MemoryDependenceAnalysis.cpp revision 09981982f13085d5e7fd5fb8f87b4a626d770c5f
1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an analysis that determines, for a given memory
11// operation, what preceding memory operations it depends on.  It builds on
12// alias analysis information, and tries to provide a lazy, caching interface to
13// a common kind of alias information query.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "memdep"
18#include "llvm/Analysis/MemoryDependenceAnalysis.h"
19#include "llvm/Instructions.h"
20#include "llvm/IntrinsicInst.h"
21#include "llvm/Function.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/Analysis/Dominators.h"
24#include "llvm/Analysis/InstructionSimplify.h"
25#include "llvm/Analysis/MemoryBuiltins.h"
26#include "llvm/Analysis/PHITransAddr.h"
27#include "llvm/ADT/Statistic.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/PredIteratorCache.h"
30#include "llvm/Support/Debug.h"
31using namespace llvm;
32
33STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
34STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
35STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
36
37STATISTIC(NumCacheNonLocalPtr,
38          "Number of fully cached non-local ptr responses");
39STATISTIC(NumCacheDirtyNonLocalPtr,
40          "Number of cached, but dirty, non-local ptr responses");
41STATISTIC(NumUncacheNonLocalPtr,
42          "Number of uncached non-local ptr responses");
43STATISTIC(NumCacheCompleteNonLocalPtr,
44          "Number of block queries that were completely cached");
45
46char MemoryDependenceAnalysis::ID = 0;
47
48// Register this pass...
49INITIALIZE_PASS(MemoryDependenceAnalysis, "memdep",
50                "Memory Dependence Analysis", false, true);
51
52MemoryDependenceAnalysis::MemoryDependenceAnalysis()
53: FunctionPass(ID), PredCache(0) {
54}
55MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
56}
57
58/// Clean up memory in between runs
59void MemoryDependenceAnalysis::releaseMemory() {
60  LocalDeps.clear();
61  NonLocalDeps.clear();
62  NonLocalPointerDeps.clear();
63  ReverseLocalDeps.clear();
64  ReverseNonLocalDeps.clear();
65  ReverseNonLocalPtrDeps.clear();
66  PredCache->clear();
67}
68
69
70
71/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
72///
73void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
74  AU.setPreservesAll();
75  AU.addRequiredTransitive<AliasAnalysis>();
76}
77
78bool MemoryDependenceAnalysis::runOnFunction(Function &) {
79  AA = &getAnalysis<AliasAnalysis>();
80  if (PredCache == 0)
81    PredCache.reset(new PredIteratorCache());
82  return false;
83}
84
85/// RemoveFromReverseMap - This is a helper function that removes Val from
86/// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
87template <typename KeyTy>
88static void RemoveFromReverseMap(DenseMap<Instruction*,
89                                 SmallPtrSet<KeyTy, 4> > &ReverseMap,
90                                 Instruction *Inst, KeyTy Val) {
91  typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
92  InstIt = ReverseMap.find(Inst);
93  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
94  bool Found = InstIt->second.erase(Val);
95  assert(Found && "Invalid reverse map!"); Found=Found;
96  if (InstIt->second.empty())
97    ReverseMap.erase(InstIt);
98}
99
100
101/// getCallSiteDependencyFrom - Private helper for finding the local
102/// dependencies of a call site.
103MemDepResult MemoryDependenceAnalysis::
104getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
105                          BasicBlock::iterator ScanIt, BasicBlock *BB) {
106  // Walk backwards through the block, looking for dependencies
107  while (ScanIt != BB->begin()) {
108    Instruction *Inst = --ScanIt;
109
110    // If this inst is a memory op, get the pointer it accessed
111    Value *Pointer = 0;
112    uint64_t PointerSize = 0;
113    if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
114      Pointer = S->getPointerOperand();
115      PointerSize = AA->getTypeStoreSize(S->getOperand(0)->getType());
116    } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
117      Pointer = V->getOperand(0);
118      PointerSize = AA->getTypeStoreSize(V->getType());
119    } else if (const CallInst *CI = isFreeCall(Inst)) {
120      Pointer = CI->getArgOperand(0);
121      // calls to free() erase the entire structure
122      PointerSize = ~0ULL;
123    } else if (CallSite InstCS = cast<Value>(Inst)) {
124      // Debug intrinsics don't cause dependences.
125      if (isa<DbgInfoIntrinsic>(Inst)) continue;
126      // If these two calls do not interfere, look past it.
127      switch (AA->getModRefInfo(CS, InstCS)) {
128      case AliasAnalysis::NoModRef:
129        // If the two calls are the same, return InstCS as a Def, so that
130        // CS can be found redundant and eliminated.
131        if (isReadOnlyCall && InstCS.onlyReadsMemory() &&
132            CS.getInstruction()->isIdenticalToWhenDefined(Inst))
133          return MemDepResult::getDef(Inst);
134
135        // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
136        // keep scanning.
137        continue;
138      default:
139        return MemDepResult::getClobber(Inst);
140      }
141    } else {
142      // Non-memory instruction.
143      continue;
144    }
145
146    if (AA->getModRefInfo(CS, Pointer, PointerSize) != AliasAnalysis::NoModRef)
147      return MemDepResult::getClobber(Inst);
148  }
149
150  // No dependence found.  If this is the entry block of the function, it is a
151  // clobber, otherwise it is non-local.
152  if (BB != &BB->getParent()->getEntryBlock())
153    return MemDepResult::getNonLocal();
154  return MemDepResult::getClobber(ScanIt);
155}
156
157/// getPointerDependencyFrom - Return the instruction on which a memory
158/// location depends.  If isLoad is true, this routine ignore may-aliases with
159/// read-only operations.
