MemoryDependenceAnalysis.cpp revision 607a7ab3da72a2eb53553a520507cbb8068dd1d8
1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an analysis that determines, for a given memory
11// operation, what preceding memory operations it depends on.  It builds on
12// alias analysis information, and tries to provide a lazy, caching interface to
13// a common kind of alias information query.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "memdep"
18#include "llvm/Analysis/MemoryDependenceAnalysis.h"
19#include "llvm/Instructions.h"
20#include "llvm/IntrinsicInst.h"
21#include "llvm/Function.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/Analysis/Dominators.h"
24#include "llvm/Analysis/InstructionSimplify.h"
25#include "llvm/Analysis/MemoryBuiltins.h"
26#include "llvm/Analysis/PHITransAddr.h"
27#include "llvm/ADT/Statistic.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/PredIteratorCache.h"
30#include "llvm/Support/Debug.h"
31using namespace llvm;
32
33STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
34STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
35STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
36
37STATISTIC(NumCacheNonLocalPtr,
38          "Number of fully cached non-local ptr responses");
39STATISTIC(NumCacheDirtyNonLocalPtr,
40          "Number of cached, but dirty, non-local ptr responses");
41STATISTIC(NumUncacheNonLocalPtr,
42          "Number of uncached non-local ptr responses");
43STATISTIC(NumCacheCompleteNonLocalPtr,
44          "Number of block queries that were completely cached");
45
46char MemoryDependenceAnalysis::ID = 0;
47
48// Register this pass...
49static RegisterPass<MemoryDependenceAnalysis> X("memdep",
50                                     "Memory Dependence Analysis", false, true);
51
52MemoryDependenceAnalysis::MemoryDependenceAnalysis()
53: FunctionPass(&ID), PredCache(0) {
54}
55MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
56}
57
58/// Clean up memory in between runs
59void MemoryDependenceAnalysis::releaseMemory() {
60  LocalDeps.clear();
61  NonLocalDeps.clear();
62  NonLocalPointerDeps.clear();
63  ReverseLocalDeps.clear();
64  ReverseNonLocalDeps.clear();
65  ReverseNonLocalPtrDeps.clear();
66  PredCache->clear();
67}
68
69
70
71/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
72///
73void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
74  AU.setPreservesAll();
75  AU.addRequiredTransitive<AliasAnalysis>();
76}
77
78bool MemoryDependenceAnalysis::runOnFunction(Function &) {
79  AA = &getAnalysis<AliasAnalysis>();
80  if (PredCache == 0)
81    PredCache.reset(new PredIteratorCache());
82  return false;
83}
84
85/// RemoveFromReverseMap - This is a helper function that removes Val from
86/// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
87template <typename KeyTy>
88static void RemoveFromReverseMap(DenseMap<Instruction*,
89                                 SmallPtrSet<KeyTy, 4> > &ReverseMap,
90                                 Instruction *Inst, KeyTy Val) {
91  typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
92  InstIt = ReverseMap.find(Inst);
93  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
94  bool Found = InstIt->second.erase(Val);
95  assert(Found && "Invalid reverse map!"); Found=Found;
96  if (InstIt->second.empty())
97    ReverseMap.erase(InstIt);
98}
99
100
101/// getCallSiteDependencyFrom - Private helper for finding the local
102/// dependencies of a call site.
103MemDepResult MemoryDependenceAnalysis::
104getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
105                          BasicBlock::iterator ScanIt, BasicBlock *BB) {
106  // Walk backwards through the block, looking for dependencies
107  while (ScanIt != BB->begin()) {
108    Instruction *Inst = --ScanIt;
109
110    // If this inst is a memory op, get the pointer it accessed
111    Value *Pointer = 0;
112    uint64_t PointerSize = 0;
113    if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
114      Pointer = S->getPointerOperand();
115      PointerSize = AA->getTypeStoreSize(S->getOperand(0)->getType());
116    } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
117      Pointer = V->getOperand(0);
118      PointerSize = AA->getTypeStoreSize(V->getType());
119    } else if (isFreeCall(Inst)) {
120      Pointer = Inst->getOperand(1);
121      // calls to free() erase the entire structure
122      PointerSize = ~0ULL;
123    } else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
124      // Debug intrinsics don't cause dependences.
125      if (isa<DbgInfoIntrinsic>(Inst)) continue;
126      CallSite InstCS = CallSite::get(Inst);
127      // If these two calls do not interfere, look past it.
128      switch (AA->getModRefInfo(CS, InstCS)) {
129      case AliasAnalysis::NoModRef:
130        // If the two calls don't interact (e.g. InstCS is readnone) keep
131        // scanning.
132        continue;
133      case AliasAnalysis::Ref:
134        // If the two calls read the same memory locations and CS is a readonly
135        // function, then we have two cases: 1) the calls may not interfere with
136        // each other at all.  2) the calls may produce the same value.  In case
137        // #1 we want to ignore the values, in case #2, we want to return Inst
138        // as a Def dependence.  This allows us to CSE in cases like:
139        //   X = strlen(P);
140        //    memchr(...);
141        //   Y = strlen(P);  // Y = X
142        if (isReadOnlyCall) {
143          if (CS.getCalledFunction() != 0 &&
144              CS.getCalledFunction() == InstCS.getCalledFunction())
145            return MemDepResult::getDef(Inst);
146          // Ignore unrelated read/read call dependences.
