LoopInfo.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  Note that the
12// loops identified may actually be several natural loops that share the same
13// header node... not just a single natural loop.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Analysis/LoopInfo.h"
18#include "llvm/ADT/DepthFirstIterator.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/Analysis/LoopInfoImpl.h"
21#include "llvm/Analysis/LoopIterator.h"
22#include "llvm/Analysis/ValueTracking.h"
23#include "llvm/IR/CFG.h"
24#include "llvm/IR/Constants.h"
25#include "llvm/IR/Dominators.h"
26#include "llvm/IR/Instructions.h"
27#include "llvm/IR/Metadata.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Debug.h"
30#include <algorithm>
31using namespace llvm;
32
33// Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
34template class llvm::LoopBase<BasicBlock, Loop>;
35template class llvm::LoopInfoBase<BasicBlock, Loop>;
36
37// Always verify loopinfo if expensive checking is enabled.
38#ifdef XDEBUG
39static bool VerifyLoopInfo = true;
40#else
41static bool VerifyLoopInfo = false;
42#endif
43static cl::opt<bool,true>
44VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
45                cl::desc("Verify loop info (time consuming)"));
46
47char LoopInfo::ID = 0;
48INITIALIZE_PASS_BEGIN(LoopInfo, "loops", "Natural Loop Information", true, true)
49INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
50INITIALIZE_PASS_END(LoopInfo, "loops", "Natural Loop Information", true, true)
51
52// Loop identifier metadata name.
53static const char *const LoopMDName = "llvm.loop";
54
55//===----------------------------------------------------------------------===//
56// Loop implementation
57//
58
59/// isLoopInvariant - Return true if the specified value is loop invariant
60///
61bool Loop::isLoopInvariant(Value *V) const {
62  if (Instruction *I = dyn_cast<Instruction>(V))
63    return !contains(I);
64  return true;  // All non-instructions are loop invariant
65}
66
67/// hasLoopInvariantOperands - Return true if all the operands of the
68/// specified instruction are loop invariant.
69bool Loop::hasLoopInvariantOperands(Instruction *I) const {
70  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
71    if (!isLoopInvariant(I->getOperand(i)))
72      return false;
73
74  return true;
75}
76
77/// makeLoopInvariant - If the given value is an instruciton inside of the
78/// loop and it can be hoisted, do so to make it trivially loop-invariant.
79/// Return true if the value after any hoisting is loop invariant. This
80/// function can be used as a slightly more aggressive replacement for
81/// isLoopInvariant.
82///
83/// If InsertPt is specified, it is the point to hoist instructions to.
84/// If null, the terminator of the loop preheader is used.
85///
86bool Loop::makeLoopInvariant(Value *V, bool &Changed,
87                             Instruction *InsertPt) const {
88  if (Instruction *I = dyn_cast<Instruction>(V))
89    return makeLoopInvariant(I, Changed, InsertPt);
90  return true;  // All non-instructions are loop-invariant.
91}
92
93/// makeLoopInvariant - If the given instruction is inside of the
94/// loop and it can be hoisted, do so to make it trivially loop-invariant.
95/// Return true if the instruction after any hoisting is loop invariant. This
96/// function can be used as a slightly more aggressive replacement for
97/// isLoopInvariant.
98///
99/// If InsertPt is specified, it is the point to hoist instructions to.
100/// If null, the terminator of the loop preheader is used.
101///
102bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
103                             Instruction *InsertPt) const {
104  // Test if the value is already loop-invariant.
105  if (isLoopInvariant(I))
106    return true;
107  if (!isSafeToSpeculativelyExecute(I))
108    return false;
109  if (I->mayReadFromMemory())
110    return false;
111  // The landingpad instruction is immobile.
112  if (isa<LandingPadInst>(I))
113    return false;
114  // Determine the insertion point, unless one was given.
115  if (!InsertPt) {
116    BasicBlock *Preheader = getLoopPreheader();
117    // Without a preheader, hoisting is not feasible.
118    if (!Preheader)
119      return false;
120    InsertPt = Preheader->getTerminator();
121  }
122  // Don't hoist instructions with loop-variant operands.
123  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
124    if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
125      return false;
126
127  // Hoist.