160MemDepResult MemoryDependenceAnalysis::
161getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad,
162                         BasicBlock::iterator ScanIt, BasicBlock *BB) {
163
164  Value *InvariantTag = 0;
165
166  // Walk backwards through the basic block, looking for dependencies.
167  while (ScanIt != BB->begin()) {
168    Instruction *Inst = --ScanIt;
169
170    // If we're in an invariant region, no dependencies can be found before
171    // we pass an invariant-begin marker.
172    if (InvariantTag == Inst) {
173      InvariantTag = 0;
174      continue;
175    }
176
177    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
178      // Debug intrinsics don't (and can't) cause dependences.
179      if (isa<DbgInfoIntrinsic>(II)) continue;
180
181      // If we pass an invariant-end marker, then we've just entered an
182      // invariant region and can start ignoring dependencies.
183      if (II->getIntrinsicID() == Intrinsic::invariant_end) {
184        // FIXME: This only considers queries directly on the invariant-tagged
185        // pointer, not on query pointers that are indexed off of them.  It'd
186        // be nice to handle that at some point.
187        AliasAnalysis::AliasResult R = AA->alias(II->getArgOperand(2), MemPtr);
188        if (R == AliasAnalysis::MustAlias)
189          InvariantTag = II->getArgOperand(0);
190
191        continue;
192      }
193
194      // If we reach a lifetime begin or end marker, then the query ends here
195      // because the value is undefined.
196      if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
197        // FIXME: This only considers queries directly on the invariant-tagged
198        // pointer, not on query pointers that are indexed off of them.  It'd
199        // be nice to handle that at some point.
200        AliasAnalysis::AliasResult R = AA->alias(II->getArgOperand(1), MemPtr);
201        if (R == AliasAnalysis::MustAlias)
202          return MemDepResult::getDef(II);
203        continue;
204      }
205    }
206
207    // If we're querying on a load and we're in an invariant region, we're done
208    // at this point. Nothing a load depends on can live in an invariant region.
209    //
210    // FIXME: this will prevent us from returning load/load must-aliases, so GVN
211    // won't remove redundant loads.
212    if (isLoad && InvariantTag) continue;
213
214    // Values depend on loads if the pointers are must aliased.  This means that
215    // a load depends on another must aliased load from the same value.
216    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
217      Value *Pointer = LI->getPointerOperand();
218      uint64_t PointerSize = AA->getTypeStoreSize(LI->getType());
219
220      // If we found a pointer, check if it could be the same as our pointer.
221      AliasAnalysis::AliasResult R =
222        AA->alias(Pointer, PointerSize, MemPtr, MemSize);
223      if (R == AliasAnalysis::NoAlias)
224        continue;
225
226      // May-alias loads don't depend on each other without a dependence.
227      if (isLoad && R == AliasAnalysis::MayAlias)
228        continue;
229      // Stores depend on may and must aliased loads, loads depend on must-alias
230      // loads.
231      return MemDepResult::getDef(Inst);
232    }
233
234    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
235      // There can't be stores to the value we care about inside an
236      // invariant region.
237      if (InvariantTag) continue;
238
239      // If alias analysis can tell that this store is guaranteed to not modify
240      // the query pointer, ignore it.  Use getModRefInfo to handle cases where
241      // the query pointer points to constant memory etc.
242      if (AA->getModRefInfo(SI, MemPtr, MemSize) == AliasAnalysis::NoModRef)
243        continue;
244
245      // Ok, this store might clobber the query pointer.  Check to see if it is
246      // a must alias: in this case, we want to return this as a def.
247      Value *Pointer = SI->getPointerOperand();
248      uint64_t PointerSize = AA->getTypeStoreSize(SI->getOperand(0)->getType());
249
250      // If we found a pointer, check if it could be the same as our pointer.
251      AliasAnalysis::AliasResult R =
252        AA->alias(Pointer, PointerSize, MemPtr, MemSize);
253
254      if (R == AliasAnalysis::NoAlias)
255        continue;
256      if (R == AliasAnalysis::MayAlias)
257        return MemDepResult::getClobber(Inst);
258      return MemDepResult::getDef(Inst);
259    }
260
261    // If this is an allocation, and if we know that the accessed pointer is to
262    // the allocation, return Def.  This means that there is no dependence and
263    // the access can be optimized based on that.  For example, a load could
264    // turn into undef.
265    // Note: Only determine this to be a malloc if Inst is the malloc call, not
266    // a subsequent bitcast of the malloc call result.  There can be stores to
267    // the malloced memory between the malloc call and its bitcast uses, and we
268    // need to continue scanning until the malloc call.
269    if (isa<AllocaInst>(Inst) ||
270        (isa<CallInst>(Inst) && extractMallocCall(Inst))) {
271      Value *AccessPtr = MemPtr->getUnderlyingObject();
272
273      if (AccessPtr == Inst ||
274          AA->alias(Inst, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
275        return MemDepResult::getDef(Inst);
276      continue;
277    }
278
279    // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
280    switch (AA->getModRefInfo(Inst, MemPtr, MemSize)) {
281    case AliasAnalysis::NoModRef:
282      // If the call has no effect on the queried pointer, just ignore it.
283      continue;
284    case AliasAnalysis::Mod:
285      // If we're in an invariant region, we can ignore calls that ONLY
286      // modify the pointer.
287      if (InvariantTag) continue;
288      return MemDepResult::getClobber(Inst);
289    case AliasAnalysis::Ref:
290      // If the call is known to never store to the pointer, and if this is a
291      // load query, we can safely ignore it (scan past it).
292      if (isLoad)
293        continue;
294    default:
295      // Otherwise, there is a potential dependence.  Return a clobber.
