LoopInfo.cpp revision dc9a217d05eb5b65b51ad1f806166ae6430308b1
1//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  Note that the
12// loops identified may actually be several natural loops that share the same
13// header node... not just a single natural loop.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Analysis/LoopInfo.h"
18#include "llvm/ADT/DepthFirstIterator.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/Analysis/Dominators.h"
21#include "llvm/Analysis/LoopInfoImpl.h"
22#include "llvm/Analysis/LoopIterator.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/Assembly/Writer.h"
25#include "llvm/IR/Constants.h"
26#include "llvm/IR/Instructions.h"
27#include "llvm/IR/Metadata.h"
28#include "llvm/Support/CFG.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/Debug.h"
31#include <algorithm>
32using namespace llvm;
33
34// Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
35template class llvm::LoopBase<BasicBlock, Loop>;
36template class llvm::LoopInfoBase<BasicBlock, Loop>;
37
38// Always verify loopinfo if expensive checking is enabled.
39#ifdef XDEBUG
40static bool VerifyLoopInfo = true;
41#else
42static bool VerifyLoopInfo = false;
43#endif
44static cl::opt<bool,true>
45VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
46                cl::desc("Verify loop info (time consuming)"));
47
48char LoopInfo::ID = 0;
49INITIALIZE_PASS_BEGIN(LoopInfo, "loops", "Natural Loop Information", true, true)
50INITIALIZE_PASS_DEPENDENCY(DominatorTree)
51INITIALIZE_PASS_END(LoopInfo, "loops", "Natural Loop Information", true, true)
52
53// Loop identifier metadata name.
54static const char *const LoopMDName = "llvm.loop";
55
56//===----------------------------------------------------------------------===//
57// Loop implementation
58//
59
60/// isLoopInvariant - Return true if the specified value is loop invariant
61///
62bool Loop::isLoopInvariant(Value *V) const {
63  if (Instruction *I = dyn_cast<Instruction>(V))
64    return !contains(I);
65  return true;  // All non-instructions are loop invariant
66}
67
68/// hasLoopInvariantOperands - Return true if all the operands of the
69/// specified instruction are loop invariant.
70bool Loop::hasLoopInvariantOperands(Instruction *I) const {
71  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
72    if (!isLoopInvariant(I->getOperand(i)))
73      return false;
74
75  return true;
76}
77
78/// makeLoopInvariant - If the given value is an instruciton inside of the
79/// loop and it can be hoisted, do so to make it trivially loop-invariant.
80/// Return true if the value after any hoisting is loop invariant. This
81/// function can be used as a slightly more aggressive replacement for
82/// isLoopInvariant.
83///
84/// If InsertPt is specified, it is the point to hoist instructions to.
85/// If null, the terminator of the loop preheader is used.
86///
87bool Loop::makeLoopInvariant(Value *V, bool &Changed,
88                             Instruction *InsertPt) const {
89  if (Instruction *I = dyn_cast<Instruction>(V))
90    return makeLoopInvariant(I, Changed, InsertPt);
91  return true;  // All non-instructions are loop-invariant.
92}
93
94/// makeLoopInvariant - If the given instruction is inside of the
95/// loop and it can be hoisted, do so to make it trivially loop-invariant.
96/// Return true if the instruction after any hoisting is loop invariant. This
97/// function can be used as a slightly more aggressive replacement for
98/// isLoopInvariant.
99///
100/// If InsertPt is specified, it is the point to hoist instructions to.
101/// If null, the terminator of the loop preheader is used.
102///
103bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
104                             Instruction *InsertPt) const {
105  // Test if the value is already loop-invariant.
106  if (isLoopInvariant(I))
107    return true;
108  if (!isSafeToSpeculativelyExecute(I))
109    return false;
110  if (I->mayReadFromMemory())
111    return false;
112  // The landingpad instruction is immobile.
113  if (isa<LandingPadInst>(I))
114    return false;
115  // Determine the insertion point, unless one was given.
116  if (!InsertPt) {
117    BasicBlock *Preheader = getLoopPreheader();
118    // Without a preheader, hoisting is not feasible.
119    if (!Preheader)
120      return false;
121    InsertPt = Preheader->getTerminator();
122  }
123  // Don't hoist instructions with loop-variant operands.
