MemoryDependenceAnalysis.cpp revision 034b94b17006f51722886b0f2283fb6fb19aca1f
1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an analysis that determines, for a given memory
11// operation, what preceding memory operations it depends on.  It builds on
12// alias analysis information, and tries to provide a lazy, caching interface to
13// a common kind of alias information query.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "memdep"
18#include "llvm/Analysis/MemoryDependenceAnalysis.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/Analysis/Dominators.h"
23#include "llvm/Analysis/InstructionSimplify.h"
24#include "llvm/Analysis/MemoryBuiltins.h"
25#include "llvm/Analysis/PHITransAddr.h"
26#include "llvm/Analysis/ValueTracking.h"
27#include "llvm/DataLayout.h"
28#include "llvm/Function.h"
29#include "llvm/Instructions.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/PredIteratorCache.h"
34using namespace llvm;
35
36STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
37STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
38STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
39
40STATISTIC(NumCacheNonLocalPtr,
41          "Number of fully cached non-local ptr responses");
42STATISTIC(NumCacheDirtyNonLocalPtr,
43          "Number of cached, but dirty, non-local ptr responses");
44STATISTIC(NumUncacheNonLocalPtr,
45          "Number of uncached non-local ptr responses");
46STATISTIC(NumCacheCompleteNonLocalPtr,
47          "Number of block queries that were completely cached");
48
49// Limit for the number of instructions to scan in a block.
50// FIXME: Figure out what a sane value is for this.
51//        (500 is relatively insane.)
52static const int BlockScanLimit = 500;
53
54char MemoryDependenceAnalysis::ID = 0;
55
56// Register this pass...
57INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep",
58                "Memory Dependence Analysis", false, true)
59INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
60INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",
61                      "Memory Dependence Analysis", false, true)
62
63MemoryDependenceAnalysis::MemoryDependenceAnalysis()
64: FunctionPass(ID), PredCache(0) {
65  initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
66}
67MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
68}
69
70/// Clean up memory in between runs
71void MemoryDependenceAnalysis::releaseMemory() {
72  LocalDeps.clear();
73  NonLocalDeps.clear();
74  NonLocalPointerDeps.clear();
75  ReverseLocalDeps.clear();
76  ReverseNonLocalDeps.clear();
77  ReverseNonLocalPtrDeps.clear();
78  PredCache->clear();
79}
80
81
82
83/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
84///
85void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
86  AU.setPreservesAll();
87  AU.addRequiredTransitive<AliasAnalysis>();
88}
89
90bool MemoryDependenceAnalysis::runOnFunction(Function &) {
91  AA = &getAnalysis<AliasAnalysis>();
92  TD = getAnalysisIfAvailable<DataLayout>();
93  DT = getAnalysisIfAvailable<DominatorTree>();
94  if (PredCache == 0)
95    PredCache.reset(new PredIteratorCache());
96  return false;
97}
98
99/// RemoveFromReverseMap - This is a helper function that removes Val from
100/// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
101template <typename KeyTy>
102static void RemoveFromReverseMap(DenseMap<Instruction*,
103                                 SmallPtrSet<KeyTy, 4> > &ReverseMap,
104                                 Instruction *Inst, KeyTy Val) {
105  typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
106  InstIt = ReverseMap.find(Inst);
107  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
108  bool Found = InstIt->second.erase(Val);
109  assert(Found && "Invalid reverse map!"); (void)Found;
110  if (InstIt->second.empty())
111    ReverseMap.erase(InstIt);
112}
113
114/// GetLocation - If the given instruction references a specific memory
115/// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
116/// Return a ModRefInfo value describing the general behavior of the
117/// instruction.
118static
119AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst,
120                                        AliasAnalysis::Location &Loc,
121                                        AliasAnalysis *AA) {
122  if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
123    if (LI->isUnordered()) {
124      Loc = AA->getLocation(LI);
125      return AliasAnalysis::Ref;
126    } else if (LI->getOrdering() == Monotonic) {
127      Loc = AA->getLocation(LI);
128      return AliasAnalysis::ModRef;
129    }
130    Loc = AliasAnalysis::Location();
131    return AliasAnalysis::ModRef;
132  }
133
134  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
135    if (SI->isUnordered()) {
136      Loc = AA->getLocation(SI);
137      return AliasAnalysis::Mod;
138    } else if (SI->getOrdering() == Monotonic) {
139      Loc = AA->getLocation(SI);
140      return AliasAnalysis::ModRef;
141    }
142    Loc = AliasAnalysis::Location();
143    return AliasAnalysis::ModRef;
144  }
145
146  if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
147    Loc = AA->getLocation(V);
148    return AliasAnalysis::ModRef;
149  }
150
151  if (const CallInst *CI = isFreeCall(Inst, AA->getTargetLibraryInfo())) {
152    // calls to free() deallocate the entire structure
153    Loc = AliasAnalysis::Location(CI->getArgOperand(0));
154    return AliasAnalysis::Mod;
155  }
156
157  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
158    switch (II->getIntrinsicID()) {
159    case Intrinsic::lifetime_start:
160    case Intrinsic::lifetime_end:
161    case Intrinsic::invariant_start:
162      Loc = AliasAnalysis::Location(II->getArgOperand(1),
163                                    cast<ConstantInt>(II->getArgOperand(0))
164                                      ->getZExtValue(),
165                                    II->getMetadata(LLVMContext::MD_tbaa));
166      // These intrinsics don't really modify the memory, but returning Mod
167      // will allow them to be handled conservatively.
168      return AliasAnalysis::Mod;
169    case Intrinsic::invariant_end:
170      Loc = AliasAnalysis::Location(II->getArgOperand(2),
171                                    cast<ConstantInt>(II->getArgOperand(1))
172                                      ->getZExtValue(),
173                                    II->getMetadata(LLVMContext::MD_tbaa));
174      // These intrinsics don't really modify the memory, but returning Mod
175      // will allow them to be handled conservatively.
176      return AliasAnalysis::Mod;
177    default:
178      break;
179    }
180
181  // Otherwise, just do the coarse-grained thing that always works.
182  if (Inst->mayWriteToMemory())
183    return AliasAnalysis::ModRef;
184  if (Inst->mayReadFromMemory())
185    return AliasAnalysis::Ref;
186  return AliasAnalysis::NoModRef;
187}
188
189/// getCallSiteDependencyFrom - Private helper for finding the local
190/// dependencies of a call site.
191MemDepResult MemoryDependenceAnalysis::
192getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
193                          BasicBlock::iterator ScanIt, BasicBlock *BB) {
194  unsigned Limit = BlockScanLimit;
195
196  // Walk backwards through the block, looking for dependencies
197  while (ScanIt != BB->begin()) {
198    // Limit the amount of scanning we do so we don't end up with quadratic
199    // running time on extreme testcases.