296      return MemDepResult::getClobber(Inst);
297    }
298  }
299
300  // No dependence found.  If this is the entry block of the function, it is a
301  // clobber, otherwise it is non-local.
302  if (BB != &BB->getParent()->getEntryBlock())
303    return MemDepResult::getNonLocal();
304  return MemDepResult::getClobber(ScanIt);
305}
306
307/// getDependency - Return the instruction on which a memory operation
308/// depends.
309MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
310  Instruction *ScanPos = QueryInst;
311
312  // Check for a cached result
313  MemDepResult &LocalCache = LocalDeps[QueryInst];
314
315  // If the cached entry is non-dirty, just return it.  Note that this depends
316  // on MemDepResult's default constructing to 'dirty'.
317  if (!LocalCache.isDirty())
318    return LocalCache;
319
320  // Otherwise, if we have a dirty entry, we know we can start the scan at that
321  // instruction, which may save us some work.
322  if (Instruction *Inst = LocalCache.getInst()) {
323    ScanPos = Inst;
324
325    RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
326  }
327
328  BasicBlock *QueryParent = QueryInst->getParent();
329
330  Value *MemPtr = 0;
331  uint64_t MemSize = 0;
332
333  // Do the scan.
334  if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
335    // No dependence found.  If this is the entry block of the function, it is a
336    // clobber, otherwise it is non-local.
337    if (QueryParent != &QueryParent->getParent()->getEntryBlock())
338      LocalCache = MemDepResult::getNonLocal();
339    else
340      LocalCache = MemDepResult::getClobber(QueryInst);
341  } else if (StoreInst *SI = dyn_cast<StoreInst>(QueryInst)) {
342    // If this is a volatile store, don't mess around with it.  Just return the
343    // previous instruction as a clobber.
344    if (SI->isVolatile())
345      LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
346    else {
347      MemPtr = SI->getPointerOperand();
348      MemSize = AA->getTypeStoreSize(SI->getOperand(0)->getType());
349    }
350  } else if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) {
351    // If this is a volatile load, don't mess around with it.  Just return the
352    // previous instruction as a clobber.
353    if (LI->isVolatile())
354      LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
355    else {
356      MemPtr = LI->getPointerOperand();
357      MemSize = AA->getTypeStoreSize(LI->getType());
358    }
359  } else if (const CallInst *CI = isFreeCall(QueryInst)) {
360    MemPtr = CI->getArgOperand(0);
361    // calls to free() erase the entire structure, not just a field.
362    MemSize = ~0UL;
363  } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
364    int IntrinsicID = 0;  // Intrinsic IDs start at 1.
365    IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst);
366    if (II)
367      IntrinsicID = II->getIntrinsicID();
368
369    switch (IntrinsicID) {
370    case Intrinsic::lifetime_start:
371    case Intrinsic::lifetime_end:
372    case Intrinsic::invariant_start:
373      MemPtr = II->getArgOperand(1);
374      MemSize = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
375      break;
376    case Intrinsic::invariant_end:
377      MemPtr = II->getArgOperand(2);
378      MemSize = cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
379      break;
380    default:
381      CallSite QueryCS(QueryInst);
382      bool isReadOnly = AA->onlyReadsMemory(QueryCS);
383      LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
384                                             QueryParent);
385      break;
386    }
387  } else {
388    // Non-memory instruction.
389    LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
390  }
391
392  // If we need to do a pointer scan, make it happen.
393  if (MemPtr) {
394    bool isLoad = !QueryInst->mayWriteToMemory();
395    if (IntrinsicInst *II = dyn_cast<MemoryUseIntrinsic>(QueryInst)) {
396      isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_end;
397    }
398    LocalCache = getPointerDependencyFrom(MemPtr, MemSize, isLoad, ScanPos,
399                                          QueryParent);
400  }
401
402  // Remember the result!
403  if (Instruction *I = LocalCache.getInst())
404    ReverseLocalDeps[I].insert(QueryInst);
405
406  return LocalCache;
407}
408
409#ifndef NDEBUG
410/// AssertSorted - This method is used when -debug is specified to verify that
411/// cache arrays are properly kept sorted.
412static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
413                         int Count = -1) {
414  if (Count == -1) Count = Cache.size();
415  if (Count == 0) return;
416
417  for (unsigned i = 1; i != unsigned(Count); ++i)
418    assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
419}
420#endif
421
422/// getNonLocalCallDependency - Perform a full dependency query for the
423/// specified call, returning the set of blocks that the value is
424/// potentially live across.  The returned set of results will include a
425/// "NonLocal" result for all blocks where the value is live across.
426///
427/// This method assumes the instruction returns a "NonLocal" dependency
428/// within its own block.
429///
430/// This returns a reference to an internal data structure that may be
431/// invalidated on the next non-local query or when an instruction is
432/// removed.  Clients must copy this data if they want it around longer than
433/// that.
434const MemoryDependenceAnalysis::NonLocalDepInfo &
435MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
436  assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
437 "getNonLocalCallDependency should only be used on calls with non-local deps!");
438  PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
439  NonLocalDepInfo &Cache = CacheP.first;
440
441  /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
442  /// the cached case, this can happen due to instructions being deleted etc. In
443  /// the uncached case, this starts out as the set of predecessors we care
444  /// about.
445  SmallVector<BasicBlock*, 32> DirtyBlocks;
446
447  if (!Cache.empty()) {
448    // Okay, we have a cache entry.  If we know it is not dirty, just return it
449    // with no computation.
450    if (!CacheP.second) {
451      ++NumCacheNonLocal;
452      return Cache;
453    }
454
455    // If we already have a partially computed set of results, scan them to
456    // determine what is dirty, seeding our initial DirtyBlocks worklist.
