MemoryDependenceAnalysis.cpp revision 125ce362693350ebe713b58c92a9c0ced26680ea
1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an analysis that determines, for a given memory
11// operation, what preceding memory operations it depends on.  It builds on
12// alias analysis information, and tries to provide a lazy, caching interface to
13// a common kind of alias information query.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "memdep"
18#include "llvm/Analysis/MemoryDependenceAnalysis.h"
19#include "llvm/Constants.h"
20#include "llvm/Instructions.h"
21#include "llvm/Function.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/CFG.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Target/TargetData.h"
29using namespace llvm;
30
31STATISTIC(NumCacheNonLocal, "Number of cached non-local responses");
32STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
33
34char MemoryDependenceAnalysis::ID = 0;
35
36// Register this pass...
37static RegisterPass<MemoryDependenceAnalysis> X("memdep",
38                                     "Memory Dependence Analysis", false, true);
39
40/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
41///
42void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
43  AU.setPreservesAll();
44  AU.addRequiredTransitive<AliasAnalysis>();
45  AU.addRequiredTransitive<TargetData>();
46}
47
48/// getCallSiteDependency - Private helper for finding the local dependencies
49/// of a call site.
50MemDepResult MemoryDependenceAnalysis::
51getCallSiteDependency(CallSite C, BasicBlock::iterator ScanIt,
52                      BasicBlock *BB) {
53  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
54  TargetData &TD = getAnalysis<TargetData>();
55
56  // Walk backwards through the block, looking for dependencies
57  while (ScanIt != BB->begin()) {
58    Instruction *Inst = --ScanIt;
59
60    // If this inst is a memory op, get the pointer it accessed
61    Value *Pointer = 0;
62    uint64_t PointerSize = 0;
63    if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
64      Pointer = S->getPointerOperand();
65      PointerSize = TD.getTypeStoreSize(S->getOperand(0)->getType());
66    } else if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) {
67      Pointer = AI;
68      if (ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize()))
69        // Use ABI size (size between elements), not store size (size of one
70        // element without padding).
71        PointerSize = C->getZExtValue() *
72                      TD.getABITypeSize(AI->getAllocatedType());
73      else
74        PointerSize = ~0UL;
75    } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
76      Pointer = V->getOperand(0);
77      PointerSize = TD.getTypeStoreSize(V->getType());
78    } else if (FreeInst *F = dyn_cast<FreeInst>(Inst)) {
79      Pointer = F->getPointerOperand();
80
81      // FreeInsts erase the entire structure
82      PointerSize = ~0UL;
83    } else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
84      if (AA.getModRefBehavior(CallSite::get(Inst)) ==
85            AliasAnalysis::DoesNotAccessMemory)
86        continue;
87      return MemDepResult::get(Inst);
88    } else
89      continue;
90
91    if (AA.getModRefInfo(C, Pointer, PointerSize) != AliasAnalysis::NoModRef)
92      return MemDepResult::get(Inst);
93  }
94
95  // No dependence found.
96  return MemDepResult::getNonLocal();
97}
98
99/// getNonLocalDependency - Perform a full dependency query for the
100/// specified instruction, returning the set of blocks that the value is
101/// potentially live across.  The returned set of results will include a
102/// "NonLocal" result for all blocks where the value is live across.
103///
104/// This method assumes the instruction returns a "nonlocal" dependency
105/// within its own block.
106///
107void MemoryDependenceAnalysis::
108getNonLocalDependency(Instruction *QueryInst,
109                      SmallVectorImpl<std::pair<BasicBlock*,
110                                                      MemDepResult> > &Result) {
111  assert(getDependency(QueryInst).isNonLocal() &&
112     "getNonLocalDependency should only be used on insts with non-local deps!");
113  DenseMap<BasicBlock*, DepResultTy> &Cache = NonLocalDeps[QueryInst];
114
115  /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
116  /// the cached case, this can happen due to instructions being deleted etc. In
117  /// the uncached case, this starts out as the set of predecessors we care
118  /// about.
119  SmallVector<BasicBlock*, 32> DirtyBlocks;
120
121  if (!Cache.empty()) {
122    // If we already have a partially computed set of results, scan them to
123    // determine what is dirty, seeding our initial DirtyBlocks worklist.
124    // FIXME: In the "don't need to be updated" case, this is expensive, why not
125    // have a per-"cache" flag saying it is undirty?
