Lint.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass statically checks for common and easily-identified constructs
11// which produce undefined or likely unintended behavior in LLVM IR.
12//
13// It is not a guarantee of correctness, in two ways. First, it isn't
14// comprehensive. There are checks which could be done statically which are
15// not yet implemented. Some of these are indicated by TODO comments, but
16// those aren't comprehensive either. Second, many conditions cannot be
17// checked statically. This pass does no dynamic instrumentation, so it
18// can't check for all possible problems.
19//
20// Another limitation is that it assumes all code will be executed. A store
21// through a null pointer in a basic block which is never reached is harmless,
22// but this pass will warn about it anyway. This is the main reason why most
23// of these checks live here instead of in the Verifier pass.
24//
25// Optimization passes may make conditions that this pass checks for more or
26// less obvious. If an optimization pass appears to be introducing a warning,
27// it may be that the optimization pass is merely exposing an existing
28// condition in the code.
29//
30// This code may be run before instcombine. In many cases, instcombine checks
31// for the same kinds of things and turns instructions with undefined behavior
32// into unreachable (or equivalent). Because of this, this pass makes some
33// effort to look through bitcasts and so on.
34//
35//===----------------------------------------------------------------------===//
36
37#include "llvm/Analysis/Lint.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/Analysis/AliasAnalysis.h"
40#include "llvm/Analysis/ConstantFolding.h"
41#include "llvm/Analysis/InstructionSimplify.h"
42#include "llvm/Analysis/Loads.h"
43#include "llvm/Analysis/Passes.h"
44#include "llvm/Analysis/ValueTracking.h"
45#include "llvm/IR/CallSite.h"
46#include "llvm/IR/DataLayout.h"
47#include "llvm/IR/Dominators.h"
48#include "llvm/IR/Function.h"
49#include "llvm/IR/InstVisitor.h"
50#include "llvm/IR/IntrinsicInst.h"
51#include "llvm/Pass.h"
52#include "llvm/PassManager.h"
53#include "llvm/Support/Debug.h"
54#include "llvm/Support/raw_ostream.h"
55#include "llvm/Target/TargetLibraryInfo.h"
56using namespace llvm;
57
58namespace {
59  namespace MemRef {
60    static unsigned Read     = 1;
61    static unsigned Write    = 2;
62    static unsigned Callee   = 4;
63    static unsigned Branchee = 8;
64  }
65
66  class Lint : public FunctionPass, public InstVisitor<Lint> {
67    friend class InstVisitor<Lint>;
68
69    void visitFunction(Function &F);
70
71    void visitCallSite(CallSite CS);
72    void visitMemoryReference(Instruction &I, Value *Ptr,
73                              uint64_t Size, unsigned Align,
74                              Type *Ty, unsigned Flags);
75
76    void visitCallInst(CallInst &I);
77    void visitInvokeInst(InvokeInst &I);
78    void visitReturnInst(ReturnInst &I);
79    void visitLoadInst(LoadInst &I);
80    void visitStoreInst(StoreInst &I);
81    void visitXor(BinaryOperator &I);
82    void visitSub(BinaryOperator &I);
83    void visitLShr(BinaryOperator &I);
84    void visitAShr(BinaryOperator &I);
85    void visitShl(BinaryOperator &I);
86    void visitSDiv(BinaryOperator &I);
87    void visitUDiv(BinaryOperator &I);
88    void visitSRem(BinaryOperator &I);
89    void visitURem(BinaryOperator &I);
90    void visitAllocaInst(AllocaInst &I);
91    void visitVAArgInst(VAArgInst &I);
92    void visitIndirectBrInst(IndirectBrInst &I);
93    void visitExtractElementInst(ExtractElementInst &I);
94    void visitInsertElementInst(InsertElementInst &I);
95    void visitUnreachableInst(UnreachableInst &I);
96
97    Value *findValue(Value *V, bool OffsetOk) const;
98    Value *findValueImpl(Value *V, bool OffsetOk,
99                         SmallPtrSet<Value *, 4> &Visited) const;
100
101  public:
102    Module *Mod;
103    AliasAnalysis *AA;
104    DominatorTree *DT;
105    const DataLayout *DL;
106    TargetLibraryInfo *TLI;
107
108    std::string Messages;
109    raw_string_ostream MessagesStr;
110
111    static char ID; // Pass identification, replacement for typeid
112    Lint() : FunctionPass(ID), MessagesStr(Messages) {