128  I->moveBefore(InsertPt);
129  Changed = true;
130  return true;
131}
132
133/// getCanonicalInductionVariable - Check to see if the loop has a canonical
134/// induction variable: an integer recurrence that starts at 0 and increments
135/// by one each time through the loop.  If so, return the phi node that
136/// corresponds to it.
137///
138/// The IndVarSimplify pass transforms loops to have a canonical induction
139/// variable.
140///
141PHINode *Loop::getCanonicalInductionVariable() const {
142  BasicBlock *H = getHeader();
143
144  BasicBlock *Incoming = 0, *Backedge = 0;
145  pred_iterator PI = pred_begin(H);
146  assert(PI != pred_end(H) &&
147         "Loop must have at least one backedge!");
148  Backedge = *PI++;
149  if (PI == pred_end(H)) return 0;  // dead loop
150  Incoming = *PI++;
151  if (PI != pred_end(H)) return 0;  // multiple backedges?
152
153  if (contains(Incoming)) {
154    if (contains(Backedge))
155      return 0;
156    std::swap(Incoming, Backedge);
157  } else if (!contains(Backedge))
158    return 0;
159
160  // Loop over all of the PHI nodes, looking for a canonical indvar.
161  for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
162    PHINode *PN = cast<PHINode>(I);
163    if (ConstantInt *CI =
164        dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
165      if (CI->isNullValue())
166        if (Instruction *Inc =
167            dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
168          if (Inc->getOpcode() == Instruction::Add &&
169                Inc->getOperand(0) == PN)
170            if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
171              if (CI->equalsInt(1))
172                return PN;
173  }
174  return 0;
175}
176
177/// isLCSSAForm - Return true if the Loop is in LCSSA form
178bool Loop::isLCSSAForm(DominatorTree &DT) const {
179  for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
180    BasicBlock *BB = *BI;
181    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I)
182      for (Use &U : I->uses()) {
183        Instruction *UI = cast<Instruction>(U.getUser());
184        BasicBlock *UserBB = UI->getParent();
185        if (PHINode *P = dyn_cast<PHINode>(UI))
186          UserBB = P->getIncomingBlock(U);
187
188        // Check the current block, as a fast-path, before checking whether
189        // the use is anywhere in the loop.  Most values are used in the same
190        // block they are defined in.  Also, blocks not reachable from the
191        // entry are special; uses in them don't need to go through PHIs.
192        if (UserBB != BB &&
193            !contains(UserBB) &&
194            DT.isReachableFromEntry(UserBB))
195          return false;
196      }
197  }
198
199  return true;
200}
201
202/// isLoopSimplifyForm - Return true if the Loop is in the form that
203/// the LoopSimplify form transforms loops to, which is sometimes called
204/// normal form.
205bool Loop::isLoopSimplifyForm() const {
206  // Normal-form loops have a preheader, a single backedge, and all of their
207  // exits have all their predecessors inside the loop.
208  return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
209}
210
211/// isSafeToClone - Return true if the loop body is safe to clone in practice.
212/// Routines that reform the loop CFG and split edges often fail on indirectbr.
213bool Loop::isSafeToClone() const {
214  // Return false if any loop blocks contain indirectbrs, or there are any calls
215  // to noduplicate functions.
216  for (Loop::block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
217    if (isa<IndirectBrInst>((*I)->getTerminator()))
218      return false;
219
220    if (const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator()))
221      if (II->cannotDuplicate())
222        return false;
223
224    for (BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end(); BI != BE; ++BI) {
225      if (const CallInst *CI = dyn_cast<CallInst>(BI)) {
226        if (CI->cannotDuplicate())
227          return false;
228      }
229    }
230  }
231  return true;
232}
233
234MDNode *Loop::getLoopID() const {
235  MDNode *LoopID = 0;
236  if (isLoopSimplifyForm()) {
237    LoopID = getLoopLatch()->getTerminator()->getMetadata(LoopMDName);
238  } else {
239    // Go through each predecessor of the loop header and check the
240    // terminator for the metadata.
241    BasicBlock *H = getHeader();
242    for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) {
243      TerminatorInst *TI = (*I)->getTerminator();
244      MDNode *MD = 0;
245
246      // Check if this terminator branches to the loop header.
