299         ++II) {
1300      CallSite CS(II);
1301      if (!CS)
1302        continue;
1303
1304      // Disallow recursive calls.
1305      if (&F == CS.getCalledFunction())
1306        return false;
1307
1308      // Disallow calls which expose returns-twice to a function not previously
1309      // attributed as such.
1310      if (!ReturnsTwice && CS.isCall() &&
1311          cast<CallInst>(CS.getInstruction())->canReturnTwice())
1312        return false;
1313    }
1314  }
1315
1316  return true;
1317}
1318