124  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
125    if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
126      return false;
127
128  // Hoist.
129  I->moveBefore(InsertPt);
130  Changed = true;
131  return true;
132}
133
134/// getCanonicalInductionVariable - Check to see if the loop has a canonical
135/// induction variable: an integer recurrence that starts at 0 and increments
136/// by one each time through the loop.  If so, return the phi node that
137/// corresponds to it.
138///
139/// The IndVarSimplify pass transforms loops to have a canonical induction
140/// variable.
141///
142PHINode *Loop::getCanonicalInductionVariable() const {
143  BasicBlock *H = getHeader();
144
145  BasicBlock *Incoming = 0, *Backedge = 0;
146  pred_iterator PI = pred_begin(H);
147  assert(PI != pred_end(H) &&
148         "Loop must have at least one backedge!");
149  Backedge = *PI++;
150  if (PI == pred_end(H)) return 0;  // dead loop
151  Incoming = *PI++;
152  if (PI != pred_end(H)) return 0;  // multiple backedges?
153
154  if (contains(Incoming)) {
155    if (contains(Backedge))
156      return 0;
157    std::swap(Incoming, Backedge);
158  } else if (!contains(Backedge))
159    return 0;
160
161  // Loop over all of the PHI nodes, looking for a canonical indvar.
162  for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
163    PHINode *PN = cast<PHINode>(I);
164    if (ConstantInt *CI =
165        dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
166      if (CI->isNullValue())
167        if (Instruction *Inc =
168            dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
169          if (Inc->getOpcode() == Instruction::Add &&
170                Inc->getOperand(0) == PN)
171            if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
172              if (CI->equalsInt(1))
173                return PN;
174  }
175  return 0;
176}
177
178/// isLCSSAForm - Return true if the Loop is in LCSSA form
179bool Loop::isLCSSAForm(DominatorTree &DT) const {
180  for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
181    BasicBlock *BB = *BI;
182    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I)
183      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
184           ++UI) {
185        User *U = *UI;
186        BasicBlock *UserBB = cast<Instruction>(U)->getParent();
187        if (PHINode *P = dyn_cast<PHINode>(U))
188          UserBB = P->getIncomingBlock(UI);
189
190        // Check the current block, as a fast-path, before checking whether
191        // the use is anywhere in the loop.  Most values are used in the same
192        // block they are defined in.  Also, blocks not reachable from the
193        // entry are special; uses in them don't need to go through PHIs.
194        if (UserBB != BB &&
195            !contains(UserBB) &&
196            DT.isReachableFromEntry(UserBB))
197          return false;
198      }
199  }
200
201  return true;
202}
203
204/// isLoopSimplifyForm - Return true if the Loop is in the form that
205/// the LoopSimplify form transforms loops to, which is sometimes called
206/// normal form.
207bool Loop::isLoopSimplifyForm() const {
208  // Normal-form loops have a preheader, a single backedge, and all of their
209  // exits have all their predecessors inside the loop.
210  return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
211}
212
213/// isSafeToClone - Return true if the loop body is safe to clone in practice.
214/// Routines that reform the loop CFG and split edges often fail on indirectbr.
215bool Loop::isSafeToClone() const {
216  // Return false if any loop blocks contain indirectbrs, or there are any calls
217  // to noduplicate functions.
218  for (Loop::block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
219    if (isa<IndirectBrInst>((*I)->getTerminator()))
220      return false;
221
222    if (const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator()))
223      if (II->hasFnAttr(Attribute::NoDuplicate))
224        return false;
225
226    for (BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end(); BI != BE; ++BI) {
227      if (const CallInst *CI = dyn_cast<CallInst>(BI)) {
228        if (CI->hasFnAttr(Attribute::NoDuplicate))
229          return false;
230      }
231    }
232  }
233  return true;
234}
235
236MDNode *Loop::getLoopID() const {
237  MDNode *LoopID = 0;
238  if (isLoopSimplifyForm()) {
239    LoopID = getLoopLatch()->getTerminator()->getMetadata(LoopMDName);
240  } else {
241    // Go through each predecessor of the loop header and check the
242    // terminator for the metadata.