247      for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) {
248        if (TI->getSuccessor(i) == H) {
249          MD = TI->getMetadata(LoopMDName);
250          break;
251        }
252      }
253      if (!MD)
254        return 0;
255
256      if (!LoopID)
257        LoopID = MD;
258      else if (MD != LoopID)
259        return 0;
260    }
261  }
262  if (!LoopID || LoopID->getNumOperands() == 0 ||
263      LoopID->getOperand(0) != LoopID)
264    return 0;
265  return LoopID;
266}
267
268void Loop::setLoopID(MDNode *LoopID) const {
269  assert(LoopID && "Loop ID should not be null");
270  assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand");
271  assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself");
272
273  if (isLoopSimplifyForm()) {
274    getLoopLatch()->getTerminator()->setMetadata(LoopMDName, LoopID);
275    return;
276  }
277
278  BasicBlock *H = getHeader();
279  for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) {
280    TerminatorInst *TI = (*I)->getTerminator();
281    for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) {
282      if (TI->getSuccessor(i) == H)
283        TI->setMetadata(LoopMDName, LoopID);
284    }
285  }
286}
287
288bool Loop::isAnnotatedParallel() const {
289  MDNode *desiredLoopIdMetadata = getLoopID();
290
291  if (!desiredLoopIdMetadata)
292      return false;
293
294  // The loop branch contains the parallel loop metadata. In order to ensure
295  // that any parallel-loop-unaware optimization pass hasn't added loop-carried
296  // dependencies (thus converted the loop back to a sequential loop), check
297  // that all the memory instructions in the loop contain parallelism metadata
298  // that point to the same unique "loop id metadata" the loop branch does.
299  for (block_iterator BB = block_begin(), BE = block_end(); BB != BE; ++BB) {
300    for (BasicBlock::iterator II = (*BB)->begin(), EE = (*BB)->end();
301         II != EE; II++) {
302
303      if (!II->mayReadOrWriteMemory())
304        continue;
305
306      // The memory instruction can refer to the loop identifier metadata
307      // directly or indirectly through another list metadata (in case of
308      // nested parallel loops). The loop identifier metadata refers to
309      // itself so we can check both cases with the same routine.
310      MDNode *loopIdMD = II->getMetadata("llvm.mem.parallel_loop_access");
311
312      if (!loopIdMD)
313        return false;
314
315      bool loopIdMDFound = false;
316      for (unsigned i = 0, e = loopIdMD->getNumOperands(); i < e; ++i) {
317        if (loopIdMD->getOperand(i) == desiredLoopIdMetadata) {
318          loopIdMDFound = true;
319          break;
320        }
321      }
322
323      if (!loopIdMDFound)
324        return false;
325    }
326  }
327  return true;
328}
329
330
331/// hasDedicatedExits - Return true if no exit block for the loop
332/// has a predecessor that is outside the loop.
333bool Loop::hasDedicatedExits() const {
334  // Each predecessor of each exit block of a normal loop is contained
335  // within the loop.
336  SmallVector<BasicBlock *, 4> ExitBlocks;
337  getExitBlocks(ExitBlocks);
338  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
339    for (pred_iterator PI = pred_begin(ExitBlocks[i]),
340         PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
341      if (!contains(*PI))
342        return false;
343  // All the requirements are met.
344  return true;
345}
346
347/// getUniqueExitBlocks - Return all unique successor blocks of this loop.
348/// These are the blocks _outside of the current loop_ which are branched to.
349/// This assumes that loop exits are in canonical form.
350///
351void
352Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
353  assert(hasDedicatedExits() &&
354         "getUniqueExitBlocks assumes the loop has canonical form exits!");
355
356  SmallVector<BasicBlock *, 32> switchExitBlocks;
357
358  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
359
360    BasicBlock *current = *BI;
361    switchExitBlocks.clear();
362
363    for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
364      // If block is inside the loop then it is not a exit block.
365      if (contains(*I))
366        continue;
367
368      pred_iterator PI = pred_begin(*I);
369      BasicBlock *firstPred = *PI;
370
371      // If current basic block is this exit block's first predecessor
372      // then only insert exit block in to the output ExitBlocks vector.