147          continue;
148        }
149        // FALL THROUGH
150      default:
151        return MemDepResult::getClobber(Inst);
152      }
153    } else {
154      // Non-memory instruction.
155      continue;
156    }
157
158    if (AA->getModRefInfo(CS, Pointer, PointerSize) != AliasAnalysis::NoModRef)
159      return MemDepResult::getClobber(Inst);
160  }
161
162  // No dependence found.  If this is the entry block of the function, it is a
163  // clobber, otherwise it is non-local.
164  if (BB != &BB->getParent()->getEntryBlock())
165    return MemDepResult::getNonLocal();
166  return MemDepResult::getClobber(ScanIt);
167}
168
169/// getPointerDependencyFrom - Return the instruction on which a memory
170/// location depends.  If isLoad is true, this routine ignore may-aliases with
171/// read-only operations.
172MemDepResult MemoryDependenceAnalysis::
173getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad,
174                         BasicBlock::iterator ScanIt, BasicBlock *BB) {
175
176  Value *InvariantTag = 0;
177
178  // Walk backwards through the basic block, looking for dependencies.
179  while (ScanIt != BB->begin()) {
180    Instruction *Inst = --ScanIt;
181
182    // If we're in an invariant region, no dependencies can be found before
183    // we pass an invariant-begin marker.
184    if (InvariantTag == Inst) {
185      InvariantTag = 0;
186      continue;
187    }
188
189    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
190      // Debug intrinsics don't cause dependences.
191      if (isa<DbgInfoIntrinsic>(Inst)) continue;
192
193      // If we pass an invariant-end marker, then we've just entered an
194      // invariant region and can start ignoring dependencies.
195      if (II->getIntrinsicID() == Intrinsic::invariant_end) {
196        // FIXME: This only considers queries directly on the invariant-tagged
197        // pointer, not on query pointers that are indexed off of them.  It'd
198        // be nice to handle that at some point.
199        AliasAnalysis::AliasResult R =
200          AA->alias(II->getOperand(3), ~0U, MemPtr, ~0U);
201        if (R == AliasAnalysis::MustAlias) {
202          InvariantTag = II->getOperand(1);
203          continue;
204        }
205
206      // If we reach a lifetime begin or end marker, then the query ends here
207      // because the value is undefined.
208      } else if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
209        // FIXME: This only considers queries directly on the invariant-tagged
210        // pointer, not on query pointers that are indexed off of them.  It'd
211        // be nice to handle that at some point.
212        AliasAnalysis::AliasResult R =
213          AA->alias(II->getOperand(2), ~0U, MemPtr, ~0U);
214        if (R == AliasAnalysis::MustAlias)
215          return MemDepResult::getDef(II);
216      }
217    }
218
219    // If we're querying on a load and we're in an invariant region, we're done
220    // at this point. Nothing a load depends on can live in an invariant region.
221    if (isLoad && InvariantTag) continue;
222
223    // Values depend on loads if the pointers are must aliased.  This means that
224    // a load depends on another must aliased load from the same value.
225    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
226      Value *Pointer = LI->getPointerOperand();
227      uint64_t PointerSize = AA->getTypeStoreSize(LI->getType());
228
229      // If we found a pointer, check if it could be the same as our pointer.
230      AliasAnalysis::AliasResult R =
231        AA->alias(Pointer, PointerSize, MemPtr, MemSize);
232      if (R == AliasAnalysis::NoAlias)
233        continue;
234
235      // May-alias loads don't depend on each other without a dependence.
236      if (isLoad && R == AliasAnalysis::MayAlias)
237        continue;
238      // Stores depend on may and must aliased loads, loads depend on must-alias
239      // loads.
240      return MemDepResult::getDef(Inst);
241    }
242
243    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
244      // There can't be stores to the value we care about inside an
245      // invariant region.
246      if (InvariantTag) continue;
247
248      // If alias analysis can tell that this store is guaranteed to not modify
249      // the query pointer, ignore it.  Use getModRefInfo to handle cases where
250      // the query pointer points to constant memory etc.
251      if (AA->getModRefInfo(SI, MemPtr, MemSize) == AliasAnalysis::NoModRef)
252        continue;
253
254      // Ok, this store might clobber the query pointer.  Check to see if it is
255      // a must alias: in this case, we want to return this as a def.
256      Value *Pointer = SI->getPointerOperand();
257      uint64_t PointerSize = AA->getTypeStoreSize(SI->getOperand(0)->getType());
258
259      // If we found a pointer, check if it could be the same as our pointer.
260      AliasAnalysis::AliasResult R =
261        AA->alias(Pointer, PointerSize, MemPtr, MemSize);
262
263      if (R == AliasAnalysis::NoAlias)
264        continue;
265      if (R == AliasAnalysis::MayAlias)
266        return MemDepResult::getClobber(Inst);
267      return MemDepResult::getDef(Inst);
268    }
269
270    // If this is an allocation, and if we know that the accessed pointer is to
271    // the allocation, return Def.  This means that there is no dependence and
272    // the access can be optimized based on that.  For example, a load could
273    // turn into undef.