113      initializeLintPass(*PassRegistry::getPassRegistry());
114    }
115
116    bool runOnFunction(Function &F) override;
117
118    void getAnalysisUsage(AnalysisUsage &AU) const override {
119      AU.setPreservesAll();
120      AU.addRequired<AliasAnalysis>();
121      AU.addRequired<TargetLibraryInfo>();
122      AU.addRequired<DominatorTreeWrapperPass>();
123    }
124    void print(raw_ostream &O, const Module *M) const override {}
125
126    void WriteValue(const Value *V) {
127      if (!V) return;
128      if (isa<Instruction>(V)) {
129        MessagesStr << *V << '\n';
130      } else {
131        V->printAsOperand(MessagesStr, true, Mod);
132        MessagesStr << '\n';
133      }
134    }
135
136    // CheckFailed - A check failed, so print out the condition and the message
137    // that failed.  This provides a nice place to put a breakpoint if you want
138    // to see why something is not correct.
139    void CheckFailed(const Twine &Message,
140                     const Value *V1 = nullptr, const Value *V2 = nullptr,
141                     const Value *V3 = nullptr, const Value *V4 = nullptr) {
142      MessagesStr << Message.str() << "\n";
143      WriteValue(V1);
144      WriteValue(V2);
145      WriteValue(V3);
146      WriteValue(V4);
147    }
148  };
149}
150
151char Lint::ID = 0;
152INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
153                      false, true)
154INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
155INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
156INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
157INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
158                    false, true)
159
160// Assert - We know that cond should be true, if not print an error message.
161#define Assert(C, M) \
162    do { if (!(C)) { CheckFailed(M); return; } } while (0)
163#define Assert1(C, M, V1) \
164    do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
165#define Assert2(C, M, V1, V2) \
166    do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
167#define Assert3(C, M, V1, V2, V3) \
168    do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
169#define Assert4(C, M, V1, V2, V3, V4) \
170    do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
171
172// Lint::run - This is the main Analysis entry point for a
173// function.
174//
175bool Lint::runOnFunction(Function &F) {
176  Mod = F.getParent();
177  AA = &getAnalysis<AliasAnalysis>();
178  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
179  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
180  DL = DLP ? &DLP->getDataLayout() : nullptr;
181  TLI = &getAnalysis<TargetLibraryInfo>();
182  visit(F);
183  dbgs() << MessagesStr.str();
184  Messages.clear();
185  return false;
186}
187
188void Lint::visitFunction(Function &F) {
189  // This isn't undefined behavior, it's just a little unusual, and it's a
190  // fairly common mistake to neglect to name a function.
191  Assert1(F.hasName() || F.hasLocalLinkage(),
192          "Unusual: Unnamed function with non-local linkage", &F);
193
194  // TODO: Check for irreducible control flow.
195}
196
197void Lint::visitCallSite(CallSite CS) {
198  Instruction &I = *CS.getInstruction();
199  Value *Callee = CS.getCalledValue();
200
201  visitMemoryReference(I, Callee, AliasAnalysis::UnknownSize,
202                       0, nullptr, MemRef::Callee);
203
204  if (Function *F = dyn_cast<Function>(findValue(Callee, /*OffsetOk=*/false))) {
205    Assert1(CS.getCallingConv() == F->getCallingConv(),
206            "Undefined behavior: Caller and callee calling convention differ",
207            &I);
208
209    FunctionType *FT = F->getFunctionType();
210    unsigned NumActualArgs = CS.arg_size();
211
212    Assert1(FT->isVarArg() ?
213              FT->getNumParams() <= NumActualArgs :
214              FT->getNumParams() == NumActualArgs,
215            "Undefined behavior: Call argument count mismatches callee "
216            "argument count", &I);
217
218    Assert1(FT->getReturnType() == I.getType(),
219            "Undefined behavior: Call return type mismatches "
220            "callee return type", &I);
221
222    // Check argument types (in case the callee was casted) and attributes.
