MemoryDependenceAnalysis.cpp revision 237a8287454389a5b940e18c1efb2201fc443208
1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an analysis that determines, for a given memory
11// operation, what preceding memory operations it depends on.  It builds on
12// alias analysis information, and tries to provide a lazy, caching interface to
13// a common kind of alias information query.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "memdep"
18#include "llvm/Analysis/MemoryDependenceAnalysis.h"
19#include "llvm/Constants.h"
20#include "llvm/Instructions.h"
21#include "llvm/Function.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/CFG.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Target/TargetData.h"
29using namespace llvm;
30
31STATISTIC(NumCacheNonLocal, "Number of cached non-local responses");
32STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
33
34char MemoryDependenceAnalysis::ID = 0;
35
36// Register this pass...
37static RegisterPass<MemoryDependenceAnalysis> X("memdep",
38                                     "Memory Dependence Analysis", false, true);
39
40/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
41///
42void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
43  AU.setPreservesAll();
44  AU.addRequiredTransitive<AliasAnalysis>();
45  AU.addRequiredTransitive<TargetData>();
46}
47
48/// getCallSiteDependency - Private helper for finding the local dependencies
49/// of a call site.
50MemoryDependenceAnalysis::DepResultTy MemoryDependenceAnalysis::
51getCallSiteDependency(CallSite C, BasicBlock::iterator ScanIt,
52                      BasicBlock *BB) {
53  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
54  TargetData &TD = getAnalysis<TargetData>();
55
56  // Walk backwards through the block, looking for dependencies
57  while (ScanIt != BB->begin()) {
58    Instruction *Inst = --ScanIt;
59
60    // If this inst is a memory op, get the pointer it accessed
61    Value *Pointer = 0;
62    uint64_t PointerSize = 0;
63    if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
64      Pointer = S->getPointerOperand();
65      PointerSize = TD.getTypeStoreSize(S->getOperand(0)->getType());
66    } else if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) {
67      Pointer = AI;
68      if (ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize()))
69        // Use ABI size (size between elements), not store size (size of one
70        // element without padding).
71        PointerSize = C->getZExtValue() *
72                      TD.getABITypeSize(AI->getAllocatedType());
73      else
74        PointerSize = ~0UL;
75    } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
76      Pointer = V->getOperand(0);
77      PointerSize = TD.getTypeStoreSize(V->getType());
78    } else if (FreeInst *F = dyn_cast<FreeInst>(Inst)) {
79      Pointer = F->getPointerOperand();
80
81      // FreeInsts erase the entire structure
82      PointerSize = ~0UL;
83    } else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
84      if (AA.getModRefBehavior(CallSite::get(Inst)) ==
85            AliasAnalysis::DoesNotAccessMemory)
86        continue;
87      return DepResultTy(Inst, Normal);
88    } else
89      continue;
90
91    if (AA.getModRefInfo(C, Pointer, PointerSize) != AliasAnalysis::NoModRef)
92      return DepResultTy(Inst, Normal);
93  }
94
95  // No dependence found.
96  return DepResultTy(0, NonLocal);
97}
98
99/// getDependency - Return the instruction on which a memory operation
100/// depends.  The local parameter indicates if the query should only
101/// evaluate dependencies within the same basic block.
102MemoryDependenceAnalysis::DepResultTy MemoryDependenceAnalysis::
103getDependencyFromInternal(Instruction *QueryInst, BasicBlock::iterator ScanIt,
104                          BasicBlock *BB) {
105  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
106  TargetData &TD = getAnalysis<TargetData>();
107
108  // Get the pointer value for which dependence will be determined
109  Value *MemPtr = 0;
110  uint64_t MemSize = 0;
111  bool MemVolatile = false;
112
113  if (StoreInst* S = dyn_cast<StoreInst>(QueryInst)) {
114    MemPtr = S->getPointerOperand();
115    MemSize = TD.getTypeStoreSize(S->getOperand(0)->getType());
116    MemVolatile = S->isVolatile();
117  } else if (LoadInst* L = dyn_cast<LoadInst>(QueryInst)) {
118    MemPtr = L->getPointerOperand();
119    MemSize = TD.getTypeStoreSize(L->getType());
120    MemVolatile = L->isVolatile();
121  } else if (VAArgInst* V = dyn_cast<VAArgInst>(QueryInst)) {
122    MemPtr = V->getOperand(0);
123    MemSize = TD.getTypeStoreSize(V->getType());
124  } else if (FreeInst* F = dyn_cast<FreeInst>(QueryInst)) {
125    MemPtr = F->getPointerOperand();
126    // FreeInsts erase the entire structure, not just a field.
