MemoryDependenceAnalysis.cpp revision 396a4a55e535728e2023aa331401c1a2b782cb9a
1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an analysis that determines, for a given memory
11// operation, what preceding memory operations it depends on.  It builds on
12// alias analysis information, and tries to provide a lazy, caching interface to
13// a common kind of alias information query.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "memdep"
18#include "llvm/Analysis/MemoryDependenceAnalysis.h"
19#include "llvm/Constants.h"
20#include "llvm/Instructions.h"
21#include "llvm/Function.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/CFG.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Target/TargetData.h"
29using namespace llvm;
30
31STATISTIC(NumCacheNonlocal, "Number of cached non-local responses");
32STATISTIC(NumUncacheNonlocal, "Number of uncached non-local responses");
33
34char MemoryDependenceAnalysis::ID = 0;
35
36// Register this pass...
37static RegisterPass<MemoryDependenceAnalysis> X("memdep",
38                                     "Memory Dependence Analysis", false, true);
39
40/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
41///
42void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
43  AU.setPreservesAll();
44  AU.addRequiredTransitive<AliasAnalysis>();
45  AU.addRequiredTransitive<TargetData>();
46}
47
48/// getCallSiteDependency - Private helper for finding the local dependencies
49/// of a call site.
50MemDepResult MemoryDependenceAnalysis::
51getCallSiteDependency(CallSite C, BasicBlock::iterator ScanIt,
52                      BasicBlock *BB) {
53  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
54  TargetData &TD = getAnalysis<TargetData>();
55
56  // Walk backwards through the block, looking for dependencies
57  while (ScanIt != BB->begin()) {
58    Instruction *Inst = --ScanIt;
59
60    // If this inst is a memory op, get the pointer it accessed
61    Value *Pointer = 0;
62    uint64_t PointerSize = 0;
63    if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
64      Pointer = S->getPointerOperand();
65      PointerSize = TD.getTypeStoreSize(S->getOperand(0)->getType());
66    } else if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) {
67      Pointer = AI;
68      if (ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize()))
69        // Use ABI size (size between elements), not store size (size of one
70        // element without padding).
71        PointerSize = C->getZExtValue() *
72                      TD.getABITypeSize(AI->getAllocatedType());
73      else
74        PointerSize = ~0UL;
75    } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
76      Pointer = V->getOperand(0);
77      PointerSize = TD.getTypeStoreSize(V->getType());
78    } else if (FreeInst *F = dyn_cast<FreeInst>(Inst)) {
79      Pointer = F->getPointerOperand();
80
81      // FreeInsts erase the entire structure
82      PointerSize = ~0UL;
83    } else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
84      if (AA.getModRefBehavior(CallSite::get(Inst)) ==
85            AliasAnalysis::DoesNotAccessMemory)
86        continue;
87      return MemDepResult::get(Inst);
88    } else
89      continue;
90
91    if (AA.getModRefInfo(C, Pointer, PointerSize) != AliasAnalysis::NoModRef)
92      return MemDepResult::get(Inst);
93  }
94
95  // No dependence found.
96  return MemDepResult::getNonLocal();
97}
98
99/// getNonLocalDependency - Perform a full dependency query for the
100/// specified instruction, returning the set of blocks that the value is
101/// potentially live across.  The returned set of results will include a
102/// "NonLocal" result for all blocks where the value is live across.
103///
104/// This method assumes the instruction returns a "nonlocal" dependency
105/// within its own block.
106///
107void MemoryDependenceAnalysis::
108getNonLocalDependency(Instruction *QueryInst,
109                      SmallVectorImpl<std::pair<BasicBlock*,
110                                                      MemDepResult> > &Result) {
111  assert(getDependency(QueryInst).isNonLocal() &&
112     "getNonLocalDependency should only be used on insts with non-local deps!");
113  DenseMap<BasicBlock*, DepResultTy> &Cache = NonLocalDeps[QueryInst];
114
115  /// DirtyBlocks - This is the set of blocks that need to be recomputed.  This
116  /// can happen due to instructions being deleted etc.