457    for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
458       I != E; ++I)
459      if (I->getResult().isDirty())
460        DirtyBlocks.push_back(I->getBB());
461
462    // Sort the cache so that we can do fast binary search lookups below.
463    std::sort(Cache.begin(), Cache.end());
464
465    ++NumCacheDirtyNonLocal;
466    //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
467    //     << Cache.size() << " cached: " << *QueryInst;
468  } else {
469    // Seed DirtyBlocks with each of the preds of QueryInst's block.
470    BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
471    for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
472      DirtyBlocks.push_back(*PI);
473    ++NumUncacheNonLocal;
474  }
475
476  // isReadonlyCall - If this is a read-only call, we can be more aggressive.
477  bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
478
479  SmallPtrSet<BasicBlock*, 64> Visited;
480
481  unsigned NumSortedEntries = Cache.size();
482  DEBUG(AssertSorted(Cache));
483
484  // Iterate while we still have blocks to update.
485  while (!DirtyBlocks.empty()) {
486    BasicBlock *DirtyBB = DirtyBlocks.back();
487    DirtyBlocks.pop_back();
488
489    // Already processed this block?
490    if (!Visited.insert(DirtyBB))
491      continue;
492
493    // Do a binary search to see if we already have an entry for this block in
494    // the cache set.  If so, find it.
495    DEBUG(AssertSorted(Cache, NumSortedEntries));
496    NonLocalDepInfo::iterator Entry =
497      std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
498                       NonLocalDepEntry(DirtyBB));
499    if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB)
500      --Entry;
501
502    NonLocalDepEntry *ExistingResult = 0;
503    if (Entry != Cache.begin()+NumSortedEntries &&
504        Entry->getBB() == DirtyBB) {
505      // If we already have an entry, and if it isn't already dirty, the block
506      // is done.
507      if (!Entry->getResult().isDirty())
508        continue;
509
510      // Otherwise, remember this slot so we can update the value.
511      ExistingResult = &*Entry;
512    }
513
514    // If the dirty entry has a pointer, start scanning from it so we don't have
515    // to rescan the entire block.
516    BasicBlock::iterator ScanPos = DirtyBB->end();
517    if (ExistingResult) {
518      if (Instruction *Inst = ExistingResult->getResult().getInst()) {
519        ScanPos = Inst;
520        // We're removing QueryInst's use of Inst.
521        RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
522                             QueryCS.getInstruction());
523      }
524    }
525
526    // Find out if this block has a local dependency for QueryInst.
527    MemDepResult Dep;
528
529    if (ScanPos != DirtyBB->begin()) {
530      Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
531    } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
532      // No dependence found.  If this is the entry block of the function, it is
533      // a clobber, otherwise it is non-local.
534      Dep = MemDepResult::getNonLocal();
535    } else {
536      Dep = MemDepResult::getClobber(ScanPos);
537    }
538
539    // If we had a dirty entry for the block, update it.  Otherwise, just add
540    // a new entry.
541    if (ExistingResult)
542      ExistingResult->setResult(Dep);
543    else
544      Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
545
546    // If the block has a dependency (i.e. it isn't completely transparent to
547    // the value), remember the association!
548    if (!Dep.isNonLocal()) {
549      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
550      // update this when we remove instructions.
551      if (Instruction *Inst = Dep.getInst())
552        ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
553    } else {
554
555      // If the block *is* completely transparent to the load, we need to check
556      // the predecessors of this block.  Add them to our worklist.
557      for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
558        DirtyBlocks.push_back(*PI);
559    }
560  }
561
562  return Cache;
563}
564
565/// getNonLocalPointerDependency - Perform a full dependency query for an
566/// access to the specified (non-volatile) memory location, returning the
567/// set of instructions that either define or clobber the value.
568///
569/// This method assumes the pointer has a "NonLocal" dependency within its
570/// own block.
571///
572void MemoryDependenceAnalysis::
573getNonLocalPointerDependency(Value *Pointer, bool isLoad, BasicBlock *FromBB,
574                             SmallVectorImpl<NonLocalDepResult> &Result) {
575  assert(Pointer->getType()->isPointerTy() &&
576         "Can't get pointer deps of a non-pointer!");
577  Result.clear();
578
579  // We know that the pointer value is live into FromBB find the def/clobbers
580  // from presecessors.
581  const Type *EltTy = cast<PointerType>(Pointer->getType())->getElementType();
582  uint64_t PointeeSize = AA->getTypeStoreSize(EltTy);
583
584  PHITransAddr Address(Pointer, TD);
585
586  // This is the set of blocks we've inspected, and the pointer we consider in
587  // each block.  Because of critical edges, we currently bail out if querying
588  // a block with multiple different pointers.  This can happen during PHI
589  // translation.
590  DenseMap<BasicBlock*, Value*> Visited;
591  if (!getNonLocalPointerDepFromBB(Address, PointeeSize, isLoad, FromBB,
592                                   Result, Visited, true))
593    return;
594  Result.clear();
595  Result.push_back(NonLocalDepResult(FromBB,
596                                     MemDepResult::getClobber(FromBB->begin()),
597                                     Pointer));
598}
599
600/// GetNonLocalInfoForBlock - Compute the memdep value for BB with
601/// Pointer/PointeeSize using either cached information in Cache or by doing a
602/// lookup (which may use dirty cache info if available).  If we do a lookup,
603/// add the result to the cache.
604MemDepResult MemoryDependenceAnalysis::
605GetNonLocalInfoForBlock(Value *Pointer, uint64_t PointeeSize,
606                        bool isLoad, BasicBlock *BB,
607                        NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
608
609  // Do a binary search to see if we already have an entry for this block in
610  // the cache set.  If so, find it.