223    // TODO: Verify that caller and callee attributes are compatible.
224    Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
225    CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
226    for (; AI != AE; ++AI) {
227      Value *Actual = *AI;
228      if (PI != PE) {
229        Argument *Formal = PI++;
230        Assert1(Formal->getType() == Actual->getType(),
231                "Undefined behavior: Call argument type mismatches "
232                "callee parameter type", &I);
233
234        // Check that noalias arguments don't alias other arguments. This is
235        // not fully precise because we don't know the sizes of the dereferenced
236        // memory regions.
237        if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy())
238          for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; ++BI)
239            if (AI != BI && (*BI)->getType()->isPointerTy()) {
240              AliasAnalysis::AliasResult Result = AA->alias(*AI, *BI);
241              Assert1(Result != AliasAnalysis::MustAlias &&
242                      Result != AliasAnalysis::PartialAlias,
243                      "Unusual: noalias argument aliases another argument", &I);
244            }
245
246        // Check that an sret argument points to valid memory.
247        if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
248          Type *Ty =
249            cast<PointerType>(Formal->getType())->getElementType();
250          visitMemoryReference(I, Actual, AA->getTypeStoreSize(Ty),
251                               DL ? DL->getABITypeAlignment(Ty) : 0,
252                               Ty, MemRef::Read | MemRef::Write);
253        }
254      }
255    }
256  }
257
258  if (CS.isCall() && cast<CallInst>(CS.getInstruction())->isTailCall())
259    for (CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
260         AI != AE; ++AI) {
261      Value *Obj = findValue(*AI, /*OffsetOk=*/true);
262      Assert1(!isa<AllocaInst>(Obj),
263              "Undefined behavior: Call with \"tail\" keyword references "
264              "alloca", &I);
265    }
266
267
268  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
269    switch (II->getIntrinsicID()) {
270    default: break;
271
272    // TODO: Check more intrinsics
273
274    case Intrinsic::memcpy: {
275      MemCpyInst *MCI = cast<MemCpyInst>(&I);
276      // TODO: If the size is known, use it.
277      visitMemoryReference(I, MCI->getDest(), AliasAnalysis::UnknownSize,
278                           MCI->getAlignment(), nullptr,
279                           MemRef::Write);
280      visitMemoryReference(I, MCI->getSource(), AliasAnalysis::UnknownSize,
281                           MCI->getAlignment(), nullptr,
282                           MemRef::Read);
283
284      // Check that the memcpy arguments don't overlap. The AliasAnalysis API
285      // isn't expressive enough for what we really want to do. Known partial
286      // overlap is not distinguished from the case where nothing is known.
287      uint64_t Size = 0;
288      if (const ConstantInt *Len =
289            dyn_cast<ConstantInt>(findValue(MCI->getLength(),
290                                            /*OffsetOk=*/false)))
291        if (Len->getValue().isIntN(32))
292          Size = Len->getValue().getZExtValue();
293      Assert1(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
294              AliasAnalysis::MustAlias,
295              "Undefined behavior: memcpy source and destination overlap", &I);
296      break;
297    }
298    case Intrinsic::memmove: {
299      MemMoveInst *MMI = cast<MemMoveInst>(&I);
300      // TODO: If the size is known, use it.
301      visitMemoryReference(I, MMI->getDest(), AliasAnalysis::UnknownSize,
302                           MMI->getAlignment(), nullptr,
303                           MemRef::Write);
304      visitMemoryReference(I, MMI->getSource(), AliasAnalysis::UnknownSize,
305                           MMI->getAlignment(), nullptr,
306                           MemRef::Read);
307      break;
308    }
309    case Intrinsic::memset: {
310      MemSetInst *MSI = cast<MemSetInst>(&I);
311      // TODO: If the size is known, use it.