117  SmallVector<BasicBlock*, 32> DirtyBlocks;
118
119  if (!Cache.empty()) {
120    // If we already have a partially computed set of results, scan them to
121    // determine what is dirty, seeding our initial DirtyBlocks worklist.
122    // FIXME: In the "don't need to be updated" case, this is expensive, why not
123    // have a per-"cache" flag saying it is undirty?
124    for (DenseMap<BasicBlock*, DepResultTy>::iterator I = Cache.begin(),
125         E = Cache.end(); I != E; ++I)
126      if (I->second.getInt() == Dirty)
127        DirtyBlocks.push_back(I->first);
128
129    NumCacheNonlocal++;
130  } else {
131    // Seed DirtyBlocks with each of the preds of QueryInst's block.
132    BasicBlock *QueryBB = QueryInst->getParent();
133    DirtyBlocks.append(pred_begin(QueryBB), pred_end(QueryBB));
134    NumUncacheNonlocal++;
135  }
136
137  // Iterate while we still have blocks to update.
138  while (!DirtyBlocks.empty()) {
139    BasicBlock *DirtyBB = DirtyBlocks.back();
140    DirtyBlocks.pop_back();
141
142    // Get the entry for this block.  Note that this relies on DepResultTy
143    // default initializing to Dirty.
144    DepResultTy &DirtyBBEntry = Cache[DirtyBB];
145
146    // If DirtyBBEntry isn't dirty, it ended up on the worklist multiple times.
147    if (DirtyBBEntry.getInt() != Dirty) continue;
148
149    // Find out if this block has a local dependency for QueryInst.
150    // FIXME: If the dirty entry has an instruction pointer, scan from it!
151    // FIXME: Don't convert back and forth for MemDepResult <-> DepResultTy.
152    DirtyBBEntry = ConvFromResult(getDependencyFrom(QueryInst, DirtyBB->end(),
153                                                    DirtyBB));
154
155    // If the block has a dependency (i.e. it isn't completely transparent to
156    // the value), remember it!
157    if (DirtyBBEntry.getInt() != NonLocal) {
158      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
159      // update this when we remove  instructions.
160      if (Instruction *Inst = DirtyBBEntry.getPointer())
161        ReverseNonLocalDeps[Inst].insert(QueryInst);
162      continue;
163    }
164
165    // If the block *is* completely transparent to the load, we need to check
166    // the predecessors of this block.  Add them to our worklist.
167    for (pred_iterator I = pred_begin(DirtyBB), E = pred_end(DirtyBB);
168         I != E; ++I)
169      DirtyBlocks.push_back(*I);
170  }
171
172  // Copy the result into the output set.
173  for (DenseMap<BasicBlock*, DepResultTy>::iterator I = Cache.begin(),
174       E = Cache.end(); I != E; ++I)
175    Result.push_back(std::make_pair(I->first, ConvToResult(I->second)));
176}
177
178/// getDependency - Return the instruction on which a memory operation
179/// depends.  The local parameter indicates if the query should only
180/// evaluate dependencies within the same basic block.
181MemDepResult MemoryDependenceAnalysis::
182getDependencyFrom(Instruction *QueryInst, BasicBlock::iterator ScanIt,
183                  BasicBlock *BB) {
184  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
185  TargetData &TD = getAnalysis<TargetData>();
186
187  // Get the pointer value for which dependence will be determined
188  Value *MemPtr = 0;
189  uint64_t MemSize = 0;
190  bool MemVolatile = false;
191
192  if (StoreInst* S = dyn_cast<StoreInst>(QueryInst)) {
193    MemPtr = S->getPointerOperand();
194    MemSize = TD.getTypeStoreSize(S->getOperand(0)->getType());
195    MemVolatile = S->isVolatile();
196  } else if (LoadInst* L = dyn_cast<LoadInst>(QueryInst)) {
197    MemPtr = L->getPointerOperand();
198    MemSize = TD.getTypeStoreSize(L->getType());
199    MemVolatile = L->isVolatile();
200  } else if (VAArgInst* V = dyn_cast<VAArgInst>(QueryInst)) {
201    MemPtr = V->getOperand(0);
202    MemSize = TD.getTypeStoreSize(V->getType());
203  } else if (FreeInst* F = dyn_cast<FreeInst>(QueryInst)) {
204    MemPtr = F->getPointerOperand();
205    // FreeInsts erase the entire structure, not just a field.