611  NonLocalDepInfo::iterator Entry =
612    std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
613                     NonLocalDepEntry(BB));
614  if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
615    --Entry;
616
617  NonLocalDepEntry *ExistingResult = 0;
618  if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
619    ExistingResult = &*Entry;
620
621  // If we have a cached entry, and it is non-dirty, use it as the value for
622  // this dependency.
623  if (ExistingResult && !ExistingResult->getResult().isDirty()) {
624    ++NumCacheNonLocalPtr;
625    return ExistingResult->getResult();
626  }
627
628  // Otherwise, we have to scan for the value.  If we have a dirty cache
629  // entry, start scanning from its position, otherwise we scan from the end
630  // of the block.
631  BasicBlock::iterator ScanPos = BB->end();
632  if (ExistingResult && ExistingResult->getResult().getInst()) {
633    assert(ExistingResult->getResult().getInst()->getParent() == BB &&
634           "Instruction invalidated?");
635    ++NumCacheDirtyNonLocalPtr;
636    ScanPos = ExistingResult->getResult().getInst();
637
638    // Eliminating the dirty entry from 'Cache', so update the reverse info.
639    ValueIsLoadPair CacheKey(Pointer, isLoad);
640    RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
641  } else {
642    ++NumUncacheNonLocalPtr;
643  }
644
645  // Scan the block for the dependency.
646  MemDepResult Dep = getPointerDependencyFrom(Pointer, PointeeSize, isLoad,
647                                              ScanPos, BB);
648
649  // If we had a dirty entry for the block, update it.  Otherwise, just add
650  // a new entry.
651  if (ExistingResult)
652    ExistingResult->setResult(Dep);
653  else
654    Cache->push_back(NonLocalDepEntry(BB, Dep));
655
656  // If the block has a dependency (i.e. it isn't completely transparent to
657  // the value), remember the reverse association because we just added it
658  // to Cache!
659  if (Dep.isNonLocal())
660    return Dep;
661
662  // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
663  // update MemDep when we remove instructions.
664  Instruction *Inst = Dep.getInst();
665  assert(Inst && "Didn't depend on anything?");
666  ValueIsLoadPair CacheKey(Pointer, isLoad);
667  ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
668  return Dep;
669}
670
671/// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
672/// number of elements in the array that are already properly ordered.  This is
673/// optimized for the case when only a few entries are added.
674static void
675SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
676                         unsigned NumSortedEntries) {
677  switch (Cache.size() - NumSortedEntries) {
678  case 0:
679    // done, no new entries.
680    break;
681  case 2: {
682    // Two new entries, insert the last one into place.
683    NonLocalDepEntry Val = Cache.back();
684    Cache.pop_back();
685    MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
686      std::upper_bound(Cache.begin(), Cache.end()-1, Val);
687    Cache.insert(Entry, Val);
688    // FALL THROUGH.
689  }
690  case 1:
691    // One new entry, Just insert the new value at the appropriate position.
692    if (Cache.size() != 1) {
693      NonLocalDepEntry Val = Cache.back();
694      Cache.pop_back();
695      MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
696        std::upper_bound(Cache.begin(), Cache.end(), Val);
697      Cache.insert(Entry, Val);
698    }
699    break;
700  default:
701    // Added many values, do a full scale sort.
702    std::sort(Cache.begin(), Cache.end());
703    break;
704  }
705}
706
707/// getNonLocalPointerDepFromBB - Perform a dependency query based on
708/// pointer/pointeesize starting at the end of StartBB.  Add any clobber/def
709/// results to the results vector and keep track of which blocks are visited in
710/// 'Visited'.
711///
712/// This has special behavior for the first block queries (when SkipFirstBlock
713/// is true).  In this special case, it ignores the contents of the specified
714/// block and starts returning dependence info for its predecessors.
715///
716/// This function returns false on success, or true to indicate that it could
717/// not compute dependence information for some reason.  This should be treated
718/// as a clobber dependence on the first instruction in the predecessor block.
719bool MemoryDependenceAnalysis::
720getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, uint64_t PointeeSize,
721                            bool isLoad, BasicBlock *StartBB,
722                            SmallVectorImpl<NonLocalDepResult> &Result,
723                            DenseMap<BasicBlock*, Value*> &Visited,
724                            bool SkipFirstBlock) {
725
726  // Look up the cached info for Pointer.
727  ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
728
729  std::pair<BBSkipFirstBlockPair, NonLocalDepInfo> *CacheInfo =
730    &NonLocalPointerDeps[CacheKey];
731  NonLocalDepInfo *Cache = &CacheInfo->second;
732
733  // If we have valid cached information for exactly the block we are
734  // investigating, just return it with no recomputation.
735  if (CacheInfo->first == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
736    // We have a fully cached result for this query then we can just return the
737    // cached results and populate the visited set.  However, we have to verify
738    // that we don't already have conflicting results for these blocks.  Check
739    // to ensure that if a block in the results set is in the visited set that
740    // it was for the same pointer query.
741    if (!Visited.empty()) {
742      for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
743           I != E; ++I) {
744        DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
745        if (VI == Visited.end() || VI->second == Pointer.getAddr())
746          continue;
747
748        // We have a pointer mismatch in a block.  Just return clobber, saying
749        // that something was clobbered in this result.  We could also do a
750        // non-fully cached query, but there is little point in doing this.
751        return true;
752      }
753    }
754
755    Value *Addr = Pointer.getAddr();
756    for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
757         I != E; ++I) {
758      Visited.insert(std::make_pair(I->getBB(), Addr));
759      if (!I->getResult().isNonLocal())
760        Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
761    }
762    ++NumCacheCompleteNonLocalPtr;
763    return false;
764  }
765
766  // Otherwise, either this is a new block, a block with an invalid cache
767  // pointer or one that we're about to invalidate by putting more info into it
768  // than its valid cache info.  If empty, the result will be valid cache info,
769  // otherwise it isn't.