127    MemSize = ~0UL;
128  } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst))
129    return getCallSiteDependency(CallSite::get(QueryInst), ScanIt, BB);
130  else  // Non-memory instructions depend on nothing.
131    return DepResultTy(0, None);
132
133  // Walk backwards through the basic block, looking for dependencies
134  while (ScanIt != BB->begin()) {
135    Instruction *Inst = --ScanIt;
136
137    // If the access is volatile and this is a volatile load/store, return a
138    // dependence.
139    if (MemVolatile &&
140        ((isa<LoadInst>(Inst) && cast<LoadInst>(Inst)->isVolatile()) ||
141         (isa<StoreInst>(Inst) && cast<StoreInst>(Inst)->isVolatile())))
142      return DepResultTy(Inst, Normal);
143
144    // MemDep is broken w.r.t. loads: it says that two loads of the same pointer
145    // depend on each other.  :(
146    if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
147      Value *Pointer = L->getPointerOperand();
148      uint64_t PointerSize = TD.getTypeStoreSize(L->getType());
149
150      // If we found a pointer, check if it could be the same as our pointer
151      AliasAnalysis::AliasResult R =
152        AA.alias(Pointer, PointerSize, MemPtr, MemSize);
153
154      if (R == AliasAnalysis::NoAlias)
155        continue;
156
157      // May-alias loads don't depend on each other without a dependence.
158      if (isa<LoadInst>(QueryInst) && R == AliasAnalysis::MayAlias)
159        continue;
160      return DepResultTy(Inst, Normal);
161    }
162
163    // If this is an allocation, and if we know that the accessed pointer is to
164    // the allocation, return None.  This means that there is no dependence and
165    // the access can be optimized based on that.  For example, a load could
166    // turn into undef.
167    if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) {
168      Value *AccessPtr = MemPtr->getUnderlyingObject();
169
170      if (AccessPtr == AI ||
171          AA.alias(AI, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
172        return DepResultTy(0, None);
173      continue;
174    }
175
176    // See if this instruction mod/ref's the pointer.
177    AliasAnalysis::ModRefResult MRR = AA.getModRefInfo(Inst, MemPtr, MemSize);
178
179    if (MRR == AliasAnalysis::NoModRef)
180      continue;
181
182    // Loads don't depend on read-only instructions.
183    if (isa<LoadInst>(QueryInst) && MRR == AliasAnalysis::Ref)
184      continue;
185
186    // Otherwise, there is a dependence.
187    return DepResultTy(Inst, Normal);
188  }
189
190  // If we found nothing, return the non-local flag.
191  return DepResultTy(0, NonLocal);
192}
193
194/// getDependency - Return the instruction on which a memory operation
195/// depends.
196MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
197  Instruction *ScanPos = QueryInst;
198
199  // Check for a cached result
200  DepResultTy &LocalCache = LocalDeps[QueryInst];
201
202  // If the cached entry is non-dirty, just return it.  Note that this depends
203  // on DepResultTy's default constructing to 'dirty'.
204  if (LocalCache.getInt() != Dirty)
205    return ConvToResult(LocalCache);
206
207  // Otherwise, if we have a dirty entry, we know we can start the scan at that
208  // instruction, which may save us some work.
209  if (Instruction *Inst = LocalCache.getPointer())
210    ScanPos = Inst;
211
212  // Do the scan.
213  LocalCache = getDependencyFromInternal(QueryInst, ScanPos,
214                                         QueryInst->getParent());
215
216  // Remember the result!
217  if (Instruction *I = LocalCache.getPointer())
218    ReverseLocalDeps[I].insert(QueryInst);
219
220  return ConvToResult(LocalCache);
221}
222
223/// getNonLocalDependency - Perform a full dependency query for the
224/// specified instruction, returning the set of blocks that the value is
225/// potentially live across.  The returned set of results will include a
226/// "NonLocal" result for all blocks where the value is live across.
227///
228/// This method assumes the instruction returns a "nonlocal" dependency
229/// within its own block.