126    for (DenseMap<BasicBlock*, DepResultTy>::iterator I = Cache.begin(),
127         E = Cache.end(); I != E; ++I)
128      if (I->second.getInt() == Dirty)
129        DirtyBlocks.push_back(I->first);
130
131    NumCacheNonLocal++;
132
133    //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
134    //     << Cache.size() << " cached: " << *QueryInst;
135  } else {
136    // Seed DirtyBlocks with each of the preds of QueryInst's block.
137    BasicBlock *QueryBB = QueryInst->getParent();
138    DirtyBlocks.append(pred_begin(QueryBB), pred_end(QueryBB));
139    NumUncacheNonLocal++;
140  }
141
142
143  // Iterate while we still have blocks to update.
144  while (!DirtyBlocks.empty()) {
145    BasicBlock *DirtyBB = DirtyBlocks.back();
146    DirtyBlocks.pop_back();
147
148    // Get the entry for this block.  Note that this relies on DepResultTy
149    // default initializing to Dirty.
150    DepResultTy &DirtyBBEntry = Cache[DirtyBB];
151
152    // If DirtyBBEntry isn't dirty, it ended up on the worklist multiple times.
153    if (DirtyBBEntry.getInt() != Dirty) continue;
154
155    // Find out if this block has a local dependency for QueryInst.
156    // FIXME: If the dirty entry has an instruction pointer, scan from it!
157    // FIXME: Don't convert back and forth for MemDepResult <-> DepResultTy.
158
159    // If the dirty entry has a pointer, start scanning from it so we don't have
160    // to rescan the entire block.
161    BasicBlock::iterator ScanPos = DirtyBB->end();
162    if (Instruction *Inst = DirtyBBEntry.getPointer())
163      ScanPos = Inst;
164
165    DirtyBBEntry = ConvFromResult(getDependencyFrom(QueryInst, ScanPos,
166                                                    DirtyBB));
167
168    // If the block has a dependency (i.e. it isn't completely transparent to
169    // the value), remember it!
170    if (DirtyBBEntry.getInt() != NonLocal) {
171      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
172      // update this when we remove instructions.
173      if (Instruction *Inst = DirtyBBEntry.getPointer())
174        ReverseNonLocalDeps[Inst].insert(QueryInst);
175      continue;
176    }
177
178    // If the block *is* completely transparent to the load, we need to check
179    // the predecessors of this block.  Add them to our worklist.
180    DirtyBlocks.append(pred_begin(DirtyBB), pred_end(DirtyBB));
181  }
182
183
184  // Copy the result into the output set.
185  for (DenseMap<BasicBlock*, DepResultTy>::iterator I = Cache.begin(),
186       E = Cache.end(); I != E; ++I)
187    Result.push_back(std::make_pair(I->first, ConvToResult(I->second)));
188}
189
190/// getDependency - Return the instruction on which a memory operation
191/// depends.  The local parameter indicates if the query should only
192/// evaluate dependencies within the same basic block.
193MemDepResult MemoryDependenceAnalysis::
194getDependencyFrom(Instruction *QueryInst, BasicBlock::iterator ScanIt,
195                  BasicBlock *BB) {
196  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
197  TargetData &TD = getAnalysis<TargetData>();
198
199  // Get the pointer value for which dependence will be determined
200  Value *MemPtr = 0;
201  uint64_t MemSize = 0;
202  bool MemVolatile = false;
203
204  if (StoreInst* S = dyn_cast<StoreInst>(QueryInst)) {
205    MemPtr = S->getPointerOperand();
206    MemSize = TD.getTypeStoreSize(S->getOperand(0)->getType());
207    MemVolatile = S->isVolatile();
208  } else if (LoadInst* L = dyn_cast<LoadInst>(QueryInst)) {
209    MemPtr = L->getPointerOperand();
210    MemSize = TD.getTypeStoreSize(L->getType());
211    MemVolatile = L->isVolatile();
212  } else if (VAArgInst* V = dyn_cast<VAArgInst>(QueryInst)) {
213    MemPtr = V->getOperand(0);
214    MemSize = TD.getTypeStoreSize(V->getType());
215  } else if (FreeInst* F = dyn_cast<FreeInst>(QueryInst)) {
216    MemPtr = F->getPointerOperand();
217    // FreeInsts erase the entire structure, not just a field.
218    MemSize = ~0UL;
219  } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst))
220    return getCallSiteDependency(CallSite::get(QueryInst), ScanIt, BB);
221  else  // Non-memory instructions depend on nothing.
222    return MemDepResult::getNone();
223
224  // Walk backwards through the basic block, looking for dependencies
225  while (ScanIt != BB->begin()) {
226    Instruction *Inst = --ScanIt;
227
228    // If the access is volatile and this is a volatile load/store, return a
229    // dependence.