200    --Limit;
201    if (!Limit)
202      return MemDepResult::getUnknown();
203
204    Instruction *Inst = --ScanIt;
205
206    // If this inst is a memory op, get the pointer it accessed
207    AliasAnalysis::Location Loc;
208    AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA);
209    if (Loc.Ptr) {
210      // A simple instruction.
211      if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef)
212        return MemDepResult::getClobber(Inst);
213      continue;
214    }
215
216    if (CallSite InstCS = cast<Value>(Inst)) {
217      // Debug intrinsics don't cause dependences.
218      if (isa<DbgInfoIntrinsic>(Inst)) continue;
219      // If these two calls do not interfere, look past it.
220      switch (AA->getModRefInfo(CS, InstCS)) {
221      case AliasAnalysis::NoModRef:
222        // If the two calls are the same, return InstCS as a Def, so that
223        // CS can be found redundant and eliminated.
224        if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) &&
225            CS.getInstruction()->isIdenticalToWhenDefined(Inst))
226          return MemDepResult::getDef(Inst);
227
228        // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
229        // keep scanning.
230        continue;
231      default:
232        return MemDepResult::getClobber(Inst);
233      }
234    }
235
236    // If we could not obtain a pointer for the instruction and the instruction
237    // touches memory then assume that this is a dependency.
238    if (MR != AliasAnalysis::NoModRef)
239      return MemDepResult::getClobber(Inst);
240  }
241
242  // No dependence found.  If this is the entry block of the function, it is
243  // unknown, otherwise it is non-local.
244  if (BB != &BB->getParent()->getEntryBlock())
245    return MemDepResult::getNonLocal();
246  return MemDepResult::getNonFuncLocal();
247}
248
249/// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that
250/// would fully overlap MemLoc if done as a wider legal integer load.
251///
252/// MemLocBase, MemLocOffset are lazily computed here the first time the
253/// base/offs of memloc is needed.
254static bool
255isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc,
256                                       const Value *&MemLocBase,
257                                       int64_t &MemLocOffs,
258                                       const LoadInst *LI,
259                                       const DataLayout *TD) {
260  // If we have no target data, we can't do this.
261  if (TD == 0) return false;
262
263  // If we haven't already computed the base/offset of MemLoc, do so now.
264  if (MemLocBase == 0)
265    MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, *TD);
266
267  unsigned Size = MemoryDependenceAnalysis::
268    getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size,
269                                    LI, *TD);
270  return Size != 0;
271}
272
273/// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that
274/// looks at a memory location for a load (specified by MemLocBase, Offs,
275/// and Size) and compares it against a load.  If the specified load could
276/// be safely widened to a larger integer load that is 1) still efficient,
277/// 2) safe for the target, and 3) would provide the specified memory
278/// location value, then this function returns the size in bytes of the
279/// load width to use.  If not, this returns zero.
280unsigned MemoryDependenceAnalysis::
281getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs,
282                                unsigned MemLocSize, const LoadInst *LI,
283                                const DataLayout &TD) {
284  // We can only extend simple integer loads.
285  if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0;
286
287  // Get the base of this load.
288  int64_t LIOffs = 0;
289  const Value *LIBase =
290    GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, TD);
291
292  // If the two pointers are not based on the same pointer, we can't tell that
293  // they are related.
294  if (LIBase != MemLocBase) return 0;
295
296  // Okay, the two values are based on the same pointer, but returned as
297  // no-alias.  This happens when we have things like two byte loads at "P+1"
298  // and "P+3".  Check to see if increasing the size of the "LI" load up to its
299  // alignment (or the largest native integer type) will allow us to load all
300  // the bits required by MemLoc.
301
302  // If MemLoc is before LI, then no widening of LI will help us out.
303  if (MemLocOffs < LIOffs) return 0;
304
305  // Get the alignment of the load in bytes.  We assume that it is safe to load
306  // any legal integer up to this size without a problem.  For example, if we're
307  // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
308  // widen it up to an i32 load.  If it is known 2-byte aligned, we can widen it
309  // to i16.
310  unsigned LoadAlign = LI->getAlignment();
311
312  int64_t MemLocEnd = MemLocOffs+MemLocSize;
313
314  // If no amount of rounding up will let MemLoc fit into LI, then bail out.
315  if (LIOffs+LoadAlign < MemLocEnd) return 0;
316
317  // This is the size of the load to try.  Start with the next larger power of
318  // two.
319  unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U;
320  NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
321
322  while (1) {
323    // If this load size is bigger than our known alignment or would not fit
324    // into a native integer register, then we fail.
325    if (NewLoadByteSize > LoadAlign ||
326        !TD.fitsInLegalInteger(NewLoadByteSize*8))
327      return 0;
328
329    if (LIOffs+NewLoadByteSize > MemLocEnd &&
330        LI->getParent()->getParent()->getFnAttributes().
331          hasAttribute(Attribute::AddressSafety))
332      // We will be reading past the location accessed by the original program.
333      // While this is safe in a regular build, Address Safety analysis tools
334      // may start reporting false warnings. So, don't do widening.
335      return 0;
336
337    // If a load of this width would include all of MemLoc, then we succeed.
338    if (LIOffs+NewLoadByteSize >= MemLocEnd)
339      return NewLoadByteSize;
340
341    NewLoadByteSize <<= 1;
342  }
343}
344
345/// getPointerDependencyFrom - Return the instruction on which a memory
346/// location depends.  If isLoad is true, this routine ignores may-aliases with
347/// read-only operations.  If isLoad is false, this routine ignores may-aliases
348/// with reads from read-only locations.
349MemDepResult MemoryDependenceAnalysis::
350getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad,
351                         BasicBlock::iterator ScanIt, BasicBlock *BB) {
352
353  const Value *MemLocBase = 0;
354  int64_t MemLocOffset = 0;
355
356  unsigned Limit = BlockScanLimit;
357
358  // Walk backwards through the basic block, looking for dependencies.
359  while (ScanIt != BB->begin()) {
360    // Limit the amount of scanning we do so we don't end up with quadratic
361    // running time on extreme testcases.
362    --Limit;
363    if (!Limit)
364      return MemDepResult::getUnknown();
365
366    Instruction *Inst = --ScanIt;
367
368    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
369      // Debug intrinsics don't (and can't) cause dependences.
370      if (isa<DbgInfoIntrinsic>(II)) continue;
371
372      // If we reach a lifetime begin or end marker, then the query ends here
373      // because the value is undefined.
374      if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
375        // FIXME: This only considers queries directly on the invariant-tagged
376        // pointer, not on query pointers that are indexed off of them.  It'd
377        // be nice to handle that at some point (the right approach is to use
378        // GetPointerBaseWithConstantOffset).