230///
231void MemoryDependenceAnalysis::
232getNonLocalDependency(Instruction *QueryInst,
233                      SmallVectorImpl<std::pair<BasicBlock*,
234                                                      MemDepResult> > &Result) {
235  assert(getDependency(QueryInst).isNonLocal() &&
236     "getNonLocalDependency should only be used on insts with non-local deps!");
237  DenseMap<BasicBlock*, DepResultTy> &Cache = NonLocalDeps[QueryInst];
238
239  /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
240  /// the cached case, this can happen due to instructions being deleted etc. In
241  /// the uncached case, this starts out as the set of predecessors we care
242  /// about.
243  SmallVector<BasicBlock*, 32> DirtyBlocks;
244
245  if (!Cache.empty()) {
246    // If we already have a partially computed set of results, scan them to
247    // determine what is dirty, seeding our initial DirtyBlocks worklist.
248    // FIXME: In the "don't need to be updated" case, this is expensive, why not
249    // have a per-"cache" flag saying it is undirty?
250    for (DenseMap<BasicBlock*, DepResultTy>::iterator I = Cache.begin(),
251         E = Cache.end(); I != E; ++I)
252      if (I->second.getInt() == Dirty)
253        DirtyBlocks.push_back(I->first);
254
255    NumCacheNonLocal++;
256
257    //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
258    //     << Cache.size() << " cached: " << *QueryInst;
259  } else {
260    // Seed DirtyBlocks with each of the preds of QueryInst's block.
261    BasicBlock *QueryBB = QueryInst->getParent();
262    DirtyBlocks.append(pred_begin(QueryBB), pred_end(QueryBB));
263    NumUncacheNonLocal++;
264  }
265
266  // Iterate while we still have blocks to update.
267  while (!DirtyBlocks.empty()) {
268    BasicBlock *DirtyBB = DirtyBlocks.back();
269    DirtyBlocks.pop_back();
270
271    // Get the entry for this block.  Note that this relies on DepResultTy
272    // default initializing to Dirty.
273    DepResultTy &DirtyBBEntry = Cache[DirtyBB];
274
275    // If DirtyBBEntry isn't dirty, it ended up on the worklist multiple times.
276    if (DirtyBBEntry.getInt() != Dirty) continue;
277
278    // If the dirty entry has a pointer, start scanning from it so we don't have
279    // to rescan the entire block.
280    BasicBlock::iterator ScanPos = DirtyBB->end();
281    if (Instruction *Inst = DirtyBBEntry.getPointer())
282      ScanPos = Inst;
283
284    // Find out if this block has a local dependency for QueryInst.
285    DirtyBBEntry = getDependencyFromInternal(QueryInst, ScanPos, DirtyBB);
286
287    // If the block has a dependency (i.e. it isn't completely transparent to
288    // the value), remember it!
289    if (DirtyBBEntry.getInt() != NonLocal) {
290      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
291      // update this when we remove instructions.
292      if (Instruction *Inst = DirtyBBEntry.getPointer())
293        ReverseNonLocalDeps[Inst].insert(QueryInst);
294      continue;
295    }
296
297    // If the block *is* completely transparent to the load, we need to check
298    // the predecessors of this block.  Add them to our worklist.
299    DirtyBlocks.append(pred_begin(DirtyBB), pred_end(DirtyBB));
300  }
301
302
303  // Copy the result into the output set.
304  for (DenseMap<BasicBlock*, DepResultTy>::iterator I = Cache.begin(),
305       E = Cache.end(); I != E; ++I)
306    Result.push_back(std::make_pair(I->first, ConvToResult(I->second)));
307}
308
309/// removeInstruction - Remove an instruction from the dependence analysis,
310/// updating the dependence of instructions that previously depended on it.
311/// This method attempts to keep the cache coherent using the reverse map.
312void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
313  // Walk through the Non-local dependencies, removing this one as the value
314  // for any cached queries.
315  for (DenseMap<BasicBlock*, DepResultTy>::iterator DI =
316       NonLocalDeps[RemInst].begin(), DE = NonLocalDeps[RemInst].end();
317       DI != DE; ++DI)
318    if (Instruction *Inst = DI->second.getPointer())
319      ReverseNonLocalDeps[Inst].erase(RemInst);
320
321  // If we have a cached local dependence query for this instruction, remove it.
322  //
323  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
324  if (LocalDepEntry != LocalDeps.end()) {
325    // Remove us from DepInst's reverse set now that the local dep info is gone.