312      visitMemoryReference(I, MSI->getDest(), AliasAnalysis::UnknownSize,
313                           MSI->getAlignment(), nullptr,
314                           MemRef::Write);
315      break;
316    }
317
318    case Intrinsic::vastart:
319      Assert1(I.getParent()->getParent()->isVarArg(),
320              "Undefined behavior: va_start called in a non-varargs function",
321              &I);
322
323      visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
324                           0, nullptr, MemRef::Read | MemRef::Write);
325      break;
326    case Intrinsic::vacopy:
327      visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
328                           0, nullptr, MemRef::Write);
329      visitMemoryReference(I, CS.getArgument(1), AliasAnalysis::UnknownSize,
330                           0, nullptr, MemRef::Read);
331      break;
332    case Intrinsic::vaend:
333      visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
334                           0, nullptr, MemRef::Read | MemRef::Write);
335      break;
336
337    case Intrinsic::stackrestore:
338      // Stackrestore doesn't read or write memory, but it sets the
339      // stack pointer, which the compiler may read from or write to
340      // at any time, so check it for both readability and writeability.
341      visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
342                           0, nullptr, MemRef::Read | MemRef::Write);
343      break;
344    }
345}
346
347void Lint::visitCallInst(CallInst &I) {
348  return visitCallSite(&I);
349}
350
351void Lint::visitInvokeInst(InvokeInst &I) {
352  return visitCallSite(&I);
353}
354
355void Lint::visitReturnInst(ReturnInst &I) {
356  Function *F = I.getParent()->getParent();
357  Assert1(!F->doesNotReturn(),
358          "Unusual: Return statement in function with noreturn attribute",
359          &I);
360
361  if (Value *V = I.getReturnValue()) {
362    Value *Obj = findValue(V, /*OffsetOk=*/true);
363    Assert1(!isa<AllocaInst>(Obj),
364            "Unusual: Returning alloca value", &I);
365  }
366}
367
368// TODO: Check that the reference is in bounds.
369// TODO: Check readnone/readonly function attributes.
370void Lint::visitMemoryReference(Instruction &I,
371                                Value *Ptr, uint64_t Size, unsigned Align,
372                                Type *Ty, unsigned Flags) {
373  // If no memory is being referenced, it doesn't matter if the pointer
374  // is valid.
375  if (Size == 0)
376    return;
377
378  Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
379  Assert1(!isa<ConstantPointerNull>(UnderlyingObject),
380          "Undefined behavior: Null pointer dereference", &I);
381  Assert1(!isa<UndefValue>(UnderlyingObject),
382          "Undefined behavior: Undef pointer dereference", &I);
383  Assert1(!isa<ConstantInt>(UnderlyingObject) ||
384          !cast<ConstantInt>(UnderlyingObject)->isAllOnesValue(),
385          "Unusual: All-ones pointer dereference", &I);
386  Assert1(!isa<ConstantInt>(UnderlyingObject) ||
387          !cast<ConstantInt>(UnderlyingObject)->isOne(),
388          "Unusual: Address one pointer dereference", &I);
389
390  if (Flags & MemRef::Write) {
391    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
392      Assert1(!GV->isConstant(),
393              "Undefined behavior: Write to read-only memory", &I);
394    Assert1(!isa<Function>(UnderlyingObject) &&
395            !isa<BlockAddress>(UnderlyingObject),
396            "Undefined behavior: Write to text section", &I);
397  }
398  if (Flags & MemRef::Read) {
399    Assert1(!isa<Function>(UnderlyingObject),
400            "Unusual: Load from function body", &I);
401    Assert1(!isa<BlockAddress>(UnderlyingObject),
402            "Undefined behavior: Load from block address", &I);
403  }
404  if (Flags & MemRef::Callee) {
405    Assert1(!isa<BlockAddress>(UnderlyingObject),
406            "Undefined behavior: Call to block address", &I);
407  }
408  if (Flags & MemRef::Branchee) {
409    Assert1(!isa<Constant>(UnderlyingObject) ||
410            isa<BlockAddress>(UnderlyingObject),
411            "Undefined behavior: Branch to non-blockaddress", &I);
412  }
413
414  // Check for buffer overflows and misalignment.