274    // Note: Only determine this to be a malloc if Inst is the malloc call, not
275    // a subsequent bitcast of the malloc call result.  There can be stores to
276    // the malloced memory between the malloc call and its bitcast uses, and we
277    // need to continue scanning until the malloc call.
278    if (isa<AllocaInst>(Inst) ||
279        (isa<CallInst>(Inst) && extractMallocCall(Inst))) {
280      Value *AccessPtr = MemPtr->getUnderlyingObject();
281
282      if (AccessPtr == Inst ||
283          AA->alias(Inst, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
284        return MemDepResult::getDef(Inst);
285      continue;
286    }
287
288    // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
289    switch (AA->getModRefInfo(Inst, MemPtr, MemSize)) {
290    case AliasAnalysis::NoModRef:
291      // If the call has no effect on the queried pointer, just ignore it.
292      continue;
293    case AliasAnalysis::Mod:
294      // If we're in an invariant region, we can ignore calls that ONLY
295      // modify the pointer.
296      if (InvariantTag) continue;
297      return MemDepResult::getClobber(Inst);
298    case AliasAnalysis::Ref:
299      // If the call is known to never store to the pointer, and if this is a
300      // load query, we can safely ignore it (scan past it).
301      if (isLoad)
302        continue;
303    default:
304      // Otherwise, there is a potential dependence.  Return a clobber.
305      return MemDepResult::getClobber(Inst);
306    }
307  }
308
309  // No dependence found.  If this is the entry block of the function, it is a
310  // clobber, otherwise it is non-local.
311  if (BB != &BB->getParent()->getEntryBlock())
312    return MemDepResult::getNonLocal();
313  return MemDepResult::getClobber(ScanIt);
314}
315
316/// getDependency - Return the instruction on which a memory operation
317/// depends.
318MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
319  Instruction *ScanPos = QueryInst;
320
321  // Check for a cached result
322  MemDepResult &LocalCache = LocalDeps[QueryInst];
323
324  // If the cached entry is non-dirty, just return it.  Note that this depends
325  // on MemDepResult's default constructing to 'dirty'.
326  if (!LocalCache.isDirty())
327    return LocalCache;
328
329  // Otherwise, if we have a dirty entry, we know we can start the scan at that
330  // instruction, which may save us some work.
331  if (Instruction *Inst = LocalCache.getInst()) {
332    ScanPos = Inst;
333
334    RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
335  }
336
337  BasicBlock *QueryParent = QueryInst->getParent();
338
339  Value *MemPtr = 0;
340  uint64_t MemSize = 0;
341
342  // Do the scan.
343  if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
344    // No dependence found.  If this is the entry block of the function, it is a
345    // clobber, otherwise it is non-local.
346    if (QueryParent != &QueryParent->getParent()->getEntryBlock())
347      LocalCache = MemDepResult::getNonLocal();
348    else
349      LocalCache = MemDepResult::getClobber(QueryInst);
350  } else if (StoreInst *SI = dyn_cast<StoreInst>(QueryInst)) {
351    // If this is a volatile store, don't mess around with it.  Just return the
352    // previous instruction as a clobber.
353    if (SI->isVolatile())
354      LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
355    else {
356      MemPtr = SI->getPointerOperand();
357      MemSize = AA->getTypeStoreSize(SI->getOperand(0)->getType());
358    }
359  } else if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) {
360    // If this is a volatile load, don't mess around with it.  Just return the
361    // previous instruction as a clobber.
362    if (LI->isVolatile())
363      LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
364    else {
365      MemPtr = LI->getPointerOperand();
366      MemSize = AA->getTypeStoreSize(LI->getType());
367    }
368  } else if (isFreeCall(QueryInst)) {
369    MemPtr = QueryInst->getOperand(1);
370    // calls to free() erase the entire structure, not just a field.
371    MemSize = ~0UL;
372  } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
373    int IntrinsicID = 0;  // Intrinsic IDs start at 1.
374    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
375      IntrinsicID = II->getIntrinsicID();
376
377    switch (IntrinsicID) {
378    case Intrinsic::lifetime_start:
379    case Intrinsic::lifetime_end:
380    case Intrinsic::invariant_start:
381      MemPtr = QueryInst->getOperand(2);
382      MemSize = cast<ConstantInt>(QueryInst->getOperand(1))->getZExtValue();
383      break;
384    case Intrinsic::invariant_end:
385      MemPtr = QueryInst->getOperand(3);
386      MemSize = cast<ConstantInt>(QueryInst->getOperand(2))->getZExtValue();
387      break;
388    default:
389      CallSite QueryCS = CallSite::get(QueryInst);
390      bool isReadOnly = AA->onlyReadsMemory(QueryCS);
391      LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
392                                             QueryParent);
393      break;
394    }
395  } else {
396    // Non-memory instruction.
397    LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
398  }
399
400  // If we need to do a pointer scan, make it happen.