379        if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)),
380                            MemLoc))
381          return MemDepResult::getDef(II);
382        continue;
383      }
384    }
385
386    // Values depend on loads if the pointers are must aliased.  This means that
387    // a load depends on another must aliased load from the same value.
388    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
389      // Atomic loads have complications involved.
390      // FIXME: This is overly conservative.
391      if (!LI->isUnordered())
392        return MemDepResult::getClobber(LI);
393
394      AliasAnalysis::Location LoadLoc = AA->getLocation(LI);
395
396      // If we found a pointer, check if it could be the same as our pointer.
397      AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc);
398
399      if (isLoad) {
400        if (R == AliasAnalysis::NoAlias) {
401          // If this is an over-aligned integer load (for example,
402          // "load i8* %P, align 4") see if it would obviously overlap with the
403          // queried location if widened to a larger load (e.g. if the queried
404          // location is 1 byte at P+1).  If so, return it as a load/load
405          // clobber result, allowing the client to decide to widen the load if
406          // it wants to.
407          if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType()))
408            if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() &&
409                isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase,
410                                                       MemLocOffset, LI, TD))
411              return MemDepResult::getClobber(Inst);
412
413          continue;
414        }
415
416        // Must aliased loads are defs of each other.
417        if (R == AliasAnalysis::MustAlias)
418          return MemDepResult::getDef(Inst);
419
420#if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
421      // in terms of clobbering loads, but since it does this by looking
422      // at the clobbering load directly, it doesn't know about any
423      // phi translation that may have happened along the way.
424
425        // If we have a partial alias, then return this as a clobber for the
426        // client to handle.
427        if (R == AliasAnalysis::PartialAlias)
428          return MemDepResult::getClobber(Inst);
429#endif
430
431        // Random may-alias loads don't depend on each other without a
432        // dependence.
433        continue;
434      }
435
436      // Stores don't depend on other no-aliased accesses.
437      if (R == AliasAnalysis::NoAlias)
438        continue;
439
440      // Stores don't alias loads from read-only memory.
441      if (AA->pointsToConstantMemory(LoadLoc))
442        continue;
443
444      // Stores depend on may/must aliased loads.
445      return MemDepResult::getDef(Inst);
446    }
447
448    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
449      // Atomic stores have complications involved.
450      // FIXME: This is overly conservative.
451      if (!SI->isUnordered())
452        return MemDepResult::getClobber(SI);
453
454      // If alias analysis can tell that this store is guaranteed to not modify
455      // the query pointer, ignore it.  Use getModRefInfo to handle cases where
456      // the query pointer points to constant memory etc.
457      if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef)
458        continue;
459
460      // Ok, this store might clobber the query pointer.  Check to see if it is
461      // a must alias: in this case, we want to return this as a def.
462      AliasAnalysis::Location StoreLoc = AA->getLocation(SI);
463
464      // If we found a pointer, check if it could be the same as our pointer.
465      AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc);
466
467      if (R == AliasAnalysis::NoAlias)
468        continue;
469      if (R == AliasAnalysis::MustAlias)
470        return MemDepResult::getDef(Inst);
471      return MemDepResult::getClobber(Inst);
472    }
473
474    // If this is an allocation, and if we know that the accessed pointer is to
475    // the allocation, return Def.  This means that there is no dependence and
476    // the access can be optimized based on that.  For example, a load could
477    // turn into undef.
478    // Note: Only determine this to be a malloc if Inst is the malloc call, not
479    // a subsequent bitcast of the malloc call result.  There can be stores to
480    // the malloced memory between the malloc call and its bitcast uses, and we
481    // need to continue scanning until the malloc call.
482    const TargetLibraryInfo *TLI = AA->getTargetLibraryInfo();
483    if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) {
484      const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, TD);
485
486      if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr))
487        return MemDepResult::getDef(Inst);
488      // Be conservative if the accessed pointer may alias the allocation.
489      if (AA->alias(Inst, AccessPtr) != AliasAnalysis::NoAlias)
490        return MemDepResult::getClobber(Inst);
491      // If the allocation is not aliased and does not read memory (like
492      // strdup), it is safe to ignore.
493      if (isa<AllocaInst>(Inst) ||
494          isMallocLikeFn(Inst, TLI) || isCallocLikeFn(Inst, TLI))
495        continue;
496    }
497
498    // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
499    AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc);
500    // If necessary, perform additional analysis.
501    if (MR == AliasAnalysis::ModRef)
502      MR = AA->callCapturesBefore(Inst, MemLoc, DT);
503    switch (MR) {
504    case AliasAnalysis::NoModRef:
505      // If the call has no effect on the queried pointer, just ignore it.
506      continue;
507    case AliasAnalysis::Mod:
508      return MemDepResult::getClobber(Inst);
509    case AliasAnalysis::Ref:
510      // If the call is known to never store to the pointer, and if this is a
511      // load query, we can safely ignore it (scan past it).
512      if (isLoad)
513        continue;
514    default:
515      // Otherwise, there is a potential dependence.  Return a clobber.
516      return MemDepResult::getClobber(Inst);
517    }
518  }
519
520  // No dependence found.  If this is the entry block of the function, it is
521  // unknown, otherwise it is non-local.
522  if (BB != &BB->getParent()->getEntryBlock())
523    return MemDepResult::getNonLocal();
524  return MemDepResult::getNonFuncLocal();
525}
526
527/// getDependency - Return the instruction on which a memory operation
528/// depends.
529MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
530  Instruction *ScanPos = QueryInst;
531
532  // Check for a cached result
533  MemDepResult &LocalCache = LocalDeps[QueryInst];
534
535  // If the cached entry is non-dirty, just return it.  Note that this depends
536  // on MemDepResult's default constructing to 'dirty'.
537  if (!LocalCache.isDirty())
538    return LocalCache;
539
540  // Otherwise, if we have a dirty entry, we know we can start the scan at that
541  // instruction, which may save us some work.
542  if (Instruction *Inst = LocalCache.getInst()) {
543    ScanPos = Inst;
544
545    RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
546  }
547
548  BasicBlock *QueryParent = QueryInst->getParent();
549
550  // Do the scan.
551  if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
552    // No dependence found.  If this is the entry block of the function, it is
553    // unknown, otherwise it is non-local.
554    if (QueryParent != &QueryParent->getParent()->getEntryBlock())
555      LocalCache = MemDepResult::getNonLocal();
556    else
557      LocalCache = MemDepResult::getNonFuncLocal();
558  } else {
559    AliasAnalysis::Location MemLoc;
560    AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA);
561    if (MemLoc.Ptr) {
562      // If we can do a pointer scan, make it happen.
563      bool isLoad = !(MR & AliasAnalysis::Mod);
564      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
565        isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
566
567      LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos,
568                                            QueryParent);
569    } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
570      CallSite QueryCS(QueryInst);
571      bool isReadOnly = AA->onlyReadsMemory(QueryCS);
572      LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
573                                             QueryParent);
574    } else
575      // Non-memory instruction.