415  // Only handles memory references that read/write something simple like an
416  // alloca instruction or a global variable.
417  int64_t Offset = 0;
418  if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, DL)) {
419    // OK, so the access is to a constant offset from Ptr.  Check that Ptr is
420    // something we can handle and if so extract the size of this base object
421    // along with its alignment.
422    uint64_t BaseSize = AliasAnalysis::UnknownSize;
423    unsigned BaseAlign = 0;
424
425    if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
426      Type *ATy = AI->getAllocatedType();
427      if (DL && !AI->isArrayAllocation() && ATy->isSized())
428        BaseSize = DL->getTypeAllocSize(ATy);
429      BaseAlign = AI->getAlignment();
430      if (DL && BaseAlign == 0 && ATy->isSized())
431        BaseAlign = DL->getABITypeAlignment(ATy);
432    } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
433      // If the global may be defined differently in another compilation unit
434      // then don't warn about funky memory accesses.
435      if (GV->hasDefinitiveInitializer()) {
436        Type *GTy = GV->getType()->getElementType();
437        if (DL && GTy->isSized())
438          BaseSize = DL->getTypeAllocSize(GTy);
439        BaseAlign = GV->getAlignment();
440        if (DL && BaseAlign == 0 && GTy->isSized())
441          BaseAlign = DL->getABITypeAlignment(GTy);
442      }
443    }
444
445    // Accesses from before the start or after the end of the object are not
446    // defined.
447    Assert1(Size == AliasAnalysis::UnknownSize ||
448            BaseSize == AliasAnalysis::UnknownSize ||
449            (Offset >= 0 && Offset + Size <= BaseSize),
450            "Undefined behavior: Buffer overflow", &I);
451
452    // Accesses that say that the memory is more aligned than it is are not
453    // defined.
454    if (DL && Align == 0 && Ty && Ty->isSized())
455      Align = DL->getABITypeAlignment(Ty);
456    Assert1(!BaseAlign || Align <= MinAlign(BaseAlign, Offset),
457            "Undefined behavior: Memory reference address is misaligned", &I);
458  }
459}
460
461void Lint::visitLoadInst(LoadInst &I) {
462  visitMemoryReference(I, I.getPointerOperand(),
463                       AA->getTypeStoreSize(I.getType()), I.getAlignment(),
464                       I.getType(), MemRef::Read);
465}
466
467void Lint::visitStoreInst(StoreInst &I) {
468  visitMemoryReference(I, I.getPointerOperand(),
469                       AA->getTypeStoreSize(I.getOperand(0)->getType()),
470                       I.getAlignment(),
471                       I.getOperand(0)->getType(), MemRef::Write);
472}
473
474void Lint::visitXor(BinaryOperator &I) {
475  Assert1(!isa<UndefValue>(I.getOperand(0)) ||
476          !isa<UndefValue>(I.getOperand(1)),
477          "Undefined result: xor(undef, undef)", &I);
478}
479
480void Lint::visitSub(BinaryOperator &I) {
481  Assert1(!isa<UndefValue>(I.getOperand(0)) ||
482          !isa<UndefValue>(I.getOperand(1)),
483          "Undefined result: sub(undef, undef)", &I);
484}
485
486void Lint::visitLShr(BinaryOperator &I) {
487  if (ConstantInt *CI =
488        dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
489    Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
490            "Undefined result: Shift count out of range", &I);
491}
492
493void Lint::visitAShr(BinaryOperator &I) {
494  if (ConstantInt *CI =
495        dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
496    Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
497            "Undefined result: Shift count out of range", &I);
498}
499
500void Lint::visitShl(BinaryOperator &I) {
501  if (ConstantInt *CI =
502        dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
503    Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
504            "Undefined result: Shift count out of range", &I);
505}
506
507static bool isZero(Value *V, const DataLayout *DL) {
508  // Assume undef could be zero.