401  if (MemPtr) {
402    bool isLoad = !QueryInst->mayWriteToMemory();
403    if (IntrinsicInst *II = dyn_cast<MemoryUseIntrinsic>(QueryInst)) {
404      isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_end;
405    }
406    LocalCache = getPointerDependencyFrom(MemPtr, MemSize, isLoad, ScanPos,
407                                          QueryParent);
408  }
409
410  // Remember the result!
411  if (Instruction *I = LocalCache.getInst())
412    ReverseLocalDeps[I].insert(QueryInst);
413
414  return LocalCache;
415}
416
417#ifndef NDEBUG
418/// AssertSorted - This method is used when -debug is specified to verify that
419/// cache arrays are properly kept sorted.
420static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
421                         int Count = -1) {
422  if (Count == -1) Count = Cache.size();
423  if (Count == 0) return;
424
425  for (unsigned i = 1; i != unsigned(Count); ++i)
426    assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
427}
428#endif
429
430/// getNonLocalCallDependency - Perform a full dependency query for the
431/// specified call, returning the set of blocks that the value is
432/// potentially live across.  The returned set of results will include a
433/// "NonLocal" result for all blocks where the value is live across.
434///
435/// This method assumes the instruction returns a "NonLocal" dependency
436/// within its own block.
437///
438/// This returns a reference to an internal data structure that may be
439/// invalidated on the next non-local query or when an instruction is
440/// removed.  Clients must copy this data if they want it around longer than
441/// that.
442const MemoryDependenceAnalysis::NonLocalDepInfo &
443MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
444  assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
445 "getNonLocalCallDependency should only be used on calls with non-local deps!");
446  PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
447  NonLocalDepInfo &Cache = CacheP.first;
448
449  /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
450  /// the cached case, this can happen due to instructions being deleted etc. In
451  /// the uncached case, this starts out as the set of predecessors we care
452  /// about.
453  SmallVector<BasicBlock*, 32> DirtyBlocks;
454
455  if (!Cache.empty()) {
456    // Okay, we have a cache entry.  If we know it is not dirty, just return it
457    // with no computation.
458    if (!CacheP.second) {
459      NumCacheNonLocal++;
460      return Cache;
461    }
462
463    // If we already have a partially computed set of results, scan them to
464    // determine what is dirty, seeding our initial DirtyBlocks worklist.
465    for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
466       I != E; ++I)
467      if (I->getResult().isDirty())
468        DirtyBlocks.push_back(I->getBB());
469
470    // Sort the cache so that we can do fast binary search lookups below.
471    std::sort(Cache.begin(), Cache.end());
472
473    ++NumCacheDirtyNonLocal;
474    //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
475    //     << Cache.size() << " cached: " << *QueryInst;
476  } else {
477    // Seed DirtyBlocks with each of the preds of QueryInst's block.
478    BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
479    for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
480      DirtyBlocks.push_back(*PI);
481    NumUncacheNonLocal++;
482  }
483
484  // isReadonlyCall - If this is a read-only call, we can be more aggressive.
485  bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
486
487  SmallPtrSet<BasicBlock*, 64> Visited;
488
489  unsigned NumSortedEntries = Cache.size();
490  DEBUG(AssertSorted(Cache));
491
492  // Iterate while we still have blocks to update.
493  while (!DirtyBlocks.empty()) {
494    BasicBlock *DirtyBB = DirtyBlocks.back();
495    DirtyBlocks.pop_back();
496
497    // Already processed this block?
498    if (!Visited.insert(DirtyBB))
499      continue;
500
501    // Do a binary search to see if we already have an entry for this block in
502    // the cache set.  If so, find it.
503    DEBUG(AssertSorted(Cache, NumSortedEntries));
504    NonLocalDepInfo::iterator Entry =
505      std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
506                       NonLocalDepEntry(DirtyBB));
507    if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB)
508      --Entry;
509
510    NonLocalDepEntry *ExistingResult = 0;
511    if (Entry != Cache.begin()+NumSortedEntries &&
512        Entry->getBB() == DirtyBB) {
513      // If we already have an entry, and if it isn't already dirty, the block
514      // is done.
515      if (!Entry->getResult().isDirty())
516        continue;
517
518      // Otherwise, remember this slot so we can update the value.
519      ExistingResult = &*Entry;
520    }
521
522    // If the dirty entry has a pointer, start scanning from it so we don't have
523    // to rescan the entire block.
524    BasicBlock::iterator ScanPos = DirtyBB->end();
525    if (ExistingResult) {
526      if (Instruction *Inst = ExistingResult->getResult().getInst()) {
527        ScanPos = Inst;
528        // We're removing QueryInst's use of Inst.
529        RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
530                             QueryCS.getInstruction());
531      }
532    }
533
534    // Find out if this block has a local dependency for QueryInst.
535    MemDepResult Dep;
536
537    if (ScanPos != DirtyBB->begin()) {
538      Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
539    } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
540      // No dependence found.  If this is the entry block of the function, it is
541      // a clobber, otherwise it is non-local.