243    BasicBlock *H = getHeader();
244    for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) {
245      TerminatorInst *TI = (*I)->getTerminator();
246      MDNode *MD = 0;
247
248      // Check if this terminator branches to the loop header.
249      for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) {
250        if (TI->getSuccessor(i) == H) {
251          MD = TI->getMetadata(LoopMDName);
252          break;
253        }
254      }
255      if (!MD)
256        return 0;
257
258      if (!LoopID)
259        LoopID = MD;
260      else if (MD != LoopID)
261        return 0;
262    }
263  }
264  if (!LoopID || LoopID->getNumOperands() == 0 ||
265      LoopID->getOperand(0) != LoopID)
266    return 0;
267  return LoopID;
268}
269
270void Loop::setLoopID(MDNode *LoopID) const {
271  assert(LoopID && "Loop ID should not be null");
272  assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand");
273  assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself");
274
275  if (isLoopSimplifyForm()) {
276    getLoopLatch()->getTerminator()->setMetadata(LoopMDName, LoopID);
277    return;
278  }
279
280  BasicBlock *H = getHeader();
281  for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) {
282    TerminatorInst *TI = (*I)->getTerminator();
283    for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) {
284      if (TI->getSuccessor(i) == H)
285        TI->setMetadata(LoopMDName, LoopID);
286    }
287  }
288}
289
290bool Loop::isAnnotatedParallel() const {
291  MDNode *desiredLoopIdMetadata = getLoopID();
292
293  if (!desiredLoopIdMetadata)
294      return false;
295
296  // The loop branch contains the parallel loop metadata. In order to ensure
297  // that any parallel-loop-unaware optimization pass hasn't added loop-carried
298  // dependencies (thus converted the loop back to a sequential loop), check
299  // that all the memory instructions in the loop contain parallelism metadata
300  // that point to the same unique "loop id metadata" the loop branch does.
301  for (block_iterator BB = block_begin(), BE = block_end(); BB != BE; ++BB) {
302    for (BasicBlock::iterator II = (*BB)->begin(), EE = (*BB)->end();
303         II != EE; II++) {
304
305      if (!II->mayReadOrWriteMemory())
306        continue;
307
308      // The memory instruction can refer to the loop identifier metadata
309      // directly or indirectly through another list metadata (in case of
310      // nested parallel loops). The loop identifier metadata refers to
311      // itself so we can check both cases with the same routine.
312      MDNode *loopIdMD = II->getMetadata("llvm.mem.parallel_loop_access");
313
314      if (!loopIdMD)
315        return false;
316
317      bool loopIdMDFound = false;
318      for (unsigned i = 0, e = loopIdMD->getNumOperands(); i < e; ++i) {
319        if (loopIdMD->getOperand(i) == desiredLoopIdMetadata) {
320          loopIdMDFound = true;
321          break;
322        }
323      }
324
325      if (!loopIdMDFound)
326        return false;
327    }
328  }
329  return true;
330}
331
332
333/// hasDedicatedExits - Return true if no exit block for the loop
334/// has a predecessor that is outside the loop.
335bool Loop::hasDedicatedExits() const {
336  // Each predecessor of each exit block of a normal loop is contained
337  // within the loop.
338  SmallVector<BasicBlock *, 4> ExitBlocks;
339  getExitBlocks(ExitBlocks);
340  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
341    for (pred_iterator PI = pred_begin(ExitBlocks[i]),
342         PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
343      if (!contains(*PI))
344        return false;
345  // All the requirements are met.
346  return true;
347}
348
349/// getUniqueExitBlocks - Return all unique successor blocks of this loop.
350/// These are the blocks _outside of the current loop_ which are branched to.
351/// This assumes that loop exits are in canonical form.
352///
353void
354Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
355  assert(hasDedicatedExits() &&
356         "getUniqueExitBlocks assumes the loop has canonical form exits!");
357
358  SmallVector<BasicBlock *, 32> switchExitBlocks;
359
360  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
361
362    BasicBlock *current = *BI;
363    switchExitBlocks.clear();
364
365    for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
366      // If block is inside the loop then it is not a exit block.
367      if (contains(*I))
368        continue;
369
370      pred_iterator PI = pred_begin(*I);
371      BasicBlock *firstPred = *PI;
372
373      // If current basic block is this exit block's first predecessor
374      // then only insert exit block in to the output ExitBlocks vector.