770  if (Cache->empty())
771    CacheInfo->first = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
772  else
773    CacheInfo->first = BBSkipFirstBlockPair();
774
775  SmallVector<BasicBlock*, 32> Worklist;
776  Worklist.push_back(StartBB);
777
778  // Keep track of the entries that we know are sorted.  Previously cached
779  // entries will all be sorted.  The entries we add we only sort on demand (we
780  // don't insert every element into its sorted position).  We know that we
781  // won't get any reuse from currently inserted values, because we don't
782  // revisit blocks after we insert info for them.
783  unsigned NumSortedEntries = Cache->size();
784  DEBUG(AssertSorted(*Cache));
785
786  while (!Worklist.empty()) {
787    BasicBlock *BB = Worklist.pop_back_val();
788
789    // Skip the first block if we have it.
790    if (!SkipFirstBlock) {
791      // Analyze the dependency of *Pointer in FromBB.  See if we already have
792      // been here.
793      assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
794
795      // Get the dependency info for Pointer in BB.  If we have cached
796      // information, we will use it, otherwise we compute it.
797      DEBUG(AssertSorted(*Cache, NumSortedEntries));
798      MemDepResult Dep = GetNonLocalInfoForBlock(Pointer.getAddr(), PointeeSize,
799                                                 isLoad, BB, Cache,
800                                                 NumSortedEntries);
801
802      // If we got a Def or Clobber, add this to the list of results.
803      if (!Dep.isNonLocal()) {
804        Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
805        continue;
806      }
807    }
808
809    // If 'Pointer' is an instruction defined in this block, then we need to do
810    // phi translation to change it into a value live in the predecessor block.
811    // If not, we just add the predecessors to the worklist and scan them with
812    // the same Pointer.
813    if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
814      SkipFirstBlock = false;
815      for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
816        // Verify that we haven't looked at this block yet.
817        std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
818          InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
819        if (InsertRes.second) {
820          // First time we've looked at *PI.
821          Worklist.push_back(*PI);
822          continue;
823        }
824
825        // If we have seen this block before, but it was with a different
826        // pointer then we have a phi translation failure and we have to treat
827        // this as a clobber.
828        if (InsertRes.first->second != Pointer.getAddr())
829          goto PredTranslationFailure;
830      }
831      continue;
832    }
833
834    // We do need to do phi translation, if we know ahead of time we can't phi
835    // translate this value, don't even try.
836    if (!Pointer.IsPotentiallyPHITranslatable())
837      goto PredTranslationFailure;
838
839    // We may have added values to the cache list before this PHI translation.
840    // If so, we haven't done anything to ensure that the cache remains sorted.
841    // Sort it now (if needed) so that recursive invocations of
842    // getNonLocalPointerDepFromBB and other routines that could reuse the cache
843    // value will only see properly sorted cache arrays.
844    if (Cache && NumSortedEntries != Cache->size()) {
845      SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
846      NumSortedEntries = Cache->size();
847    }
848    Cache = 0;
849
850    for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
851      BasicBlock *Pred = *PI;
852
853      // Get the PHI translated pointer in this predecessor.  This can fail if
854      // not translatable, in which case the getAddr() returns null.
855      PHITransAddr PredPointer(Pointer);
856      PredPointer.PHITranslateValue(BB, Pred, 0);
857
858      Value *PredPtrVal = PredPointer.getAddr();
859
860      // Check to see if we have already visited this pred block with another
861      // pointer.  If so, we can't do this lookup.  This failure can occur
862      // with PHI translation when a critical edge exists and the PHI node in
863      // the successor translates to a pointer value different than the
864      // pointer the block was first analyzed with.
865      std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
866        InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
867
868      if (!InsertRes.second) {
869        // If the predecessor was visited with PredPtr, then we already did
870        // the analysis and can ignore it.
871        if (InsertRes.first->second == PredPtrVal)
872          continue;
873
874        // Otherwise, the block was previously analyzed with a different
875        // pointer.  We can't represent the result of this case, so we just
876        // treat this as a phi translation failure.
877        goto PredTranslationFailure;
878      }
879
880      // If PHI translation was unable to find an available pointer in this
881      // predecessor, then we have to assume that the pointer is clobbered in
882      // that predecessor.  We can still do PRE of the load, which would insert
883      // a computation of the pointer in this predecessor.
884      if (PredPtrVal == 0) {
885        // Add the entry to the Result list.
886        NonLocalDepResult Entry(Pred,
887                                MemDepResult::getClobber(Pred->getTerminator()),
888                                PredPtrVal);
889        Result.push_back(Entry);
890
891        // Since we had a phi translation failure, the cache for CacheKey won't
892        // include all of the entries that we need to immediately satisfy future
893        // queries.  Mark this in NonLocalPointerDeps by setting the
894        // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
895        // cached value to do more work but not miss the phi trans failure.
896        NonLocalPointerDeps[CacheKey].first = BBSkipFirstBlockPair();
897        continue;
898      }
899
900      // FIXME: it is entirely possible that PHI translating will end up with
901      // the same value.  Consider PHI translating something like:
902      // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
903      // to recurse here, pedantically speaking.
904
905      // If we have a problem phi translating, fall through to the code below
906      // to handle the failure condition.
907      if (getNonLocalPointerDepFromBB(PredPointer, PointeeSize, isLoad, Pred,
908                                      Result, Visited))
909        goto PredTranslationFailure;
910    }
911
912    // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
913    CacheInfo = &NonLocalPointerDeps[CacheKey];
914    Cache = &CacheInfo->second;
915    NumSortedEntries = Cache->size();
916
917    // Since we did phi translation, the "Cache" set won't contain all of the
918    // results for the query.  This is ok (we can still use it to accelerate
919    // specific block queries) but we can't do the fastpath "return all
920    // results from the set"  Clear out the indicator for this.