576      LocalCache = MemDepResult::getUnknown();
577  }
578
579  // Remember the result!
580  if (Instruction *I = LocalCache.getInst())
581    ReverseLocalDeps[I].insert(QueryInst);
582
583  return LocalCache;
584}
585
586#ifndef NDEBUG
587/// AssertSorted - This method is used when -debug is specified to verify that
588/// cache arrays are properly kept sorted.
589static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
590                         int Count = -1) {
591  if (Count == -1) Count = Cache.size();
592  if (Count == 0) return;
593
594  for (unsigned i = 1; i != unsigned(Count); ++i)
595    assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
596}
597#endif
598
599/// getNonLocalCallDependency - Perform a full dependency query for the
600/// specified call, returning the set of blocks that the value is
601/// potentially live across.  The returned set of results will include a
602/// "NonLocal" result for all blocks where the value is live across.
603///
604/// This method assumes the instruction returns a "NonLocal" dependency
605/// within its own block.
606///
607/// This returns a reference to an internal data structure that may be
608/// invalidated on the next non-local query or when an instruction is
609/// removed.  Clients must copy this data if they want it around longer than
610/// that.
611const MemoryDependenceAnalysis::NonLocalDepInfo &
612MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
613  assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
614 "getNonLocalCallDependency should only be used on calls with non-local deps!");
615  PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
616  NonLocalDepInfo &Cache = CacheP.first;
617
618  /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
619  /// the cached case, this can happen due to instructions being deleted etc. In
620  /// the uncached case, this starts out as the set of predecessors we care
621  /// about.
622  SmallVector<BasicBlock*, 32> DirtyBlocks;
623
624  if (!Cache.empty()) {
625    // Okay, we have a cache entry.  If we know it is not dirty, just return it
626    // with no computation.
627    if (!CacheP.second) {
628      ++NumCacheNonLocal;
629      return Cache;
630    }
631
632    // If we already have a partially computed set of results, scan them to
633    // determine what is dirty, seeding our initial DirtyBlocks worklist.
634    for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
635       I != E; ++I)
636      if (I->getResult().isDirty())
637        DirtyBlocks.push_back(I->getBB());
638
639    // Sort the cache so that we can do fast binary search lookups below.
640    std::sort(Cache.begin(), Cache.end());
641
642    ++NumCacheDirtyNonLocal;
643    //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
644    //     << Cache.size() << " cached: " << *QueryInst;
645  } else {
646    // Seed DirtyBlocks with each of the preds of QueryInst's block.
647    BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
648    for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
649      DirtyBlocks.push_back(*PI);
650    ++NumUncacheNonLocal;
651  }
652
653  // isReadonlyCall - If this is a read-only call, we can be more aggressive.
654  bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
655
656  SmallPtrSet<BasicBlock*, 64> Visited;
657
658  unsigned NumSortedEntries = Cache.size();
659  DEBUG(AssertSorted(Cache));
660
661  // Iterate while we still have blocks to update.
662  while (!DirtyBlocks.empty()) {
663    BasicBlock *DirtyBB = DirtyBlocks.back();
664    DirtyBlocks.pop_back();
665
666    // Already processed this block?
667    if (!Visited.insert(DirtyBB))
668      continue;
669
670    // Do a binary search to see if we already have an entry for this block in
671    // the cache set.  If so, find it.
672    DEBUG(AssertSorted(Cache, NumSortedEntries));
673    NonLocalDepInfo::iterator Entry =
674      std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
675                       NonLocalDepEntry(DirtyBB));
676    if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB)
677      --Entry;
678
679    NonLocalDepEntry *ExistingResult = 0;
680    if (Entry != Cache.begin()+NumSortedEntries &&
681        Entry->getBB() == DirtyBB) {
682      // If we already have an entry, and if it isn't already dirty, the block
683      // is done.
684      if (!Entry->getResult().isDirty())
685        continue;
686
687      // Otherwise, remember this slot so we can update the value.
688      ExistingResult = &*Entry;
689    }
690
691    // If the dirty entry has a pointer, start scanning from it so we don't have
692    // to rescan the entire block.
693    BasicBlock::iterator ScanPos = DirtyBB->end();
694    if (ExistingResult) {
695      if (Instruction *Inst = ExistingResult->getResult().getInst()) {
696        ScanPos = Inst;
697        // We're removing QueryInst's use of Inst.
698        RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
699                             QueryCS.getInstruction());
700      }
701    }
702
703    // Find out if this block has a local dependency for QueryInst.
704    MemDepResult Dep;
705
706    if (ScanPos != DirtyBB->begin()) {
707      Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
708    } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
709      // No dependence found.  If this is the entry block of the function, it is
710      // a clobber, otherwise it is unknown.
711      Dep = MemDepResult::getNonLocal();
712    } else {
713      Dep = MemDepResult::getNonFuncLocal();
714    }
715
716    // If we had a dirty entry for the block, update it.  Otherwise, just add
717    // a new entry.
718    if (ExistingResult)
719      ExistingResult->setResult(Dep);
720    else
721      Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
722
723    // If the block has a dependency (i.e. it isn't completely transparent to
724    // the value), remember the association!
725    if (!Dep.isNonLocal()) {
726      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
727      // update this when we remove instructions.
728      if (Instruction *Inst = Dep.getInst())
729        ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
730    } else {
731
732      // If the block *is* completely transparent to the load, we need to check
733      // the predecessors of this block.  Add them to our worklist.
734      for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
735        DirtyBlocks.push_back(*PI);
736    }
737  }
738
739  return Cache;
740}
741
742/// getNonLocalPointerDependency - Perform a full dependency query for an
743/// access to the specified (non-volatile) memory location, returning the
744/// set of instructions that either define or clobber the value.
745///
746/// This method assumes the pointer has a "NonLocal" dependency within its
747/// own block.
748///
749void MemoryDependenceAnalysis::
750getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad,
751                             BasicBlock *FromBB,
752                             SmallVectorImpl<NonLocalDepResult> &Result) {
753  assert(Loc.Ptr->getType()->isPointerTy() &&
754         "Can't get pointer deps of a non-pointer!");
755  Result.clear();
756
757  PHITransAddr Address(const_cast<Value *>(Loc.Ptr), TD);
758
759  // This is the set of blocks we've inspected, and the pointer we consider in
760  // each block.  Because of critical edges, we currently bail out if querying
761  // a block with multiple different pointers.  This can happen during PHI
762  // translation.