509  if (isa<UndefValue>(V))
510    return true;
511
512  VectorType *VecTy = dyn_cast<VectorType>(V->getType());
513  if (!VecTy) {
514    unsigned BitWidth = V->getType()->getIntegerBitWidth();
515    APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
516    computeKnownBits(V, KnownZero, KnownOne, DL);
517    return KnownZero.isAllOnesValue();
518  }
519
520  // Per-component check doesn't work with zeroinitializer
521  Constant *C = dyn_cast<Constant>(V);
522  if (!C)
523    return false;
524
525  if (C->isZeroValue())
526    return true;
527
528  // For a vector, KnownZero will only be true if all values are zero, so check
529  // this per component
530  unsigned BitWidth = VecTy->getElementType()->getIntegerBitWidth();
531  for (unsigned I = 0, N = VecTy->getNumElements(); I != N; ++I) {
532    Constant *Elem = C->getAggregateElement(I);
533    if (isa<UndefValue>(Elem))
534      return true;
535
536    APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
537    computeKnownBits(Elem, KnownZero, KnownOne, DL);
538    if (KnownZero.isAllOnesValue())
539      return true;
540  }
541
542  return false;
543}
544
545void Lint::visitSDiv(BinaryOperator &I) {
546  Assert1(!isZero(I.getOperand(1), DL),
547          "Undefined behavior: Division by zero", &I);
548}
549
550void Lint::visitUDiv(BinaryOperator &I) {
551  Assert1(!isZero(I.getOperand(1), DL),
552          "Undefined behavior: Division by zero", &I);
553}
554
555void Lint::visitSRem(BinaryOperator &I) {
556  Assert1(!isZero(I.getOperand(1), DL),
557          "Undefined behavior: Division by zero", &I);
558}
559
560void Lint::visitURem(BinaryOperator &I) {
561  Assert1(!isZero(I.getOperand(1), DL),
562          "Undefined behavior: Division by zero", &I);
563}
564
565void Lint::visitAllocaInst(AllocaInst &I) {
566  if (isa<ConstantInt>(I.getArraySize()))
567    // This isn't undefined behavior, it's just an obvious pessimization.
568    Assert1(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
569            "Pessimization: Static alloca outside of entry block", &I);
570
571  // TODO: Check for an unusual size (MSB set?)
572}
573
574void Lint::visitVAArgInst(VAArgInst &I) {
575  visitMemoryReference(I, I.getOperand(0), AliasAnalysis::UnknownSize, 0,
576                       nullptr, MemRef::Read | MemRef::Write);
577}
578
579void Lint::visitIndirectBrInst(IndirectBrInst &I) {
580  visitMemoryReference(I, I.getAddress(), AliasAnalysis::UnknownSize, 0,
581                       nullptr, MemRef::Branchee);
582
583  Assert1(I.getNumDestinations() != 0,
584          "Undefined behavior: indirectbr with no destinations", &I);
585}
586
587void Lint::visitExtractElementInst(ExtractElementInst &I) {
588  if (ConstantInt *CI =
589        dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
590                                        /*OffsetOk=*/false)))
591    Assert1(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
592            "Undefined result: extractelement index out of range", &I);
593}
594
595void Lint::visitInsertElementInst(InsertElementInst &I) {
596  if (ConstantInt *CI =
597        dyn_cast<ConstantInt>(findValue(I.getOperand(2),
598                                        /*OffsetOk=*/false)))
599    Assert1(CI->getValue().ult(I.getType()->getNumElements()),
600            "Undefined result: insertelement index out of range", &I);
601}
602
603void Lint::visitUnreachableInst(UnreachableInst &I) {
604  // This isn't undefined behavior, it's merely suspicious.
605  Assert1(&I == I.getParent()->begin() ||
606          std::prev(BasicBlock::iterator(&I))->mayHaveSideEffects(),
607          "Unusual: unreachable immediately preceded by instruction without "
608          "side effects", &I);
609}
610
611/// findValue - Look through bitcasts and simple memory reference patterns
612/// to identify an equivalent, but more informative, value.  If OffsetOk
613/// is true, look through getelementptrs with non-zero offsets too.
614///
615/// Most analysis passes don't require this logic, because instcombine
616/// will simplify most of these kinds of things away. But it's a goal of
617/// this Lint pass to be useful even on non-optimized IR.