373      // This ensures that same exit block is not inserted twice into
374      // ExitBlocks vector.
375      if (current != firstPred)
376        continue;
377
378      // If a terminator has more then two successors, for example SwitchInst,
379      // then it is possible that there are multiple edges from current block
380      // to one exit block.
381      if (std::distance(succ_begin(current), succ_end(current)) <= 2) {
382        ExitBlocks.push_back(*I);
383        continue;
384      }
385
386      // In case of multiple edges from current block to exit block, collect
387      // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
388      // duplicate edges.
389      if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
390          == switchExitBlocks.end()) {
391        switchExitBlocks.push_back(*I);
392        ExitBlocks.push_back(*I);
393      }
394    }
395  }
396}
397
398/// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
399/// block, return that block. Otherwise return null.
400BasicBlock *Loop::getUniqueExitBlock() const {
401  SmallVector<BasicBlock *, 8> UniqueExitBlocks;
402  getUniqueExitBlocks(UniqueExitBlocks);
403  if (UniqueExitBlocks.size() == 1)
404    return UniqueExitBlocks[0];
405  return 0;
406}
407
408#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
409void Loop::dump() const {
410  print(dbgs());
411}
412#endif
413
414//===----------------------------------------------------------------------===//
415// UnloopUpdater implementation
416//
417
418namespace {
419/// Find the new parent loop for all blocks within the "unloop" whose last
420/// backedges has just been removed.
421class UnloopUpdater {
422  Loop *Unloop;
423  LoopInfo *LI;
424
425  LoopBlocksDFS DFS;
426
427  // Map unloop's immediate subloops to their nearest reachable parents. Nested
428  // loops within these subloops will not change parents. However, an immediate
429  // subloop's new parent will be the nearest loop reachable from either its own
430  // exits *or* any of its nested loop's exits.
431  DenseMap<Loop*, Loop*> SubloopParents;
432
433  // Flag the presence of an irreducible backedge whose destination is a block
434  // directly contained by the original unloop.
435  bool FoundIB;
436
437public:
438  UnloopUpdater(Loop *UL, LoopInfo *LInfo) :
439    Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {}
440
441  void updateBlockParents();
442
443  void removeBlocksFromAncestors();
444
445  void updateSubloopParents();
446
447protected:
448  Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
449};
450} // end anonymous namespace
451
452/// updateBlockParents - Update the parent loop for all blocks that are directly
453/// contained within the original "unloop".
454void UnloopUpdater::updateBlockParents() {
455  if (Unloop->getNumBlocks()) {
456    // Perform a post order CFG traversal of all blocks within this loop,
457    // propagating the nearest loop from sucessors to predecessors.
458    LoopBlocksTraversal Traversal(DFS, LI);
459    for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
460           POE = Traversal.end(); POI != POE; ++POI) {
461
462      Loop *L = LI->getLoopFor(*POI);
463      Loop *NL = getNearestLoop(*POI, L);
464
465      if (NL != L) {
466        // For reducible loops, NL is now an ancestor of Unloop.
467        assert((NL != Unloop && (!NL || NL->contains(Unloop))) &&
468               "uninitialized successor");
469        LI->changeLoopFor(*POI, NL);
470      }
471      else {
472        // Or the current block is part of a subloop, in which case its parent
473        // is unchanged.
474        assert((FoundIB || Unloop->contains(L)) && "uninitialized successor");
475      }
476    }
477  }
478  // Each irreducible loop within the unloop induces a round of iteration using
479  // the DFS result cached by Traversal.
480  bool Changed = FoundIB;
481  for (unsigned NIters = 0; Changed; ++NIters) {
482    assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm");
483
484    // Iterate over the postorder list of blocks, propagating the nearest loop
485    // from successors to predecessors as before.
486    Changed = false;
487    for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
488           POE = DFS.endPostorder(); POI != POE; ++POI) {
489
490      Loop *L = LI->getLoopFor(*POI);
491      Loop *NL = getNearestLoop(*POI, L);
492      if (NL != L) {
493        assert(NL != Unloop && (!NL || NL->contains(Unloop)) &&
494               "uninitialized successor");
495        LI->changeLoopFor(*POI, NL);
496        Changed = true;
497      }
498    }
499  }
500}
501
502/// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below
503/// their new parents.