763  DenseMap<BasicBlock*, Value*> Visited;
764  if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB,
765                                   Result, Visited, true))
766    return;
767  Result.clear();
768  Result.push_back(NonLocalDepResult(FromBB,
769                                     MemDepResult::getUnknown(),
770                                     const_cast<Value *>(Loc.Ptr)));
771}
772
773/// GetNonLocalInfoForBlock - Compute the memdep value for BB with
774/// Pointer/PointeeSize using either cached information in Cache or by doing a
775/// lookup (which may use dirty cache info if available).  If we do a lookup,
776/// add the result to the cache.
777MemDepResult MemoryDependenceAnalysis::
778GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc,
779                        bool isLoad, BasicBlock *BB,
780                        NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
781
782  // Do a binary search to see if we already have an entry for this block in
783  // the cache set.  If so, find it.
784  NonLocalDepInfo::iterator Entry =
785    std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
786                     NonLocalDepEntry(BB));
787  if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
788    --Entry;
789
790  NonLocalDepEntry *ExistingResult = 0;
791  if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
792    ExistingResult = &*Entry;
793
794  // If we have a cached entry, and it is non-dirty, use it as the value for
795  // this dependency.
796  if (ExistingResult && !ExistingResult->getResult().isDirty()) {
797    ++NumCacheNonLocalPtr;
798    return ExistingResult->getResult();
799  }
800
801  // Otherwise, we have to scan for the value.  If we have a dirty cache
802  // entry, start scanning from its position, otherwise we scan from the end
803  // of the block.
804  BasicBlock::iterator ScanPos = BB->end();
805  if (ExistingResult && ExistingResult->getResult().getInst()) {
806    assert(ExistingResult->getResult().getInst()->getParent() == BB &&
807           "Instruction invalidated?");
808    ++NumCacheDirtyNonLocalPtr;
809    ScanPos = ExistingResult->getResult().getInst();
810
811    // Eliminating the dirty entry from 'Cache', so update the reverse info.
812    ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
813    RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
814  } else {
815    ++NumUncacheNonLocalPtr;
816  }
817
818  // Scan the block for the dependency.
819  MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB);
820
821  // If we had a dirty entry for the block, update it.  Otherwise, just add
822  // a new entry.
823  if (ExistingResult)
824    ExistingResult->setResult(Dep);
825  else
826    Cache->push_back(NonLocalDepEntry(BB, Dep));
827
828  // If the block has a dependency (i.e. it isn't completely transparent to
829  // the value), remember the reverse association because we just added it
830  // to Cache!
831  if (!Dep.isDef() && !Dep.isClobber())
832    return Dep;
833
834  // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
835  // update MemDep when we remove instructions.
836  Instruction *Inst = Dep.getInst();
837  assert(Inst && "Didn't depend on anything?");
838  ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
839  ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
840  return Dep;
841}
842
843/// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
844/// number of elements in the array that are already properly ordered.  This is
845/// optimized for the case when only a few entries are added.
846static void
847SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
848                         unsigned NumSortedEntries) {
849  switch (Cache.size() - NumSortedEntries) {
850  case 0:
851    // done, no new entries.
852    break;
853  case 2: {
854    // Two new entries, insert the last one into place.
855    NonLocalDepEntry Val = Cache.back();
856    Cache.pop_back();
857    MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
858      std::upper_bound(Cache.begin(), Cache.end()-1, Val);
859    Cache.insert(Entry, Val);
860    // FALL THROUGH.
861  }
862  case 1:
863    // One new entry, Just insert the new value at the appropriate position.
864    if (Cache.size() != 1) {
865      NonLocalDepEntry Val = Cache.back();
866      Cache.pop_back();
867      MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
868        std::upper_bound(Cache.begin(), Cache.end(), Val);
869      Cache.insert(Entry, Val);
870    }
871    break;
872  default:
873    // Added many values, do a full scale sort.
874    std::sort(Cache.begin(), Cache.end());
875    break;
876  }
877}
878
879/// getNonLocalPointerDepFromBB - Perform a dependency query based on
880/// pointer/pointeesize starting at the end of StartBB.  Add any clobber/def
881/// results to the results vector and keep track of which blocks are visited in
882/// 'Visited'.
883///
884/// This has special behavior for the first block queries (when SkipFirstBlock
885/// is true).  In this special case, it ignores the contents of the specified
886/// block and starts returning dependence info for its predecessors.
887///
888/// This function returns false on success, or true to indicate that it could
889/// not compute dependence information for some reason.  This should be treated
890/// as a clobber dependence on the first instruction in the predecessor block.
891bool MemoryDependenceAnalysis::
892getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
893                            const AliasAnalysis::Location &Loc,
894                            bool isLoad, BasicBlock *StartBB,
895                            SmallVectorImpl<NonLocalDepResult> &Result,
896                            DenseMap<BasicBlock*, Value*> &Visited,
897                            bool SkipFirstBlock) {
898
899  // Look up the cached info for Pointer.
900  ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
901
902  // Set up a temporary NLPI value. If the map doesn't yet have an entry for
903  // CacheKey, this value will be inserted as the associated value. Otherwise,
904  // it'll be ignored, and we'll have to check to see if the cached size and
905  // tbaa tag are consistent with the current query.
906  NonLocalPointerInfo InitialNLPI;
907  InitialNLPI.Size = Loc.Size;
908  InitialNLPI.TBAATag = Loc.TBAATag;
909
910  // Get the NLPI for CacheKey, inserting one into the map if it doesn't
911  // already have one.
912  std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
913    NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
914  NonLocalPointerInfo *CacheInfo = &Pair.first->second;
915
916  // If we already have a cache entry for this CacheKey, we may need to do some
917  // work to reconcile the cache entry and the current query.
918  if (!Pair.second) {
919    if (CacheInfo->Size < Loc.Size) {
920      // The query's Size is greater than the cached one. Throw out the
921      // cached data and proceed with the query at the greater size.
922      CacheInfo->Pair = BBSkipFirstBlockPair();
923      CacheInfo->Size = Loc.Size;
924      for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
925           DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
926        if (Instruction *Inst = DI->getResult().getInst())
927          RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
928      CacheInfo->NonLocalDeps.clear();
929    } else if (CacheInfo->Size > Loc.Size) {
930      // This query's Size is less than the cached one. Conservatively restart
931      // the query using the greater size.
932      return getNonLocalPointerDepFromBB(Pointer,
933                                         Loc.getWithNewSize(CacheInfo->Size),
934                                         isLoad, StartBB, Result, Visited,
935                                         SkipFirstBlock);
936    }
937
938    // If the query's TBAATag is inconsistent with the cached one,
939    // conservatively throw out the cached data and restart the query with
940    // no tag if needed.
941    if (CacheInfo->TBAATag != Loc.TBAATag) {
942      if (CacheInfo->TBAATag) {
943        CacheInfo->Pair = BBSkipFirstBlockPair();
944        CacheInfo->TBAATag = 0;
945        for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
946             DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
947          if (Instruction *Inst = DI->getResult().getInst())
948            RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
949        CacheInfo->NonLocalDeps.clear();
950      }
951      if (Loc.TBAATag)
952        return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutTBAATag(),
953                                           isLoad, StartBB, Result, Visited,
954                                           SkipFirstBlock);
955    }
956  }
957
958  NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
959
960  // If we have valid cached information for exactly the block we are
961  // investigating, just return it with no recomputation.