618Value *Lint::findValue(Value *V, bool OffsetOk) const {
619  SmallPtrSet<Value *, 4> Visited;
620  return findValueImpl(V, OffsetOk, Visited);
621}
622
623/// findValueImpl - Implementation helper for findValue.
624Value *Lint::findValueImpl(Value *V, bool OffsetOk,
625                           SmallPtrSet<Value *, 4> &Visited) const {
626  // Detect self-referential values.
627  if (!Visited.insert(V))
628    return UndefValue::get(V->getType());
629
630  // TODO: Look through sext or zext cast, when the result is known to
631  // be interpreted as signed or unsigned, respectively.
632  // TODO: Look through eliminable cast pairs.
633  // TODO: Look through calls with unique return values.
634  // TODO: Look through vector insert/extract/shuffle.
635  V = OffsetOk ? GetUnderlyingObject(V, DL) : V->stripPointerCasts();
636  if (LoadInst *L = dyn_cast<LoadInst>(V)) {
637    BasicBlock::iterator BBI = L;
638    BasicBlock *BB = L->getParent();
639    SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
640    for (;;) {
641      if (!VisitedBlocks.insert(BB)) break;
642      if (Value *U = FindAvailableLoadedValue(L->getPointerOperand(),
643                                              BB, BBI, 6, AA))
644        return findValueImpl(U, OffsetOk, Visited);
645      if (BBI != BB->begin()) break;
646      BB = BB->getUniquePredecessor();
647      if (!BB) break;
648      BBI = BB->end();
649    }
650  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
651    if (Value *W = PN->hasConstantValue())
652      if (W != V)
653        return findValueImpl(W, OffsetOk, Visited);
654  } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
655    if (CI->isNoopCast(DL))
656      return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
657  } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
658    if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
659                                     Ex->getIndices()))
660      if (W != V)
661        return findValueImpl(W, OffsetOk, Visited);
662  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
663    // Same as above, but for ConstantExpr instead of Instruction.
664    if (Instruction::isCast(CE->getOpcode())) {
665      if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
666                               CE->getOperand(0)->getType(),
667                               CE->getType(),
668                               DL ? DL->getIntPtrType(V->getType()) :
669                                    Type::getInt64Ty(V->getContext())))
670        return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
671    } else if (CE->getOpcode() == Instruction::ExtractValue) {
672      ArrayRef<unsigned> Indices = CE->getIndices();
673      if (Value *W = FindInsertedValue(CE->getOperand(0), Indices))
674        if (W != V)
675          return findValueImpl(W, OffsetOk, Visited);
676    }
677  }
678
679  // As a last resort, try SimplifyInstruction or constant folding.
680  if (Instruction *Inst = dyn_cast<Instruction>(V)) {
681    if (Value *W = SimplifyInstruction(Inst, DL, TLI, DT))
682      return findValueImpl(W, OffsetOk, Visited);
683  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
684    if (Value *W = ConstantFoldConstantExpression(CE, DL, TLI))
685      if (W != V)
686        return findValueImpl(W, OffsetOk, Visited);
687  }
688
689  return V;
690}
691
692//===----------------------------------------------------------------------===//
693//  Implement the public interfaces to this file...
694//===----------------------------------------------------------------------===//
695
696FunctionPass *llvm::createLintPass() {
697  return new Lint();
698}
699
700/// lintFunction - Check a function for errors, printing messages on stderr.
701///
702void llvm::lintFunction(const Function &f) {
703  Function &F = const_cast<Function&>(f);
704  assert(!F.isDeclaration() && "Cannot lint external functions");
705
706  FunctionPassManager FPM(F.getParent());
707  Lint *V = new Lint();
708  FPM.add(V);
709  FPM.run(F);
710}
711
712/// lintModule - Check a module for errors, printing messages on stderr.
713///
714void llvm::lintModule(const Module &M) {
715  PassManager PM;
716  Lint *V = new Lint();
717  PM.add(V);
718  PM.run(const_cast<Module&>(M));
719}
720