542      Dep = MemDepResult::getNonLocal();
543    } else {
544      Dep = MemDepResult::getClobber(ScanPos);
545    }
546
547    // If we had a dirty entry for the block, update it.  Otherwise, just add
548    // a new entry.
549    if (ExistingResult)
550      ExistingResult->setResult(Dep);
551    else
552      Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
553
554    // If the block has a dependency (i.e. it isn't completely transparent to
555    // the value), remember the association!
556    if (!Dep.isNonLocal()) {
557      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
558      // update this when we remove instructions.
559      if (Instruction *Inst = Dep.getInst())
560        ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
561    } else {
562
563      // If the block *is* completely transparent to the load, we need to check
564      // the predecessors of this block.  Add them to our worklist.
565      for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
566        DirtyBlocks.push_back(*PI);
567    }
568  }
569
570  return Cache;
571}
572
573/// getNonLocalPointerDependency - Perform a full dependency query for an
574/// access to the specified (non-volatile) memory location, returning the
575/// set of instructions that either define or clobber the value.
576///
577/// This method assumes the pointer has a "NonLocal" dependency within its
578/// own block.
579///
580void MemoryDependenceAnalysis::
581getNonLocalPointerDependency(Value *Pointer, bool isLoad, BasicBlock *FromBB,
582                             SmallVectorImpl<NonLocalDepResult> &Result) {
583  assert(Pointer->getType()->isPointerTy() &&
584         "Can't get pointer deps of a non-pointer!");
585  Result.clear();
586
587  // We know that the pointer value is live into FromBB find the def/clobbers
588  // from presecessors.
589  const Type *EltTy = cast<PointerType>(Pointer->getType())->getElementType();
590  uint64_t PointeeSize = AA->getTypeStoreSize(EltTy);
591
592  PHITransAddr Address(Pointer, TD);
593
594  // This is the set of blocks we've inspected, and the pointer we consider in
595  // each block.  Because of critical edges, we currently bail out if querying
596  // a block with multiple different pointers.  This can happen during PHI
597  // translation.
598  DenseMap<BasicBlock*, Value*> Visited;
599  if (!getNonLocalPointerDepFromBB(Address, PointeeSize, isLoad, FromBB,
600                                   Result, Visited, true))
601    return;
602  Result.clear();
603  Result.push_back(NonLocalDepResult(FromBB,
604                                     MemDepResult::getClobber(FromBB->begin()),
605                                     Pointer));
606}
607
608/// GetNonLocalInfoForBlock - Compute the memdep value for BB with
609/// Pointer/PointeeSize using either cached information in Cache or by doing a
610/// lookup (which may use dirty cache info if available).  If we do a lookup,
611/// add the result to the cache.
612MemDepResult MemoryDependenceAnalysis::
613GetNonLocalInfoForBlock(Value *Pointer, uint64_t PointeeSize,
614                        bool isLoad, BasicBlock *BB,
615                        NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
616
617  // Do a binary search to see if we already have an entry for this block in
618  // the cache set.  If so, find it.
619  NonLocalDepInfo::iterator Entry =
620    std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
621                     NonLocalDepEntry(BB));
622  if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
623    --Entry;
624
625  NonLocalDepEntry *ExistingResult = 0;
626  if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
627    ExistingResult = &*Entry;
628
629  // If we have a cached entry, and it is non-dirty, use it as the value for
630  // this dependency.
631  if (ExistingResult && !ExistingResult->getResult().isDirty()) {
632    ++NumCacheNonLocalPtr;
633    return ExistingResult->getResult();
634  }
635
636  // Otherwise, we have to scan for the value.  If we have a dirty cache
637  // entry, start scanning from its position, otherwise we scan from the end
638  // of the block.
639  BasicBlock::iterator ScanPos = BB->end();
640  if (ExistingResult && ExistingResult->getResult().getInst()) {
641    assert(ExistingResult->getResult().getInst()->getParent() == BB &&
642           "Instruction invalidated?");
643    ++NumCacheDirtyNonLocalPtr;
644    ScanPos = ExistingResult->getResult().getInst();
645
646    // Eliminating the dirty entry from 'Cache', so update the reverse info.
647    ValueIsLoadPair CacheKey(Pointer, isLoad);
648    RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
649  } else {
650    ++NumUncacheNonLocalPtr;
651  }
652
653  // Scan the block for the dependency.
654  MemDepResult Dep = getPointerDependencyFrom(Pointer, PointeeSize, isLoad,
655                                              ScanPos, BB);
656
657  // If we had a dirty entry for the block, update it.  Otherwise, just add
658  // a new entry.
659  if (ExistingResult)
660    ExistingResult->setResult(Dep);
661  else
662    Cache->push_back(NonLocalDepEntry(BB, Dep));
663
664  // If the block has a dependency (i.e. it isn't completely transparent to
665  // the value), remember the reverse association because we just added it
666  // to Cache!
667  if (Dep.isNonLocal())
668    return Dep;
669
670  // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
671  // update MemDep when we remove instructions.
672  Instruction *Inst = Dep.getInst();
673  assert(Inst && "Didn't depend on anything?");
674  ValueIsLoadPair CacheKey(Pointer, isLoad);
675  ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
676  return Dep;
677}
678
679/// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
680/// number of elements in the array that are already properly ordered.  This is
681/// optimized for the case when only a few entries are added.