962  if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
963    // We have a fully cached result for this query then we can just return the
964    // cached results and populate the visited set.  However, we have to verify
965    // that we don't already have conflicting results for these blocks.  Check
966    // to ensure that if a block in the results set is in the visited set that
967    // it was for the same pointer query.
968    if (!Visited.empty()) {
969      for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
970           I != E; ++I) {
971        DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
972        if (VI == Visited.end() || VI->second == Pointer.getAddr())
973          continue;
974
975        // We have a pointer mismatch in a block.  Just return clobber, saying
976        // that something was clobbered in this result.  We could also do a
977        // non-fully cached query, but there is little point in doing this.
978        return true;
979      }
980    }
981
982    Value *Addr = Pointer.getAddr();
983    for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
984         I != E; ++I) {
985      Visited.insert(std::make_pair(I->getBB(), Addr));
986      if (!I->getResult().isNonLocal() && DT->isReachableFromEntry(I->getBB()))
987        Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
988    }
989    ++NumCacheCompleteNonLocalPtr;
990    return false;
991  }
992
993  // Otherwise, either this is a new block, a block with an invalid cache
994  // pointer or one that we're about to invalidate by putting more info into it
995  // than its valid cache info.  If empty, the result will be valid cache info,
996  // otherwise it isn't.
997  if (Cache->empty())
998    CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
999  else
1000    CacheInfo->Pair = BBSkipFirstBlockPair();
1001
1002  SmallVector<BasicBlock*, 32> Worklist;
1003  Worklist.push_back(StartBB);
1004
1005  // PredList used inside loop.
1006  SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList;
1007
1008  // Keep track of the entries that we know are sorted.  Previously cached
1009  // entries will all be sorted.  The entries we add we only sort on demand (we
1010  // don't insert every element into its sorted position).  We know that we
1011  // won't get any reuse from currently inserted values, because we don't
1012  // revisit blocks after we insert info for them.
1013  unsigned NumSortedEntries = Cache->size();
1014  DEBUG(AssertSorted(*Cache));
1015
1016  while (!Worklist.empty()) {
1017    BasicBlock *BB = Worklist.pop_back_val();
1018
1019    // Skip the first block if we have it.
1020    if (!SkipFirstBlock) {
1021      // Analyze the dependency of *Pointer in FromBB.  See if we already have
1022      // been here.
1023      assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1024
1025      // Get the dependency info for Pointer in BB.  If we have cached
1026      // information, we will use it, otherwise we compute it.
1027      DEBUG(AssertSorted(*Cache, NumSortedEntries));
1028      MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache,
1029                                                 NumSortedEntries);
1030
1031      // If we got a Def or Clobber, add this to the list of results.
1032      if (!Dep.isNonLocal() && DT->isReachableFromEntry(BB)) {
1033        Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1034        continue;
1035      }
1036    }
1037
1038    // If 'Pointer' is an instruction defined in this block, then we need to do
1039    // phi translation to change it into a value live in the predecessor block.
1040    // If not, we just add the predecessors to the worklist and scan them with
1041    // the same Pointer.
1042    if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1043      SkipFirstBlock = false;
1044      SmallVector<BasicBlock*, 16> NewBlocks;
1045      for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1046        // Verify that we haven't looked at this block yet.
1047        std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1048          InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
1049        if (InsertRes.second) {
1050          // First time we've looked at *PI.
1051          NewBlocks.push_back(*PI);
1052          continue;
1053        }
1054
1055        // If we have seen this block before, but it was with a different
1056        // pointer then we have a phi translation failure and we have to treat
1057        // this as a clobber.
1058        if (InsertRes.first->second != Pointer.getAddr()) {
1059          // Make sure to clean up the Visited map before continuing on to
1060          // PredTranslationFailure.
1061          for (unsigned i = 0; i < NewBlocks.size(); i++)
1062            Visited.erase(NewBlocks[i]);
1063          goto PredTranslationFailure;
1064        }
1065      }
1066      Worklist.append(NewBlocks.begin(), NewBlocks.end());
1067      continue;
1068    }
1069
1070    // We do need to do phi translation, if we know ahead of time we can't phi
1071    // translate this value, don't even try.
1072    if (!Pointer.IsPotentiallyPHITranslatable())
1073      goto PredTranslationFailure;
1074
1075    // We may have added values to the cache list before this PHI translation.
1076    // If so, we haven't done anything to ensure that the cache remains sorted.
1077    // Sort it now (if needed) so that recursive invocations of
1078    // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1079    // value will only see properly sorted cache arrays.
1080    if (Cache && NumSortedEntries != Cache->size()) {
1081      SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1082      NumSortedEntries = Cache->size();
1083    }
1084    Cache = 0;
1085
1086    PredList.clear();
1087    for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1088      BasicBlock *Pred = *PI;
1089      PredList.push_back(std::make_pair(Pred, Pointer));
1090
1091      // Get the PHI translated pointer in this predecessor.  This can fail if
1092      // not translatable, in which case the getAddr() returns null.
1093      PHITransAddr &PredPointer = PredList.back().second;
1094      PredPointer.PHITranslateValue(BB, Pred, 0);
1095
1096      Value *PredPtrVal = PredPointer.getAddr();
1097
1098      // Check to see if we have already visited this pred block with another
1099      // pointer.  If so, we can't do this lookup.  This failure can occur
1100      // with PHI translation when a critical edge exists and the PHI node in
1101      // the successor translates to a pointer value different than the
1102      // pointer the block was first analyzed with.
1103      std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1104        InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
1105
1106      if (!InsertRes.second) {
1107        // We found the pred; take it off the list of preds to visit.
1108        PredList.pop_back();
1109
1110        // If the predecessor was visited with PredPtr, then we already did
1111        // the analysis and can ignore it.
1112        if (InsertRes.first->second == PredPtrVal)
1113          continue;
1114
1115        // Otherwise, the block was previously analyzed with a different
1116        // pointer.  We can't represent the result of this case, so we just
1117        // treat this as a phi translation failure.
1118
1119        // Make sure to clean up the Visited map before continuing on to
1120        // PredTranslationFailure.
1121        for (unsigned i = 0; i < PredList.size(); i++)
1122          Visited.erase(PredList[i].first);
1123
1124        goto PredTranslationFailure;
1125      }
1126    }
1127
1128    // Actually process results here; this need to be a separate loop to avoid
1129    // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1130    // any results for.  (getNonLocalPointerDepFromBB will modify our
1131    // datastructures in ways the code after the PredTranslationFailure label
1132    // doesn't expect.)