230    if (MemVolatile &&
231        ((isa<LoadInst>(Inst) && cast<LoadInst>(Inst)->isVolatile()) ||
232         (isa<StoreInst>(Inst) && cast<StoreInst>(Inst)->isVolatile())))
233      return MemDepResult::get(Inst);
234
235    // MemDep is broken w.r.t. loads: it says that two loads of the same pointer
236    // depend on each other.  :(
237    // FIXME: ELIMINATE THIS!
238    if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
239      Value *Pointer = L->getPointerOperand();
240      uint64_t PointerSize = TD.getTypeStoreSize(L->getType());
241
242      // If we found a pointer, check if it could be the same as our pointer
243      AliasAnalysis::AliasResult R =
244        AA.alias(Pointer, PointerSize, MemPtr, MemSize);
245
246      if (R == AliasAnalysis::NoAlias)
247        continue;
248
249      // May-alias loads don't depend on each other without a dependence.
250      if (isa<LoadInst>(QueryInst) && R == AliasAnalysis::MayAlias)
251        continue;
252      return MemDepResult::get(Inst);
253    }
254
255    // FIXME: This claims that an access depends on the allocation.  This may
256    // make sense, but is dubious at best.  It would be better to fix GVN to
257    // handle a 'None' Query.
258    if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) {
259      Value *Pointer = AI;
260      uint64_t PointerSize;
261      if (ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize()))
262        // Use ABI size (size between elements), not store size (size of one
263        // element without padding).
264        PointerSize = C->getZExtValue() *
265          TD.getABITypeSize(AI->getAllocatedType());
266      else
267        PointerSize = ~0UL;
268
269      AliasAnalysis::AliasResult R =
270        AA.alias(Pointer, PointerSize, MemPtr, MemSize);
271
272      if (R == AliasAnalysis::NoAlias)
273        continue;
274      return MemDepResult::get(Inst);
275    }
276
277
278    // See if this instruction mod/ref's the pointer.
279    AliasAnalysis::ModRefResult MRR = AA.getModRefInfo(Inst, MemPtr, MemSize);
280
281    if (MRR == AliasAnalysis::NoModRef)
282      continue;
283
284    // Loads don't depend on read-only instructions.
285    if (isa<LoadInst>(QueryInst) && MRR == AliasAnalysis::Ref)
286      continue;
287
288    // Otherwise, there is a dependence.
289    return MemDepResult::get(Inst);
290  }
291
292  // If we found nothing, return the non-local flag.
293  return MemDepResult::getNonLocal();
294}
295
296/// getDependency - Return the instruction on which a memory operation
297/// depends.
298MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
299  Instruction *ScanPos = QueryInst;
300
301  // Check for a cached result
302  DepResultTy &LocalCache = LocalDeps[QueryInst];
303
304  // If the cached entry is non-dirty, just return it.  Note that this depends
305  // on DepResultTy's default constructing to 'dirty'.
306  if (LocalCache.getInt() != Dirty)
307    return ConvToResult(LocalCache);
308
309  // Otherwise, if we have a dirty entry, we know we can start the scan at that
310  // instruction, which may save us some work.
311  if (Instruction *Inst = LocalCache.getPointer())
312    ScanPos = Inst;
313
314  // Do the scan.
315  MemDepResult Res =
316    getDependencyFrom(QueryInst, ScanPos, QueryInst->getParent());
317
318  // Remember the result!
319  // FIXME: Don't convert back and forth!  Make a shared helper function.
320  LocalCache = ConvFromResult(Res);
321  if (Instruction *I = Res.getInst())
322    ReverseLocalDeps[I].insert(QueryInst);
323
324  return Res;
325}
326
327/// removeInstruction - Remove an instruction from the dependence analysis,
328/// updating the dependence of instructions that previously depended on it.
329/// This method attempts to keep the cache coherent using the reverse map.
330void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
331  // Walk through the Non-local dependencies, removing this one as the value
332  // for any cached queries.
333  for (DenseMap<BasicBlock*, DepResultTy>::iterator DI =
334       NonLocalDeps[RemInst].begin(), DE = NonLocalDeps[RemInst].end();
335       DI != DE; ++DI)
336    if (Instruction *Inst = DI->second.getPointer())
337      ReverseNonLocalDeps[Inst].erase(RemInst);
338
339  // If we have a cached local dependence query for this instruction, remove it.
340  //
341  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
342  if (LocalDepEntry != LocalDeps.end()) {
343    // Remove us from DepInst's reverse set now that the local dep info is gone.