682static void
683SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
684                         unsigned NumSortedEntries) {
685  switch (Cache.size() - NumSortedEntries) {
686  case 0:
687    // done, no new entries.
688    break;
689  case 2: {
690    // Two new entries, insert the last one into place.
691    NonLocalDepEntry Val = Cache.back();
692    Cache.pop_back();
693    MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
694      std::upper_bound(Cache.begin(), Cache.end()-1, Val);
695    Cache.insert(Entry, Val);
696    // FALL THROUGH.
697  }
698  case 1:
699    // One new entry, Just insert the new value at the appropriate position.
700    if (Cache.size() != 1) {
701      NonLocalDepEntry Val = Cache.back();
702      Cache.pop_back();
703      MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
704        std::upper_bound(Cache.begin(), Cache.end(), Val);
705      Cache.insert(Entry, Val);
706    }
707    break;
708  default:
709    // Added many values, do a full scale sort.
710    std::sort(Cache.begin(), Cache.end());
711    break;
712  }
713}
714
715/// getNonLocalPointerDepFromBB - Perform a dependency query based on
716/// pointer/pointeesize starting at the end of StartBB.  Add any clobber/def
717/// results to the results vector and keep track of which blocks are visited in
718/// 'Visited'.
719///
720/// This has special behavior for the first block queries (when SkipFirstBlock
721/// is true).  In this special case, it ignores the contents of the specified
722/// block and starts returning dependence info for its predecessors.
723///
724/// This function returns false on success, or true to indicate that it could
725/// not compute dependence information for some reason.  This should be treated
726/// as a clobber dependence on the first instruction in the predecessor block.
727bool MemoryDependenceAnalysis::
728getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, uint64_t PointeeSize,
729                            bool isLoad, BasicBlock *StartBB,
730                            SmallVectorImpl<NonLocalDepResult> &Result,
731                            DenseMap<BasicBlock*, Value*> &Visited,
732                            bool SkipFirstBlock) {
733
734  // Look up the cached info for Pointer.
735  ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
736
737  std::pair<BBSkipFirstBlockPair, NonLocalDepInfo> *CacheInfo =
738    &NonLocalPointerDeps[CacheKey];
739  NonLocalDepInfo *Cache = &CacheInfo->second;
740
741  // If we have valid cached information for exactly the block we are
742  // investigating, just return it with no recomputation.
743  if (CacheInfo->first == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
744    // We have a fully cached result for this query then we can just return the
745    // cached results and populate the visited set.  However, we have to verify
746    // that we don't already have conflicting results for these blocks.  Check
747    // to ensure that if a block in the results set is in the visited set that
748    // it was for the same pointer query.
749    if (!Visited.empty()) {
750      for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
751           I != E; ++I) {
752        DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
753        if (VI == Visited.end() || VI->second == Pointer.getAddr())
754          continue;
755
756        // We have a pointer mismatch in a block.  Just return clobber, saying
757        // that something was clobbered in this result.  We could also do a
758        // non-fully cached query, but there is little point in doing this.
759        return true;
760      }
761    }
762
763    Value *Addr = Pointer.getAddr();
764    for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
765         I != E; ++I) {
766      Visited.insert(std::make_pair(I->getBB(), Addr));
767      if (!I->getResult().isNonLocal())
768        Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
769    }
770    ++NumCacheCompleteNonLocalPtr;
771    return false;
772  }
773
774  // Otherwise, either this is a new block, a block with an invalid cache
775  // pointer or one that we're about to invalidate by putting more info into it
776  // than its valid cache info.  If empty, the result will be valid cache info,
777  // otherwise it isn't.
778  if (Cache->empty())
779    CacheInfo->first = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
780  else
781    CacheInfo->first = BBSkipFirstBlockPair();
782
783  SmallVector<BasicBlock*, 32> Worklist;
784  Worklist.push_back(StartBB);
785
786  // Keep track of the entries that we know are sorted.  Previously cached
787  // entries will all be sorted.  The entries we add we only sort on demand (we
788  // don't insert every element into its sorted position).  We know that we
789  // won't get any reuse from currently inserted values, because we don't
790  // revisit blocks after we insert info for them.
791  unsigned NumSortedEntries = Cache->size();
792  DEBUG(AssertSorted(*Cache));
793
794  while (!Worklist.empty()) {
795    BasicBlock *BB = Worklist.pop_back_val();
796
797    // Skip the first block if we have it.
798    if (!SkipFirstBlock) {
799      // Analyze the dependency of *Pointer in FromBB.  See if we already have
800      // been here.
801      assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
802
803      // Get the dependency info for Pointer in BB.  If we have cached
804      // information, we will use it, otherwise we compute it.
805      DEBUG(AssertSorted(*Cache, NumSortedEntries));
806      MemDepResult Dep = GetNonLocalInfoForBlock(Pointer.getAddr(), PointeeSize,
807                                                 isLoad, BB, Cache,
808                                                 NumSortedEntries);
809
810      // If we got a Def or Clobber, add this to the list of results.