1133    for (unsigned i = 0; i < PredList.size(); i++) {
1134      BasicBlock *Pred = PredList[i].first;
1135      PHITransAddr &PredPointer = PredList[i].second;
1136      Value *PredPtrVal = PredPointer.getAddr();
1137
1138      bool CanTranslate = true;
1139      // If PHI translation was unable to find an available pointer in this
1140      // predecessor, then we have to assume that the pointer is clobbered in
1141      // that predecessor.  We can still do PRE of the load, which would insert
1142      // a computation of the pointer in this predecessor.
1143      if (PredPtrVal == 0)
1144        CanTranslate = false;
1145
1146      // FIXME: it is entirely possible that PHI translating will end up with
1147      // the same value.  Consider PHI translating something like:
1148      // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1149      // to recurse here, pedantically speaking.
1150
1151      // If getNonLocalPointerDepFromBB fails here, that means the cached
1152      // result conflicted with the Visited list; we have to conservatively
1153      // assume it is unknown, but this also does not block PRE of the load.
1154      if (!CanTranslate ||
1155          getNonLocalPointerDepFromBB(PredPointer,
1156                                      Loc.getWithNewPtr(PredPtrVal),
1157                                      isLoad, Pred,
1158                                      Result, Visited)) {
1159        // Add the entry to the Result list.
1160        NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1161        Result.push_back(Entry);
1162
1163        // Since we had a phi translation failure, the cache for CacheKey won't
1164        // include all of the entries that we need to immediately satisfy future
1165        // queries.  Mark this in NonLocalPointerDeps by setting the
1166        // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
1167        // cached value to do more work but not miss the phi trans failure.
1168        NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1169        NLPI.Pair = BBSkipFirstBlockPair();
1170        continue;
1171      }
1172    }
1173
1174    // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1175    CacheInfo = &NonLocalPointerDeps[CacheKey];
1176    Cache = &CacheInfo->NonLocalDeps;
1177    NumSortedEntries = Cache->size();
1178
1179    // Since we did phi translation, the "Cache" set won't contain all of the
1180    // results for the query.  This is ok (we can still use it to accelerate
1181    // specific block queries) but we can't do the fastpath "return all
1182    // results from the set"  Clear out the indicator for this.
1183    CacheInfo->Pair = BBSkipFirstBlockPair();
1184    SkipFirstBlock = false;
1185    continue;
1186
1187  PredTranslationFailure:
1188    // The following code is "failure"; we can't produce a sane translation
1189    // for the given block.  It assumes that we haven't modified any of
1190    // our datastructures while processing the current block.
1191
1192    if (Cache == 0) {
1193      // Refresh the CacheInfo/Cache pointer if it got invalidated.
1194      CacheInfo = &NonLocalPointerDeps[CacheKey];
1195      Cache = &CacheInfo->NonLocalDeps;
1196      NumSortedEntries = Cache->size();
1197    }
1198
1199    // Since we failed phi translation, the "Cache" set won't contain all of the
1200    // results for the query.  This is ok (we can still use it to accelerate
1201    // specific block queries) but we can't do the fastpath "return all
1202    // results from the set".  Clear out the indicator for this.
1203    CacheInfo->Pair = BBSkipFirstBlockPair();
1204
1205    // If *nothing* works, mark the pointer as unknown.
1206    //
1207    // If this is the magic first block, return this as a clobber of the whole
1208    // incoming value.  Since we can't phi translate to one of the predecessors,
1209    // we have to bail out.
1210    if (SkipFirstBlock)
1211      return true;
1212
1213    for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
1214      assert(I != Cache->rend() && "Didn't find current block??");
1215      if (I->getBB() != BB)
1216        continue;
1217
1218      assert(I->getResult().isNonLocal() &&
1219             "Should only be here with transparent block");
1220      I->setResult(MemDepResult::getUnknown());
1221      Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
1222                                         Pointer.getAddr()));
1223      break;
1224    }
1225  }
1226
1227  // Okay, we're done now.  If we added new values to the cache, re-sort it.
1228  SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1229  DEBUG(AssertSorted(*Cache));
1230  return false;
1231}
1232
1233/// RemoveCachedNonLocalPointerDependencies - If P exists in
1234/// CachedNonLocalPointerInfo, remove it.
1235void MemoryDependenceAnalysis::
1236RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
1237  CachedNonLocalPointerInfo::iterator It =
1238    NonLocalPointerDeps.find(P);
1239  if (It == NonLocalPointerDeps.end()) return;
1240
1241  // Remove all of the entries in the BB->val map.  This involves removing
1242  // instructions from the reverse map.
1243  NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1244
1245  for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1246    Instruction *Target = PInfo[i].getResult().getInst();
1247    if (Target == 0) continue;  // Ignore non-local dep results.
1248    assert(Target->getParent() == PInfo[i].getBB());
1249
1250    // Eliminating the dirty entry from 'Cache', so update the reverse info.
1251    RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1252  }
1253
1254  // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1255  NonLocalPointerDeps.erase(It);
1256}
1257
1258
1259/// invalidateCachedPointerInfo - This method is used to invalidate cached
1260/// information about the specified pointer, because it may be too
1261/// conservative in memdep.  This is an optional call that can be used when
1262/// the client detects an equivalence between the pointer and some other
1263/// value and replaces the other value with ptr. This can make Ptr available
1264/// in more places that cached info does not necessarily keep.
1265void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
1266  // If Ptr isn't really a pointer, just ignore it.
1267  if (!Ptr->getType()->isPointerTy()) return;
1268  // Flush store info for the pointer.
1269  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1270  // Flush load info for the pointer.
1271  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1272}
1273
1274/// invalidateCachedPredecessors - Clear the PredIteratorCache info.
1275/// This needs to be done when the CFG changes, e.g., due to splitting
1276/// critical edges.
1277void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
1278  PredCache->clear();
1279}
1280
1281/// removeInstruction - Remove an instruction from the dependence analysis,
1282/// updating the dependence of instructions that previously depended on it.
1283/// This method attempts to keep the cache coherent using the reverse map.
1284void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
1285  // Walk through the Non-local dependencies, removing this one as the value
1286  // for any cached queries.
1287  NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1288  if (NLDI != NonLocalDeps.end()) {
1289    NonLocalDepInfo &BlockMap = NLDI->second.first;
1290    for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
1291         DI != DE; ++DI)
1292      if (Instruction *Inst = DI->getResult().getInst())
1293        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1294    NonLocalDeps.erase(NLDI);
1295  }
1296
1297  // If we have a cached local dependence query for this instruction, remove it.
1298  //
1299  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1300  if (LocalDepEntry != LocalDeps.end()) {
1301    // Remove us from DepInst's reverse set now that the local dep info is gone.