504void UnloopUpdater::removeBlocksFromAncestors() {
505  // Remove all unloop's blocks (including those in nested subloops) from
506  // ancestors below the new parent loop.
507  for (Loop::block_iterator BI = Unloop->block_begin(),
508         BE = Unloop->block_end(); BI != BE; ++BI) {
509    Loop *OuterParent = LI->getLoopFor(*BI);
510    if (Unloop->contains(OuterParent)) {
511      while (OuterParent->getParentLoop() != Unloop)
512        OuterParent = OuterParent->getParentLoop();
513      OuterParent = SubloopParents[OuterParent];
514    }
515    // Remove blocks from former Ancestors except Unloop itself which will be
516    // deleted.
517    for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent;
518         OldParent = OldParent->getParentLoop()) {
519      assert(OldParent && "new loop is not an ancestor of the original");
520      OldParent->removeBlockFromLoop(*BI);
521    }
522  }
523}
524
525/// updateSubloopParents - Update the parent loop for all subloops directly
526/// nested within unloop.
527void UnloopUpdater::updateSubloopParents() {
528  while (!Unloop->empty()) {
529    Loop *Subloop = *std::prev(Unloop->end());
530    Unloop->removeChildLoop(std::prev(Unloop->end()));
531
532    assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
533    if (Loop *Parent = SubloopParents[Subloop])
534      Parent->addChildLoop(Subloop);
535    else
536      LI->addTopLevelLoop(Subloop);
537  }
538}
539
540/// getNearestLoop - Return the nearest parent loop among this block's
541/// successors. If a successor is a subloop header, consider its parent to be
542/// the nearest parent of the subloop's exits.
543///
544/// For subloop blocks, simply update SubloopParents and return NULL.
545Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
546
547  // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
548  // is considered uninitialized.
549  Loop *NearLoop = BBLoop;
550
551  Loop *Subloop = 0;
552  if (NearLoop != Unloop && Unloop->contains(NearLoop)) {
553    Subloop = NearLoop;
554    // Find the subloop ancestor that is directly contained within Unloop.
555    while (Subloop->getParentLoop() != Unloop) {
556      Subloop = Subloop->getParentLoop();
557      assert(Subloop && "subloop is not an ancestor of the original loop");
558    }
559    // Get the current nearest parent of the Subloop exits, initially Unloop.
560    NearLoop =
561      SubloopParents.insert(std::make_pair(Subloop, Unloop)).first->second;
562  }
563
564  succ_iterator I = succ_begin(BB), E = succ_end(BB);
565  if (I == E) {
566    assert(!Subloop && "subloop blocks must have a successor");
567    NearLoop = 0; // unloop blocks may now exit the function.
568  }
569  for (; I != E; ++I) {
570    if (*I == BB)
571      continue; // self loops are uninteresting
572
573    Loop *L = LI->getLoopFor(*I);
574    if (L == Unloop) {
575      // This successor has not been processed. This path must lead to an
576      // irreducible backedge.
577      assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
578      FoundIB = true;
579    }
580    if (L != Unloop && Unloop->contains(L)) {
581      // Successor is in a subloop.
582      if (Subloop)
583        continue; // Branching within subloops. Ignore it.
584
585      // BB branches from the original into a subloop header.
586      assert(L->getParentLoop() == Unloop && "cannot skip into nested loops");
587
588      // Get the current nearest parent of the Subloop's exits.
589      L = SubloopParents[L];
590      // L could be Unloop if the only exit was an irreducible backedge.
591    }
592    if (L == Unloop) {
593      continue;
594    }
595    // Handle critical edges from Unloop into a sibling loop.
596    if (L && !L->contains(Unloop)) {
597      L = L->getParentLoop();
598    }
599    // Remember the nearest parent loop among successors or subloop exits.