326    if (Instruction *Inst = LocalDepEntry->second.getPointer()) {
327      SmallPtrSet<Instruction*, 4> &RLD = ReverseLocalDeps[Inst];
328      RLD.erase(RemInst);
329      if (RLD.empty())
330        ReverseLocalDeps.erase(Inst);
331    }
332
333    // Remove this local dependency info.
334    LocalDeps.erase(LocalDepEntry);
335  }
336
337  // Loop over all of the things that depend on the instruction we're removing.
338  //
339  SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
340
341  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
342  if (ReverseDepIt != ReverseLocalDeps.end()) {
343    SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
344    // RemInst can't be the terminator if it has stuff depending on it.
345    assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
346           "Nothing can locally depend on a terminator");
347
348    // Anything that was locally dependent on RemInst is now going to be
349    // dependent on the instruction after RemInst.  It will have the dirty flag
350    // set so it will rescan.  This saves having to scan the entire block to get
351    // to this point.
352    Instruction *NewDepInst = next(BasicBlock::iterator(RemInst));
353
354    for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
355         E = ReverseDeps.end(); I != E; ++I) {
356      Instruction *InstDependingOnRemInst = *I;
357
358      // If we thought the instruction depended on itself (possible for
359      // unconfirmed dependencies) ignore the update.
360      if (InstDependingOnRemInst == RemInst) continue;
361
362      LocalDeps[InstDependingOnRemInst] = DepResultTy(NewDepInst, Dirty);
363
364      // Make sure to remember that new things depend on NewDepInst.
365      ReverseDepsToAdd.push_back(std::make_pair(NewDepInst,
366                                                InstDependingOnRemInst));
367    }
368
369    ReverseLocalDeps.erase(ReverseDepIt);
370
371    // Add new reverse deps after scanning the set, to avoid invalidating the
372    // 'ReverseDeps' reference.
373    while (!ReverseDepsToAdd.empty()) {
374      ReverseLocalDeps[ReverseDepsToAdd.back().first]
375        .insert(ReverseDepsToAdd.back().second);
376      ReverseDepsToAdd.pop_back();
377    }
378  }
379
380  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
381  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
382    SmallPtrSet<Instruction*, 4>& set = ReverseDepIt->second;
383    for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
384         I != E; ++I)
385      for (DenseMap<BasicBlock*, DepResultTy>::iterator
386           DI = NonLocalDeps[*I].begin(), DE = NonLocalDeps[*I].end();
387           DI != DE; ++DI)
388        if (DI->second.getPointer() == RemInst) {
389          // Convert to a dirty entry for the subsequent instruction.
390          DI->second.setInt(Dirty);
391          if (RemInst->isTerminator())
392            DI->second.setPointer(0);
393          else {
394            Instruction *NextI = next(BasicBlock::iterator(RemInst));
395            DI->second.setPointer(NextI);
396            assert(NextI != RemInst);
397            ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
398          }
399        }
400
401    ReverseNonLocalDeps.erase(ReverseDepIt);
402
403    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
404    while (!ReverseDepsToAdd.empty()) {
405      ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
406        .insert(ReverseDepsToAdd.back().second);
407      ReverseDepsToAdd.pop_back();
408    }
409  }
410
411  NonLocalDeps.erase(RemInst);
412  getAnalysis<AliasAnalysis>().deleteValue(RemInst);
413  DEBUG(verifyRemoved(RemInst));
414}
415
416/// verifyRemoved - Verify that the specified instruction does not occur
417/// in our internal data structures.
418void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
419  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
420       E = LocalDeps.end(); I != E; ++I) {
421    assert(I->first != D && "Inst occurs in data structures");
422    assert(I->second.getPointer() != D &&
423           "Inst occurs in data structures");
424  }
425
426  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
427       E = NonLocalDeps.end(); I != E; ++I) {
428    assert(I->first != D && "Inst occurs in data structures");
429    for (DenseMap<BasicBlock*, DepResultTy>::iterator II = I->second.begin(),
430         EE = I->second.end(); II  != EE; ++II)
431      assert(II->second.getPointer() != D && "Inst occurs in data structures");
432  }
433
434  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
435       E = ReverseLocalDeps.end(); I != E; ++I)
436    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
437         EE = I->second.end(); II != EE; ++II)
438      assert(*II != D && "Inst occurs in data structures");
439
440  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
441       E = ReverseNonLocalDeps.end();
442       I != E; ++I)
443    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
444         EE = I->second.end(); II != EE; ++II)
445      assert(*II != D && "Inst occurs in data structures");
446}
447