375      // This ensures that same exit block is not inserted twice into
376      // ExitBlocks vector.
377      if (current != firstPred)
378        continue;
379
380      // If a terminator has more then two successors, for example SwitchInst,
381      // then it is possible that there are multiple edges from current block
382      // to one exit block.
383      if (std::distance(succ_begin(current), succ_end(current)) <= 2) {
384        ExitBlocks.push_back(*I);
385        continue;
386      }
387
388      // In case of multiple edges from current block to exit block, collect
389      // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
390      // duplicate edges.
391      if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
392          == switchExitBlocks.end()) {
393        switchExitBlocks.push_back(*I);
394        ExitBlocks.push_back(*I);
395      }
396    }
397  }
398}
399
400/// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
401/// block, return that block. Otherwise return null.
402BasicBlock *Loop::getUniqueExitBlock() const {
403  SmallVector<BasicBlock *, 8> UniqueExitBlocks;
404  getUniqueExitBlocks(UniqueExitBlocks);
405  if (UniqueExitBlocks.size() == 1)
406    return UniqueExitBlocks[0];
407  return 0;
408}
409
410#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
411void Loop::dump() const {
412  print(dbgs());
413}
414#endif
415
416//===----------------------------------------------------------------------===//
417// UnloopUpdater implementation
418//
419
420namespace {
421/// Find the new parent loop for all blocks within the "unloop" whose last
422/// backedges has just been removed.
423class UnloopUpdater {
424  Loop *Unloop;
425  LoopInfo *LI;
426
427  LoopBlocksDFS DFS;
428
429  // Map unloop's immediate subloops to their nearest reachable parents. Nested
430  // loops within these subloops will not change parents. However, an immediate
431  // subloop's new parent will be the nearest loop reachable from either its own
432  // exits *or* any of its nested loop's exits.
433  DenseMap<Loop*, Loop*> SubloopParents;
434
435  // Flag the presence of an irreducible backedge whose destination is a block
436  // directly contained by the original unloop.
437  bool FoundIB;
438
439public:
440  UnloopUpdater(Loop *UL, LoopInfo *LInfo) :
441    Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {}
442
443  void updateBlockParents();
444
445  void removeBlocksFromAncestors();
446
447  void updateSubloopParents();
448
449protected:
450  Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
451};
452} // end anonymous namespace
453
454/// updateBlockParents - Update the parent loop for all blocks that are directly
455/// contained within the original "unloop".
456void UnloopUpdater::updateBlockParents() {
457  if (Unloop->getNumBlocks()) {
458    // Perform a post order CFG traversal of all blocks within this loop,
459    // propagating the nearest loop from sucessors to predecessors.
460    LoopBlocksTraversal Traversal(DFS, LI);
461    for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
462           POE = Traversal.end(); POI != POE; ++POI) {
463
464      Loop *L = LI->getLoopFor(*POI);
465      Loop *NL = getNearestLoop(*POI, L);
466
467      if (NL != L) {
468        // For reducible loops, NL is now an ancestor of Unloop.
469        assert((NL != Unloop && (!NL || NL->contains(Unloop))) &&
470               "uninitialized successor");
471        LI->changeLoopFor(*POI, NL);
472      }
473      else {
474        // Or the current block is part of a subloop, in which case its parent
475        // is unchanged.
476        assert((FoundIB || Unloop->contains(L)) && "uninitialized successor");
477      }
478    }
479  }
480  // Each irreducible loop within the unloop induces a round of iteration using
481  // the DFS result cached by Traversal.
482  bool Changed = FoundIB;
483  for (unsigned NIters = 0; Changed; ++NIters) {
484    assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm");
485
486    // Iterate over the postorder list of blocks, propagating the nearest loop
487    // from successors to predecessors as before.
488    Changed = false;
489    for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
490           POE = DFS.endPostorder(); POI != POE; ++POI) {
491
492      Loop *L = LI->getLoopFor(*POI);
493      Loop *NL = getNearestLoop(*POI, L);
494      if (NL != L) {
495        assert(NL != Unloop && (!NL || NL->contains(Unloop)) &&
496               "uninitialized successor");
497        LI->changeLoopFor(*POI, NL);
498        Changed = true;
499      }
500    }
501  }
502}
503
504/// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below
505/// their new parents.