811      if (!Dep.isNonLocal()) {
812        Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
813        continue;
814      }
815    }
816
817    // If 'Pointer' is an instruction defined in this block, then we need to do
818    // phi translation to change it into a value live in the predecessor block.
819    // If not, we just add the predecessors to the worklist and scan them with
820    // the same Pointer.
821    if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
822      SkipFirstBlock = false;
823      for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
824        // Verify that we haven't looked at this block yet.
825        std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
826          InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
827        if (InsertRes.second) {
828          // First time we've looked at *PI.
829          Worklist.push_back(*PI);
830          continue;
831        }
832
833        // If we have seen this block before, but it was with a different
834        // pointer then we have a phi translation failure and we have to treat
835        // this as a clobber.
836        if (InsertRes.first->second != Pointer.getAddr())
837          goto PredTranslationFailure;
838      }
839      continue;
840    }
841
842    // We do need to do phi translation, if we know ahead of time we can't phi
843    // translate this value, don't even try.
844    if (!Pointer.IsPotentiallyPHITranslatable())
845      goto PredTranslationFailure;
846
847    // We may have added values to the cache list before this PHI translation.
848    // If so, we haven't done anything to ensure that the cache remains sorted.
849    // Sort it now (if needed) so that recursive invocations of
850    // getNonLocalPointerDepFromBB and other routines that could reuse the cache
851    // value will only see properly sorted cache arrays.
852    if (Cache && NumSortedEntries != Cache->size()) {
853      SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
854      NumSortedEntries = Cache->size();
855    }
856    Cache = 0;
857
858    for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
859      BasicBlock *Pred = *PI;
860
861      // Get the PHI translated pointer in this predecessor.  This can fail if
862      // not translatable, in which case the getAddr() returns null.
863      PHITransAddr PredPointer(Pointer);
864      PredPointer.PHITranslateValue(BB, Pred, 0);
865
866      Value *PredPtrVal = PredPointer.getAddr();
867
868      // Check to see if we have already visited this pred block with another
869      // pointer.  If so, we can't do this lookup.  This failure can occur
870      // with PHI translation when a critical edge exists and the PHI node in
871      // the successor translates to a pointer value different than the
872      // pointer the block was first analyzed with.
873      std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
874        InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
875
876      if (!InsertRes.second) {
877        // If the predecessor was visited with PredPtr, then we already did
878        // the analysis and can ignore it.
879        if (InsertRes.first->second == PredPtrVal)
880          continue;
881
882        // Otherwise, the block was previously analyzed with a different
883        // pointer.  We can't represent the result of this case, so we just
884        // treat this as a phi translation failure.
885        goto PredTranslationFailure;
886      }
887
888      // If PHI translation was unable to find an available pointer in this
889      // predecessor, then we have to assume that the pointer is clobbered in
890      // that predecessor.  We can still do PRE of the load, which would insert
891      // a computation of the pointer in this predecessor.
892      if (PredPtrVal == 0) {
893        // Add the entry to the Result list.
894        NonLocalDepResult Entry(Pred,
895                                MemDepResult::getClobber(Pred->getTerminator()),
896                                PredPtrVal);
897        Result.push_back(Entry);
898
899        // Since we had a phi translation failure, the cache for CacheKey won't
900        // include all of the entries that we need to immediately satisfy future
901        // queries.  Mark this in NonLocalPointerDeps by setting the
902        // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
903        // cached value to do more work but not miss the phi trans failure.
904        NonLocalPointerDeps[CacheKey].first = BBSkipFirstBlockPair();
905        continue;
906      }
907
908      // FIXME: it is entirely possible that PHI translating will end up with
909      // the same value.  Consider PHI translating something like:
910      // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
911      // to recurse here, pedantically speaking.
912
913      // If we have a problem phi translating, fall through to the code below
914      // to handle the failure condition.
915      if (getNonLocalPointerDepFromBB(PredPointer, PointeeSize, isLoad, Pred,
916                                      Result, Visited))
917        goto PredTranslationFailure;
918    }
919
920    // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
921    CacheInfo = &NonLocalPointerDeps[CacheKey];
922    Cache = &CacheInfo->second;
923    NumSortedEntries = Cache->size();
924
925    // Since we did phi translation, the "Cache" set won't contain all of the
926    // results for the query.  This is ok (we can still use it to accelerate
927    // specific block queries) but we can't do the fastpath "return all
928    // results from the set"  Clear out the indicator for this.
929    CacheInfo->first = BBSkipFirstBlockPair();
930    SkipFirstBlock = false;
931    continue;
932
933  PredTranslationFailure:
934
935    if (Cache == 0) {
936      // Refresh the CacheInfo/Cache pointer if it got invalidated.
937      CacheInfo = &NonLocalPointerDeps[CacheKey];
938      Cache = &CacheInfo->second;
939      NumSortedEntries = Cache->size();
940    }
941
942    // Since we failed phi translation, the "Cache" set won't contain all of the
943    // results for the query.  This is ok (we can still use it to accelerate
944    // specific block queries) but we can't do the fastpath "return all
945    // results from the set".  Clear out the indicator for this.