206    MemSize = ~0UL;
207  } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst))
208    return getCallSiteDependency(CallSite::get(QueryInst), ScanIt, BB);
209  else  // Non-memory instructions depend on nothing.
210    return MemDepResult::getNone();
211
212  // Walk backwards through the basic block, looking for dependencies
213  while (ScanIt != BB->begin()) {
214    Instruction *Inst = --ScanIt;
215
216    // If the access is volatile and this is a volatile load/store, return a
217    // dependence.
218    if (MemVolatile &&
219        ((isa<LoadInst>(Inst) && cast<LoadInst>(Inst)->isVolatile()) ||
220         (isa<StoreInst>(Inst) && cast<StoreInst>(Inst)->isVolatile())))
221      return MemDepResult::get(Inst);
222
223    // MemDep is broken w.r.t. loads: it says that two loads of the same pointer
224    // depend on each other.  :(
225    // FIXME: ELIMINATE THIS!
226    if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
227      Value *Pointer = L->getPointerOperand();
228      uint64_t PointerSize = TD.getTypeStoreSize(L->getType());
229
230      // If we found a pointer, check if it could be the same as our pointer
231      AliasAnalysis::AliasResult R =
232        AA.alias(Pointer, PointerSize, MemPtr, MemSize);
233
234      if (R == AliasAnalysis::NoAlias)
235        continue;
236
237      // May-alias loads don't depend on each other without a dependence.
238      if (isa<LoadInst>(QueryInst) && R == AliasAnalysis::MayAlias)
239        continue;
240      return MemDepResult::get(Inst);
241    }
242
243    // FIXME: This claims that an access depends on the allocation.  This may
244    // make sense, but is dubious at best.  It would be better to fix GVN to
245    // handle a 'None' Query.
246    if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) {
247      Value *Pointer = AI;
248      uint64_t PointerSize;
249      if (ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize()))
250        // Use ABI size (size between elements), not store size (size of one
251        // element without padding).
252        PointerSize = C->getZExtValue() *
253          TD.getABITypeSize(AI->getAllocatedType());
254      else
255        PointerSize = ~0UL;
256
257      AliasAnalysis::AliasResult R =
258        AA.alias(Pointer, PointerSize, MemPtr, MemSize);
259
260      if (R == AliasAnalysis::NoAlias)
261        continue;
262      return MemDepResult::get(Inst);
263    }
264
265
266    // See if this instruction mod/ref's the pointer.
267    AliasAnalysis::ModRefResult MRR = AA.getModRefInfo(Inst, MemPtr, MemSize);
268
269    if (MRR == AliasAnalysis::NoModRef)
270      continue;
271
272    // Loads don't depend on read-only instructions.
273    if (isa<LoadInst>(QueryInst) && MRR == AliasAnalysis::Ref)
274      continue;
275
276    // Otherwise, there is a dependence.
277    return MemDepResult::get(Inst);
278  }
279
280  // If we found nothing, return the non-local flag.
281  return MemDepResult::getNonLocal();
282}
283
284/// getDependency - Return the instruction on which a memory operation
285/// depends.
286MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
287  Instruction *ScanPos = QueryInst;
288
289  // Check for a cached result
290  DepResultTy &LocalCache = LocalDeps[QueryInst];
291
292  // If the cached entry is non-dirty, just return it.
293  if (LocalCache.getInt() != Dirty)
294    return ConvToResult(LocalCache);
295
296  // Otherwise, if we have a dirty entry, we know we can start the scan at that
297  // instruction, which may save us some work.