506void UnloopUpdater::removeBlocksFromAncestors() {
507  // Remove all unloop's blocks (including those in nested subloops) from
508  // ancestors below the new parent loop.
509  for (Loop::block_iterator BI = Unloop->block_begin(),
510         BE = Unloop->block_end(); BI != BE; ++BI) {
511    Loop *OuterParent = LI->getLoopFor(*BI);
512    if (Unloop->contains(OuterParent)) {
513      while (OuterParent->getParentLoop() != Unloop)
514        OuterParent = OuterParent->getParentLoop();
515      OuterParent = SubloopParents[OuterParent];
516    }
517    // Remove blocks from former Ancestors except Unloop itself which will be
518    // deleted.
519    for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent;
520         OldParent = OldParent->getParentLoop()) {
521      assert(OldParent && "new loop is not an ancestor of the original");
522      OldParent->removeBlockFromLoop(*BI);
523    }
524  }
525}
526
527/// updateSubloopParents - Update the parent loop for all subloops directly
528/// nested within unloop.
529void UnloopUpdater::updateSubloopParents() {
530  while (!Unloop->empty()) {
531    Loop *Subloop = *llvm::prior(Unloop->end());
532    Unloop->removeChildLoop(llvm::prior(Unloop->end()));
533
534    assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
535    if (Loop *Parent = SubloopParents[Subloop])
536      Parent->addChildLoop(Subloop);
537    else
538      LI->addTopLevelLoop(Subloop);
539  }
540}
541
542/// getNearestLoop - Return the nearest parent loop among this block's
543/// successors. If a successor is a subloop header, consider its parent to be
544/// the nearest parent of the subloop's exits.
545///
546/// For subloop blocks, simply update SubloopParents and return NULL.
547Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
548
549  // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
550  // is considered uninitialized.
551  Loop *NearLoop = BBLoop;
552
553  Loop *Subloop = 0;
554  if (NearLoop != Unloop && Unloop->contains(NearLoop)) {
555    Subloop = NearLoop;
556    // Find the subloop ancestor that is directly contained within Unloop.
557    while (Subloop->getParentLoop() != Unloop) {
558      Subloop = Subloop->getParentLoop();
559      assert(Subloop && "subloop is not an ancestor of the original loop");
560    }
561    // Get the current nearest parent of the Subloop exits, initially Unloop.
562    NearLoop =
563      SubloopParents.insert(std::make_pair(Subloop, Unloop)).first->second;
564  }
565
566  succ_iterator I = succ_begin(BB), E = succ_end(BB);
567  if (I == E) {
568    assert(!Subloop && "subloop blocks must have a successor");
569    NearLoop = 0; // unloop blocks may now exit the function.
570  }
571  for (; I != E; ++I) {
572    if (*I == BB)
573      continue; // self loops are uninteresting
574
575    Loop *L = LI->getLoopFor(*I);
576    if (L == Unloop) {
577      // This successor has not been processed. This path must lead to an
578      // irreducible backedge.
579      assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
580      FoundIB = true;
581    }
582    if (L != Unloop && Unloop->contains(L)) {
583      // Successor is in a subloop.
584      if (Subloop)
585        continue; // Branching within subloops. Ignore it.
586
587      // BB branches from the original into a subloop header.
588      assert(L->getParentLoop() == Unloop && "cannot skip into nested loops");
589
590      // Get the current nearest parent of the Subloop's exits.
591      L = SubloopParents[L];
592      // L could be Unloop if the only exit was an irreducible backedge.
593    }
594    if (L == Unloop) {
595      continue;
596    }
597    // Handle critical edges from Unloop into a sibling loop.
598    if (L && !L->contains(Unloop)) {
599      L = L->getParentLoop();
600    }
601    // Remember the nearest parent loop among successors or subloop exits.