344    if (Instruction *Inst = LocalDepEntry->second.getPointer()) {
345      SmallPtrSet<Instruction*, 4> &RLD = ReverseLocalDeps[Inst];
346      RLD.erase(RemInst);
347      if (RLD.empty())
348        ReverseLocalDeps.erase(Inst);
349    }
350
351    // Remove this local dependency info.
352    LocalDeps.erase(LocalDepEntry);
353  }
354
355  // Loop over all of the things that depend on the instruction we're removing.
356  //
357  SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
358
359  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
360  if (ReverseDepIt != ReverseLocalDeps.end()) {
361    SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
362    // RemInst can't be the terminator if it has stuff depending on it.
363    assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
364           "Nothing can locally depend on a terminator");
365
366    // Anything that was locally dependent on RemInst is now going to be
367    // dependent on the instruction after RemInst.  It will have the dirty flag
368    // set so it will rescan.  This saves having to scan the entire block to get
369    // to this point.
370    Instruction *NewDepInst = next(BasicBlock::iterator(RemInst));
371
372    for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
373         E = ReverseDeps.end(); I != E; ++I) {
374      Instruction *InstDependingOnRemInst = *I;
375
376      // If we thought the instruction depended on itself (possible for
377      // unconfirmed dependencies) ignore the update.
378      if (InstDependingOnRemInst == RemInst) continue;
379
380      LocalDeps[InstDependingOnRemInst] = DepResultTy(NewDepInst, Dirty);
381
382      // Make sure to remember that new things depend on NewDepInst.
383      ReverseDepsToAdd.push_back(std::make_pair(NewDepInst,
384                                                InstDependingOnRemInst));
385    }
386
387    ReverseLocalDeps.erase(ReverseDepIt);
388
389    // Add new reverse deps after scanning the set, to avoid invalidating the
390    // 'ReverseDeps' reference.
391    while (!ReverseDepsToAdd.empty()) {
392      ReverseLocalDeps[ReverseDepsToAdd.back().first]
393        .insert(ReverseDepsToAdd.back().second);
394      ReverseDepsToAdd.pop_back();
395    }
396  }
397
398  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
399  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
400    SmallPtrSet<Instruction*, 4>& set = ReverseDepIt->second;
401    for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
402         I != E; ++I)
403      for (DenseMap<BasicBlock*, DepResultTy>::iterator
404           DI = NonLocalDeps[*I].begin(), DE = NonLocalDeps[*I].end();
405           DI != DE; ++DI)
406        if (DI->second.getPointer() == RemInst) {
407          // Convert to a dirty entry for the subsequent instruction.
408          DI->second.setInt(Dirty);
409          if (RemInst->isTerminator())
410            DI->second.setPointer(0);
411          else {
412            Instruction *NextI = next(BasicBlock::iterator(RemInst));
413            DI->second.setPointer(NextI);
414            assert(NextI != RemInst);
415            ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
416          }
417        }
418
419    ReverseNonLocalDeps.erase(ReverseDepIt);
420
421    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
422    while (!ReverseDepsToAdd.empty()) {
423      ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
424        .insert(ReverseDepsToAdd.back().second);
425      ReverseDepsToAdd.pop_back();
426    }
427  }
428
429  NonLocalDeps.erase(RemInst);
430  getAnalysis<AliasAnalysis>().deleteValue(RemInst);
431  DEBUG(verifyRemoved(RemInst));
432}
433
434/// verifyRemoved - Verify that the specified instruction does not occur
435/// in our internal data structures.
436void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
437  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
438       E = LocalDeps.end(); I != E; ++I) {
439    assert(I->first != D && "Inst occurs in data structures");
440    assert(I->second.getPointer() != D &&
441           "Inst occurs in data structures");
442  }
443
444  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
445       E = NonLocalDeps.end(); I != E; ++I) {
446    assert(I->first != D && "Inst occurs in data structures");
447    for (DenseMap<BasicBlock*, DepResultTy>::iterator II = I->second.begin(),
448         EE = I->second.end(); II  != EE; ++II)
449      assert(II->second.getPointer() != D && "Inst occurs in data structures");
450  }
451
452  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
453       E = ReverseLocalDeps.end(); I != E; ++I)
454    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
455         EE = I->second.end(); II != EE; ++II)
456      assert(*II != D && "Inst occurs in data structures");
457
458  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
459       E = ReverseNonLocalDeps.end();
460       I != E; ++I)
461    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
462         EE = I->second.end(); II != EE; ++II)
463      assert(*II != D && "Inst occurs in data structures");
464}
465