921    CacheInfo->first = BBSkipFirstBlockPair();
922    SkipFirstBlock = false;
923    continue;
924
925  PredTranslationFailure:
926
927    if (Cache == 0) {
928      // Refresh the CacheInfo/Cache pointer if it got invalidated.
929      CacheInfo = &NonLocalPointerDeps[CacheKey];
930      Cache = &CacheInfo->second;
931      NumSortedEntries = Cache->size();
932    }
933
934    // Since we failed phi translation, the "Cache" set won't contain all of the
935    // results for the query.  This is ok (we can still use it to accelerate
936    // specific block queries) but we can't do the fastpath "return all
937    // results from the set".  Clear out the indicator for this.
938    CacheInfo->first = BBSkipFirstBlockPair();
939
940    // If *nothing* works, mark the pointer as being clobbered by the first
941    // instruction in this block.
942    //
943    // If this is the magic first block, return this as a clobber of the whole
944    // incoming value.  Since we can't phi translate to one of the predecessors,
945    // we have to bail out.
946    if (SkipFirstBlock)
947      return true;
948
949    for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
950      assert(I != Cache->rend() && "Didn't find current block??");
951      if (I->getBB() != BB)
952        continue;
953
954      assert(I->getResult().isNonLocal() &&
955             "Should only be here with transparent block");
956      I->setResult(MemDepResult::getClobber(BB->begin()));
957      ReverseNonLocalPtrDeps[BB->begin()].insert(CacheKey);
958      Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
959                                         Pointer.getAddr()));
960      break;
961    }
962  }
963
964  // Okay, we're done now.  If we added new values to the cache, re-sort it.
965  SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
966  DEBUG(AssertSorted(*Cache));
967  return false;
968}
969
970/// RemoveCachedNonLocalPointerDependencies - If P exists in
971/// CachedNonLocalPointerInfo, remove it.
972void MemoryDependenceAnalysis::
973RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
974  CachedNonLocalPointerInfo::iterator It =
975    NonLocalPointerDeps.find(P);
976  if (It == NonLocalPointerDeps.end()) return;
977
978  // Remove all of the entries in the BB->val map.  This involves removing
979  // instructions from the reverse map.
980  NonLocalDepInfo &PInfo = It->second.second;
981
982  for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
983    Instruction *Target = PInfo[i].getResult().getInst();
984    if (Target == 0) continue;  // Ignore non-local dep results.
985    assert(Target->getParent() == PInfo[i].getBB());
986
987    // Eliminating the dirty entry from 'Cache', so update the reverse info.
988    RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
989  }
990
991  // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
992  NonLocalPointerDeps.erase(It);
993}
994
995
996/// invalidateCachedPointerInfo - This method is used to invalidate cached
997/// information about the specified pointer, because it may be too
998/// conservative in memdep.  This is an optional call that can be used when
999/// the client detects an equivalence between the pointer and some other
1000/// value and replaces the other value with ptr. This can make Ptr available
1001/// in more places that cached info does not necessarily keep.
1002void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
1003  // If Ptr isn't really a pointer, just ignore it.
1004  if (!Ptr->getType()->isPointerTy()) return;
1005  // Flush store info for the pointer.
1006  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1007  // Flush load info for the pointer.
1008  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1009}
1010
1011/// invalidateCachedPredecessors - Clear the PredIteratorCache info.
1012/// This needs to be done when the CFG changes, e.g., due to splitting
1013/// critical edges.
1014void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
1015  PredCache->clear();
1016}
1017
1018/// removeInstruction - Remove an instruction from the dependence analysis,
1019/// updating the dependence of instructions that previously depended on it.
1020/// This method attempts to keep the cache coherent using the reverse map.
1021void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
1022  // Walk through the Non-local dependencies, removing this one as the value
1023  // for any cached queries.
1024  NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1025  if (NLDI != NonLocalDeps.end()) {
1026    NonLocalDepInfo &BlockMap = NLDI->second.first;
1027    for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
1028         DI != DE; ++DI)
1029      if (Instruction *Inst = DI->getResult().getInst())
1030        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1031    NonLocalDeps.erase(NLDI);
1032  }
1033
1034  // If we have a cached local dependence query for this instruction, remove it.
1035  //
1036  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1037  if (LocalDepEntry != LocalDeps.end()) {
1038    // Remove us from DepInst's reverse set now that the local dep info is gone.
1039    if (Instruction *Inst = LocalDepEntry->second.getInst())
1040      RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1041
1042    // Remove this local dependency info.
1043    LocalDeps.erase(LocalDepEntry);
1044  }
1045
1046  // If we have any cached pointer dependencies on this instruction, remove
1047  // them.  If the instruction has non-pointer type, then it can't be a pointer
1048  // base.
1049
1050  // Remove it from both the load info and the store info.  The instruction
1051  // can't be in either of these maps if it is non-pointer.
1052  if (RemInst->getType()->isPointerTy()) {
1053    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1054    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1055  }
1056
1057  // Loop over all of the things that depend on the instruction we're removing.
1058  //
1059  SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
1060
1061  // If we find RemInst as a clobber or Def in any of the maps for other values,
1062  // we need to replace its entry with a dirty version of the instruction after
1063  // it.  If RemInst is a terminator, we use a null dirty value.
1064  //
1065  // Using a dirty version of the instruction after RemInst saves having to scan
1066  // the entire block to get to this point.
1067  MemDepResult NewDirtyVal;
1068  if (!RemInst->isTerminator())
1069    NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
1070
1071  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1072  if (ReverseDepIt != ReverseLocalDeps.end()) {
1073    SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
1074    // RemInst can't be the terminator if it has local stuff depending on it.