602    if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L))
603      NearLoop = L;
604  }
605  if (Subloop) {
606    SubloopParents[Subloop] = NearLoop;
607    return BBLoop;
608  }
609  return NearLoop;
610}
611
612//===----------------------------------------------------------------------===//
613// LoopInfo implementation
614//
615bool LoopInfo::runOnFunction(Function &) {
616  releaseMemory();
617  LI.Analyze(getAnalysis<DominatorTree>().getBase());
618  return false;
619}
620
621/// updateUnloop - The last backedge has been removed from a loop--now the
622/// "unloop". Find a new parent for the blocks contained within unloop and
623/// update the loop tree. We don't necessarily have valid dominators at this
624/// point, but LoopInfo is still valid except for the removal of this loop.
625///
626/// Note that Unloop may now be an empty loop. Calling Loop::getHeader without
627/// checking first is illegal.
628void LoopInfo::updateUnloop(Loop *Unloop) {
629
630  // First handle the special case of no parent loop to simplify the algorithm.
631  if (!Unloop->getParentLoop()) {
632    // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
633    for (Loop::block_iterator I = Unloop->block_begin(),
634         E = Unloop->block_end(); I != E; ++I) {
635
636      // Don't reparent blocks in subloops.
637      if (getLoopFor(*I) != Unloop)
638        continue;
639
640      // Blocks no longer have a parent but are still referenced by Unloop until
641      // the Unloop object is deleted.
642      LI.changeLoopFor(*I, 0);
643    }
644
645    // Remove the loop from the top-level LoopInfo object.
646    for (LoopInfo::iterator I = LI.begin();; ++I) {
647      assert(I != LI.end() && "Couldn't find loop");
648      if (*I == Unloop) {
649        LI.removeLoop(I);
650        break;
651      }
652    }
653
654    // Move all of the subloops to the top-level.
655    while (!Unloop->empty())
656      LI.addTopLevelLoop(Unloop->removeChildLoop(llvm::prior(Unloop->end())));
657
658    return;
659  }
660
661  // Update the parent loop for all blocks within the loop. Blocks within
662  // subloops will not change parents.
663  UnloopUpdater Updater(Unloop, this);
664  Updater.updateBlockParents();
665
666  // Remove blocks from former ancestor loops.
667  Updater.removeBlocksFromAncestors();
668
669  // Add direct subloops as children in their new parent loop.
670  Updater.updateSubloopParents();
671
672  // Remove unloop from its parent loop.
673  Loop *ParentLoop = Unloop->getParentLoop();
674  for (Loop::iterator I = ParentLoop->begin();; ++I) {
675    assert(I != ParentLoop->end() && "Couldn't find loop");
676    if (*I == Unloop) {
677      ParentLoop->removeChildLoop(I);
678      break;
679    }
680  }
681}
682
683void LoopInfo::verifyAnalysis() const {
684  // LoopInfo is a FunctionPass, but verifying every loop in the function
685  // each time verifyAnalysis is called is very expensive. The
686  // -verify-loop-info option can enable this. In order to perform some
687  // checking by default, LoopPass has been taught to call verifyLoop
688  // manually during loop pass sequences.
689
690  if (!VerifyLoopInfo) return;
691
692  DenseSet<const Loop*> Loops;
693  for (iterator I = begin(), E = end(); I != E; ++I) {
694    assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
695    (*I)->verifyLoopNest(&Loops);
696  }
697
698  // Verify that blocks are mapped to valid loops.
699  for (DenseMap<BasicBlock*, Loop*>::const_iterator I = LI.BBMap.begin(),
700         E = LI.BBMap.end(); I != E; ++I) {
701    assert(Loops.count(I->second) && "orphaned loop");
702    assert(I->second->contains(I->first) && "orphaned block");
703  }
704}
705
706void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
707  AU.setPreservesAll();
708  AU.addRequired<DominatorTree>();
709}
710
711void LoopInfo::print(raw_ostream &OS, const Module*) const {
712  LI.print(OS);
713}
714
715//===----------------------------------------------------------------------===//
716// LoopBlocksDFS implementation
717//
718
719/// Traverse the loop blocks and store the DFS result.
720/// Useful for clients that just want the final DFS result and don't need to
721/// visit blocks during the initial traversal.
722void LoopBlocksDFS::perform(LoopInfo *LI) {
723  LoopBlocksTraversal Traversal(*this, LI);
724  for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
725         POE = Traversal.end(); POI != POE; ++POI) ;
726}
727