298  if (Instruction *Inst = LocalCache.getPointer())
299    ScanPos = Inst;
300
301  // Do the scan.
302  MemDepResult Res =
303    getDependencyFrom(QueryInst, ScanPos, QueryInst->getParent());
304
305  // Remember the result!
306  // FIXME: Don't convert back and forth!  Make a shared helper function.
307  LocalCache = ConvFromResult(Res);
308  if (Instruction *I = Res.getInst())
309    ReverseLocalDeps[I].insert(QueryInst);
310
311  return Res;
312}
313
314
315/// dropInstruction - Remove an instruction from the analysis, making
316/// absolutely conservative assumptions when updating the cache.  This is
317/// useful, for example when an instruction is changed rather than removed.
318void MemoryDependenceAnalysis::dropInstruction(Instruction* drop) {
319  LocalDepMapType::iterator depGraphEntry = LocalDeps.find(drop);
320  if (depGraphEntry != LocalDeps.end())
321    if (Instruction *Inst = depGraphEntry->second.getPointer())
322      ReverseLocalDeps[Inst].erase(drop);
323
324  // Drop dependency information for things that depended on this instr
325  SmallPtrSet<Instruction*, 4>& set = ReverseLocalDeps[drop];
326  for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
327       I != E; ++I)
328    LocalDeps.erase(*I);
329
330  LocalDeps.erase(drop);
331  ReverseLocalDeps.erase(drop);
332
333  for (DenseMap<BasicBlock*, DepResultTy>::iterator DI =
334         NonLocalDeps[drop].begin(), DE = NonLocalDeps[drop].end();
335       DI != DE; ++DI)
336    if (Instruction *Inst = DI->second.getPointer())
337      ReverseNonLocalDeps[Inst].erase(drop);
338
339  if (ReverseNonLocalDeps.count(drop)) {
340    SmallPtrSet<Instruction*, 4>& set =
341      ReverseNonLocalDeps[drop];
342    for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
343         I != E; ++I)
344      for (DenseMap<BasicBlock*, DepResultTy>::iterator DI =
345           NonLocalDeps[*I].begin(), DE = NonLocalDeps[*I].end();
346           DI != DE; ++DI)
347        if (DI->second == DepResultTy(drop, Normal))
348          // FIXME: Why not remember the old insertion point??
349          DI->second = DepResultTy(0, Dirty);
350  }
351
352  ReverseNonLocalDeps.erase(drop);
353  NonLocalDeps.erase(drop);
354}
355
356/// removeInstruction - Remove an instruction from the dependence analysis,
357/// updating the dependence of instructions that previously depended on it.
358/// This method attempts to keep the cache coherent using the reverse map.
359void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
360  // Walk through the Non-local dependencies, removing this one as the value
361  // for any cached queries.
362  for (DenseMap<BasicBlock*, DepResultTy>::iterator DI =
363       NonLocalDeps[RemInst].begin(), DE = NonLocalDeps[RemInst].end();
364       DI != DE; ++DI)
365    if (Instruction *Inst = DI->second.getPointer())
366      ReverseNonLocalDeps[Inst].erase(RemInst);
367
368  // Shortly after this, we will look for things that depend on RemInst.  In
369  // order to update these, we'll need a new dependency to base them on.  We
370  // could completely delete any entries that depend on this, but it is better
371  // to make a more accurate approximation where possible.  Compute that better
372  // approximation if we can.
373  DepResultTy NewDependency;
374
375  // If we have a cached local dependence query for this instruction, remove it.
376  //
377  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
378  if (LocalDepEntry != LocalDeps.end()) {
379    DepResultTy LocalDep = LocalDepEntry->second;
380
381    // Remove this local dependency info.
382    LocalDeps.erase(LocalDepEntry);
383
384    // Remove us from DepInst's reverse set now that the local dep info is gone.
385    if (Instruction *Inst = LocalDep.getPointer())
386      ReverseLocalDeps[Inst].erase(RemInst);
387
388    // If we have unconfirmed info, don't trust it.