1075    assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
1076           "Nothing can locally depend on a terminator");
1077
1078    for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
1079         E = ReverseDeps.end(); I != E; ++I) {
1080      Instruction *InstDependingOnRemInst = *I;
1081      assert(InstDependingOnRemInst != RemInst &&
1082             "Already removed our local dep info");
1083
1084      LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1085
1086      // Make sure to remember that new things depend on NewDepInst.
1087      assert(NewDirtyVal.getInst() && "There is no way something else can have "
1088             "a local dep on this if it is a terminator!");
1089      ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
1090                                                InstDependingOnRemInst));
1091    }
1092
1093    ReverseLocalDeps.erase(ReverseDepIt);
1094
1095    // Add new reverse deps after scanning the set, to avoid invalidating the
1096    // 'ReverseDeps' reference.
1097    while (!ReverseDepsToAdd.empty()) {
1098      ReverseLocalDeps[ReverseDepsToAdd.back().first]
1099        .insert(ReverseDepsToAdd.back().second);
1100      ReverseDepsToAdd.pop_back();
1101    }
1102  }
1103
1104  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1105  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1106    SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
1107    for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
1108         I != E; ++I) {
1109      assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
1110
1111      PerInstNLInfo &INLD = NonLocalDeps[*I];
1112      // The information is now dirty!
1113      INLD.second = true;
1114
1115      for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1116           DE = INLD.first.end(); DI != DE; ++DI) {
1117        if (DI->getResult().getInst() != RemInst) continue;
1118
1119        // Convert to a dirty entry for the subsequent instruction.
1120        DI->setResult(NewDirtyVal);
1121
1122        if (Instruction *NextI = NewDirtyVal.getInst())
1123          ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
1124      }
1125    }
1126
1127    ReverseNonLocalDeps.erase(ReverseDepIt);
1128
1129    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1130    while (!ReverseDepsToAdd.empty()) {
1131      ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1132        .insert(ReverseDepsToAdd.back().second);
1133      ReverseDepsToAdd.pop_back();
1134    }
1135  }
1136
1137  // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1138  // value in the NonLocalPointerDeps info.
1139  ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1140    ReverseNonLocalPtrDeps.find(RemInst);
1141  if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1142    SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
1143    SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1144
1145    for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
1146         E = Set.end(); I != E; ++I) {
1147      ValueIsLoadPair P = *I;
1148      assert(P.getPointer() != RemInst &&
1149             "Already removed NonLocalPointerDeps info for RemInst");
1150
1151      NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].second;
1152
1153      // The cache is not valid for any specific block anymore.
1154      NonLocalPointerDeps[P].first = BBSkipFirstBlockPair();
1155
1156      // Update any entries for RemInst to use the instruction after it.
1157      for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1158           DI != DE; ++DI) {
1159        if (DI->getResult().getInst() != RemInst) continue;
1160
1161        // Convert to a dirty entry for the subsequent instruction.
1162        DI->setResult(NewDirtyVal);
1163
1164        if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1165          ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1166      }
1167
1168      // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1169      // subsequent value may invalidate the sortedness.
1170      std::sort(NLPDI.begin(), NLPDI.end());
1171    }
1172
1173    ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1174
1175    while (!ReversePtrDepsToAdd.empty()) {
1176      ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1177        .insert(ReversePtrDepsToAdd.back().second);
1178      ReversePtrDepsToAdd.pop_back();
1179    }
1180  }
1181
1182
1183  assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1184  AA->deleteValue(RemInst);
1185  DEBUG(verifyRemoved(RemInst));
1186}
1187/// verifyRemoved - Verify that the specified instruction does not occur
1188/// in our internal data structures.
1189void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1190  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1191       E = LocalDeps.end(); I != E; ++I) {
1192    assert(I->first != D && "Inst occurs in data structures");
1193    assert(I->second.getInst() != D &&
1194           "Inst occurs in data structures");
1195  }
1196
1197  for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1198       E = NonLocalPointerDeps.end(); I != E; ++I) {
1199    assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1200    const NonLocalDepInfo &Val = I->second.second;
1201    for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1202         II != E; ++II)
1203      assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
1204  }
1205
1206  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1207       E = NonLocalDeps.end(); I != E; ++I) {
1208    assert(I->first != D && "Inst occurs in data structures");
1209    const PerInstNLInfo &INLD = I->second;
1210    for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1211         EE = INLD.first.end(); II  != EE; ++II)
1212      assert(II->getResult().getInst() != D && "Inst occurs in data structures");
1213  }
1214
1215  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1216       E = ReverseLocalDeps.end(); I != E; ++I) {
1217    assert(I->first != D && "Inst occurs in data structures");
1218    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1219         EE = I->second.end(); II != EE; ++II)
1220      assert(*II != D && "Inst occurs in data structures");
1221  }
1222
1223  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1224       E = ReverseNonLocalDeps.end();
1225       I != E; ++I) {
1226    assert(I->first != D && "Inst occurs in data structures");
1227    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1228         EE = I->second.end(); II != EE; ++II)
1229      assert(*II != D && "Inst occurs in data structures");
1230  }
1231
1232  for (ReverseNonLocalPtrDepTy::const_iterator
1233       I = ReverseNonLocalPtrDeps.begin(),
1234       E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1235    assert(I->first != D && "Inst occurs in rev NLPD map");
1236
1237    for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
1238         E = I->second.end(); II != E; ++II)
1239      assert(*II != ValueIsLoadPair(D, false) &&
1240             *II != ValueIsLoadPair(D, true) &&
1241             "Inst occurs in ReverseNonLocalPtrDeps map");
1242  }
1243
1244}
1245