1302    if (Instruction *Inst = LocalDepEntry->second.getInst())
1303      RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1304
1305    // Remove this local dependency info.
1306    LocalDeps.erase(LocalDepEntry);
1307  }
1308
1309  // If we have any cached pointer dependencies on this instruction, remove
1310  // them.  If the instruction has non-pointer type, then it can't be a pointer
1311  // base.
1312
1313  // Remove it from both the load info and the store info.  The instruction
1314  // can't be in either of these maps if it is non-pointer.
1315  if (RemInst->getType()->isPointerTy()) {
1316    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1317    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1318  }
1319
1320  // Loop over all of the things that depend on the instruction we're removing.
1321  //
1322  SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
1323
1324  // If we find RemInst as a clobber or Def in any of the maps for other values,
1325  // we need to replace its entry with a dirty version of the instruction after
1326  // it.  If RemInst is a terminator, we use a null dirty value.
1327  //
1328  // Using a dirty version of the instruction after RemInst saves having to scan
1329  // the entire block to get to this point.
1330  MemDepResult NewDirtyVal;
1331  if (!RemInst->isTerminator())
1332    NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
1333
1334  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1335  if (ReverseDepIt != ReverseLocalDeps.end()) {
1336    SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
1337    // RemInst can't be the terminator if it has local stuff depending on it.
1338    assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
1339           "Nothing can locally depend on a terminator");
1340
1341    for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
1342         E = ReverseDeps.end(); I != E; ++I) {
1343      Instruction *InstDependingOnRemInst = *I;
1344      assert(InstDependingOnRemInst != RemInst &&
1345             "Already removed our local dep info");
1346
1347      LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1348
1349      // Make sure to remember that new things depend on NewDepInst.
1350      assert(NewDirtyVal.getInst() && "There is no way something else can have "
1351             "a local dep on this if it is a terminator!");
1352      ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
1353                                                InstDependingOnRemInst));
1354    }
1355
1356    ReverseLocalDeps.erase(ReverseDepIt);
1357
1358    // Add new reverse deps after scanning the set, to avoid invalidating the
1359    // 'ReverseDeps' reference.
1360    while (!ReverseDepsToAdd.empty()) {
1361      ReverseLocalDeps[ReverseDepsToAdd.back().first]
1362        .insert(ReverseDepsToAdd.back().second);
1363      ReverseDepsToAdd.pop_back();
1364    }
1365  }
1366
1367  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1368  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1369    SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
1370    for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
1371         I != E; ++I) {
1372      assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
1373
1374      PerInstNLInfo &INLD = NonLocalDeps[*I];
1375      // The information is now dirty!
1376      INLD.second = true;
1377
1378      for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1379           DE = INLD.first.end(); DI != DE; ++DI) {
1380        if (DI->getResult().getInst() != RemInst) continue;
1381
1382        // Convert to a dirty entry for the subsequent instruction.
1383        DI->setResult(NewDirtyVal);
1384
1385        if (Instruction *NextI = NewDirtyVal.getInst())
1386          ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
1387      }
1388    }
1389
1390    ReverseNonLocalDeps.erase(ReverseDepIt);
1391
1392    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1393    while (!ReverseDepsToAdd.empty()) {
1394      ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1395        .insert(ReverseDepsToAdd.back().second);
1396      ReverseDepsToAdd.pop_back();
1397    }
1398  }
1399
1400  // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1401  // value in the NonLocalPointerDeps info.
1402  ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1403    ReverseNonLocalPtrDeps.find(RemInst);
1404  if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1405    SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
1406    SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1407
1408    for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
1409         E = Set.end(); I != E; ++I) {
1410      ValueIsLoadPair P = *I;
1411      assert(P.getPointer() != RemInst &&
1412             "Already removed NonLocalPointerDeps info for RemInst");
1413
1414      NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1415
1416      // The cache is not valid for any specific block anymore.
1417      NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1418
1419      // Update any entries for RemInst to use the instruction after it.
1420      for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1421           DI != DE; ++DI) {
1422        if (DI->getResult().getInst() != RemInst) continue;
1423
1424        // Convert to a dirty entry for the subsequent instruction.
1425        DI->setResult(NewDirtyVal);
1426
1427        if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1428          ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1429      }
1430
1431      // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1432      // subsequent value may invalidate the sortedness.
1433      std::sort(NLPDI.begin(), NLPDI.end());
1434    }
1435
1436    ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1437
1438    while (!ReversePtrDepsToAdd.empty()) {
1439      ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1440        .insert(ReversePtrDepsToAdd.back().second);
1441      ReversePtrDepsToAdd.pop_back();
1442    }
1443  }
1444
1445
1446  assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1447  AA->deleteValue(RemInst);
1448  DEBUG(verifyRemoved(RemInst));
1449}
1450/// verifyRemoved - Verify that the specified instruction does not occur
1451/// in our internal data structures.
1452void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1453  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1454       E = LocalDeps.end(); I != E; ++I) {
1455    assert(I->first != D && "Inst occurs in data structures");
1456    assert(I->second.getInst() != D &&
1457           "Inst occurs in data structures");
1458  }
1459
1460  for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1461       E = NonLocalPointerDeps.end(); I != E; ++I) {
1462    assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1463    const NonLocalDepInfo &Val = I->second.NonLocalDeps;
1464    for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1465         II != E; ++II)
1466      assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
1467  }
1468
1469  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1470       E = NonLocalDeps.end(); I != E; ++I) {
1471    assert(I->first != D && "Inst occurs in data structures");
1472    const PerInstNLInfo &INLD = I->second;
1473    for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1474         EE = INLD.first.end(); II  != EE; ++II)
1475      assert(II->getResult().getInst() != D && "Inst occurs in data structures");
1476  }
1477
1478  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1479       E = ReverseLocalDeps.end(); I != E; ++I) {
1480    assert(I->first != D && "Inst occurs in data structures");
1481    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1482         EE = I->second.end(); II != EE; ++II)
1483      assert(*II != D && "Inst occurs in data structures");
1484  }
1485
1486  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1487       E = ReverseNonLocalDeps.end();
1488       I != E; ++I) {
1489    assert(I->first != D && "Inst occurs in data structures");
1490    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1491         EE = I->second.end(); II != EE; ++II)
1492      assert(*II != D && "Inst occurs in data structures");
1493  }
1494
1495  for (ReverseNonLocalPtrDepTy::const_iterator
1496       I = ReverseNonLocalPtrDeps.begin(),
1497       E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1498    assert(I->first != D && "Inst occurs in rev NLPD map");
1499
1500    for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
1501         E = I->second.end(); II != E; ++II)
1502      assert(*II != ValueIsLoadPair(D, false) &&
1503             *II != ValueIsLoadPair(D, true) &&
1504             "Inst occurs in ReverseNonLocalPtrDeps map");
1505  }
1506
1507}
1508