389    if (LocalDep.getInt() != Dirty) {
390      // If we have a confirmed non-local flag, use it.
391      if (LocalDep.getInt() == NonLocal || LocalDep.getInt() == None) {
392        // The only time this dependency is confirmed is if it is non-local.
393        NewDependency = LocalDep;
394      } else {
395        // If we have dep info for RemInst, set them to it.
396        Instruction *NDI = next(BasicBlock::iterator(LocalDep.getPointer()));
397        if (NDI != RemInst) // Don't use RemInst for the new dependency!
398          NewDependency = DepResultTy(NDI, Dirty);
399      }
400    }
401  }
402
403  // If we don't already have a local dependency answer for this instruction,
404  // use the immediate successor of RemInst.  We use the successor because
405  // getDependence starts by checking the immediate predecessor of what is in
406  // the cache.
407  if (NewDependency == DepResultTy(0, Dirty))
408    NewDependency = DepResultTy(next(BasicBlock::iterator(RemInst)), Dirty);
409
410  // Loop over all of the things that depend on the instruction we're removing.
411  //
412  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
413  if (ReverseDepIt != ReverseLocalDeps.end()) {
414    SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
415    for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
416         E = ReverseDeps.end(); I != E; ++I) {
417      Instruction *InstDependingOnRemInst = *I;
418
419      // If we thought the instruction depended on itself (possible for
420      // unconfirmed dependencies) ignore the update.
421      if (InstDependingOnRemInst == RemInst) continue;
422
423      // Insert the new dependencies.
424      LocalDeps[InstDependingOnRemInst] = NewDependency;
425
426      // If our NewDependency is an instruction, make sure to remember that new
427      // things depend on it.
428      if (Instruction *Inst = NewDependency.getPointer())
429        ReverseLocalDeps[Inst].insert(InstDependingOnRemInst);
430    }
431    ReverseLocalDeps.erase(RemInst);
432  }
433
434  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
435  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
436    SmallPtrSet<Instruction*, 4>& set = ReverseDepIt->second;
437    for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
438         I != E; ++I)
439      for (DenseMap<BasicBlock*, DepResultTy>::iterator
440           DI = NonLocalDeps[*I].begin(), DE = NonLocalDeps[*I].end();
441           DI != DE; ++DI)
442        if (DI->second == DepResultTy(RemInst, Normal))
443          // FIXME: Why not remember the old insertion point??
444          DI->second = DepResultTy(0, Dirty);
445    ReverseNonLocalDeps.erase(ReverseDepIt);
446  }
447
448  NonLocalDeps.erase(RemInst);
449
450  getAnalysis<AliasAnalysis>().deleteValue(RemInst);
451
452  DEBUG(verifyRemoved(RemInst));
453}
454
455/// verifyRemoved - Verify that the specified instruction does not occur
456/// in our internal data structures.
457void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
458  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
459       E = LocalDeps.end(); I != E; ++I) {
460    assert(I->first != D && "Inst occurs in data structures");
461    assert(I->second.getPointer() != D &&
462           "Inst occurs in data structures");
463  }
464
465  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
466       E = NonLocalDeps.end(); I != E; ++I) {
467    assert(I->first != D && "Inst occurs in data structures");
468    for (DenseMap<BasicBlock*, DepResultTy>::iterator II = I->second.begin(),
469         EE = I->second.end(); II  != EE; ++II)
470      assert(II->second.getPointer() != D && "Inst occurs in data structures");
471  }
472
473  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
474       E = ReverseLocalDeps.end(); I != E; ++I)
475    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
476         EE = I->second.end(); II != EE; ++II)
477      assert(*II != D && "Inst occurs in data structures");
478
479  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
480       E = ReverseNonLocalDeps.end();
481       I != E; ++I)
482    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
483         EE = I->second.end(); II != EE; ++II)
484      assert(*II != D && "Inst occurs in data structures");
485}
486