600    if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L))
601      NearLoop = L;
602  }
603  if (Subloop) {
604    SubloopParents[Subloop] = NearLoop;
605    return BBLoop;
606  }
607  return NearLoop;
608}
609
610//===----------------------------------------------------------------------===//
611// LoopInfo implementation
612//
613bool LoopInfo::runOnFunction(Function &) {
614  releaseMemory();
615  LI.Analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
616  return false;
617}
618
619/// updateUnloop - The last backedge has been removed from a loop--now the
620/// "unloop". Find a new parent for the blocks contained within unloop and
621/// update the loop tree. We don't necessarily have valid dominators at this
622/// point, but LoopInfo is still valid except for the removal of this loop.
623///
624/// Note that Unloop may now be an empty loop. Calling Loop::getHeader without
625/// checking first is illegal.
626void LoopInfo::updateUnloop(Loop *Unloop) {
627
628  // First handle the special case of no parent loop to simplify the algorithm.
629  if (!Unloop->getParentLoop()) {
630    // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
631    for (Loop::block_iterator I = Unloop->block_begin(),
632         E = Unloop->block_end(); I != E; ++I) {
633
634      // Don't reparent blocks in subloops.
635      if (getLoopFor(*I) != Unloop)
636        continue;
637
638      // Blocks no longer have a parent but are still referenced by Unloop until
639      // the Unloop object is deleted.
640      LI.changeLoopFor(*I, 0);
641    }
642
643    // Remove the loop from the top-level LoopInfo object.
644    for (LoopInfo::iterator I = LI.begin();; ++I) {
645      assert(I != LI.end() && "Couldn't find loop");
646      if (*I == Unloop) {
647        LI.removeLoop(I);
648        break;
649      }
650    }
651
652    // Move all of the subloops to the top-level.
653    while (!Unloop->empty())
654      LI.addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
655
656    return;
657  }
658
659  // Update the parent loop for all blocks within the loop. Blocks within
660  // subloops will not change parents.
661  UnloopUpdater Updater(Unloop, this);
662  Updater.updateBlockParents();
663
664  // Remove blocks from former ancestor loops.
665  Updater.removeBlocksFromAncestors();
666
667  // Add direct subloops as children in their new parent loop.
668  Updater.updateSubloopParents();
669
670  // Remove unloop from its parent loop.
671  Loop *ParentLoop = Unloop->getParentLoop();
672  for (Loop::iterator I = ParentLoop->begin();; ++I) {
673    assert(I != ParentLoop->end() && "Couldn't find loop");
674    if (*I == Unloop) {
675      ParentLoop->removeChildLoop(I);
676      break;
677    }
678  }
679}
680
681void LoopInfo::verifyAnalysis() const {
682  // LoopInfo is a FunctionPass, but verifying every loop in the function
683  // each time verifyAnalysis is called is very expensive. The
684  // -verify-loop-info option can enable this. In order to perform some
685  // checking by default, LoopPass has been taught to call verifyLoop
686  // manually during loop pass sequences.
687
688  if (!VerifyLoopInfo) return;
689
690  DenseSet<const Loop*> Loops;
691  for (iterator I = begin(), E = end(); I != E; ++I) {
692    assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
693    (*I)->verifyLoopNest(&Loops);
694  }
695
696  // Verify that blocks are mapped to valid loops.
697  for (DenseMap<BasicBlock*, Loop*>::const_iterator I = LI.BBMap.begin(),
698         E = LI.BBMap.end(); I != E; ++I) {
699    assert(Loops.count(I->second) && "orphaned loop");
700    assert(I->second->contains(I->first) && "orphaned block");
701  }
702}
703
704void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
705  AU.setPreservesAll();
706  AU.addRequired<DominatorTreeWrapperPass>();
707}
708
709void LoopInfo::print(raw_ostream &OS, const Module*) const {
710  LI.print(OS);
711}
712
713//===----------------------------------------------------------------------===//
714// LoopBlocksDFS implementation
715//
716
717/// Traverse the loop blocks and store the DFS result.
718/// Useful for clients that just want the final DFS result and don't need to
719/// visit blocks during the initial traversal.
720void LoopBlocksDFS::perform(LoopInfo *LI) {
721  LoopBlocksTraversal Traversal(*this, LI);
722  for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
723         POE = Traversal.end(); POI != POE; ++POI) ;
724}
725