946    CacheInfo->first = BBSkipFirstBlockPair();
947
948    // If *nothing* works, mark the pointer as being clobbered by the first
949    // instruction in this block.
950    //
951    // If this is the magic first block, return this as a clobber of the whole
952    // incoming value.  Since we can't phi translate to one of the predecessors,
953    // we have to bail out.
954    if (SkipFirstBlock)
955      return true;
956
957    for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
958      assert(I != Cache->rend() && "Didn't find current block??");
959      if (I->getBB() != BB)
960        continue;
961
962      assert(I->getResult().isNonLocal() &&
963             "Should only be here with transparent block");
964      I->setResult(MemDepResult::getClobber(BB->begin()));
965      ReverseNonLocalPtrDeps[BB->begin()].insert(CacheKey);
966      Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
967                                         Pointer.getAddr()));
968      break;
969    }
970  }
971
972  // Okay, we're done now.  If we added new values to the cache, re-sort it.
973  SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
974  DEBUG(AssertSorted(*Cache));
975  return false;
976}
977
978/// RemoveCachedNonLocalPointerDependencies - If P exists in
979/// CachedNonLocalPointerInfo, remove it.
980void MemoryDependenceAnalysis::
981RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
982  CachedNonLocalPointerInfo::iterator It =
983    NonLocalPointerDeps.find(P);
984  if (It == NonLocalPointerDeps.end()) return;
985
986  // Remove all of the entries in the BB->val map.  This involves removing
987  // instructions from the reverse map.
988  NonLocalDepInfo &PInfo = It->second.second;
989
990  for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
991    Instruction *Target = PInfo[i].getResult().getInst();
992    if (Target == 0) continue;  // Ignore non-local dep results.
993    assert(Target->getParent() == PInfo[i].getBB());
994
995    // Eliminating the dirty entry from 'Cache', so update the reverse info.
996    RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
997  }
998
999  // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1000  NonLocalPointerDeps.erase(It);
1001}
1002
1003
1004/// invalidateCachedPointerInfo - This method is used to invalidate cached
1005/// information about the specified pointer, because it may be too
1006/// conservative in memdep.  This is an optional call that can be used when
1007/// the client detects an equivalence between the pointer and some other
1008/// value and replaces the other value with ptr. This can make Ptr available
1009/// in more places that cached info does not necessarily keep.
1010void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
1011  // If Ptr isn't really a pointer, just ignore it.
1012  if (!Ptr->getType()->isPointerTy()) return;
1013  // Flush store info for the pointer.
1014  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1015  // Flush load info for the pointer.
1016  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1017}
1018
1019/// invalidateCachedPredecessors - Clear the PredIteratorCache info.
1020/// This needs to be done when the CFG changes, e.g., due to splitting
1021/// critical edges.
1022void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
1023  PredCache->clear();
1024}
1025
1026/// removeInstruction - Remove an instruction from the dependence analysis,
1027/// updating the dependence of instructions that previously depended on it.
1028/// This method attempts to keep the cache coherent using the reverse map.
1029void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
1030  // Walk through the Non-local dependencies, removing this one as the value
1031  // for any cached queries.
1032  NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1033  if (NLDI != NonLocalDeps.end()) {
1034    NonLocalDepInfo &BlockMap = NLDI->second.first;
1035    for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
1036         DI != DE; ++DI)
1037      if (Instruction *Inst = DI->getResult().getInst())
1038        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1039    NonLocalDeps.erase(NLDI);
1040  }
1041
1042  // If we have a cached local dependence query for this instruction, remove it.
1043  //
1044  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1045  if (LocalDepEntry != LocalDeps.end()) {
1046    // Remove us from DepInst's reverse set now that the local dep info is gone.
1047    if (Instruction *Inst = LocalDepEntry->second.getInst())
1048      RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1049
1050    // Remove this local dependency info.
1051    LocalDeps.erase(LocalDepEntry);
1052  }
1053
1054  // If we have any cached pointer dependencies on this instruction, remove
1055  // them.  If the instruction has non-pointer type, then it can't be a pointer
1056  // base.
1057
1058  // Remove it from both the load info and the store info.  The instruction
1059  // can't be in either of these maps if it is non-pointer.
1060  if (RemInst->getType()->isPointerTy()) {
1061    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1062    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1063  }
1064
1065  // Loop over all of the things that depend on the instruction we're removing.
1066  //
1067  SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
1068
1069  // If we find RemInst as a clobber or Def in any of the maps for other values,
1070  // we need to replace its entry with a dirty version of the instruction after
1071  // it.  If RemInst is a terminator, we use a null dirty value.
1072  //
1073  // Using a dirty version of the instruction after RemInst saves having to scan
1074  // the entire block to get to this point.
1075  MemDepResult NewDirtyVal;
1076  if (!RemInst->isTerminator())
1077    NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
1078
1079  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1080  if (ReverseDepIt != ReverseLocalDeps.end()) {
1081    SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
1082    // RemInst can't be the terminator if it has local stuff depending on it.
1083    assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
1084           "Nothing can locally depend on a terminator");
1085
1086    for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
1087         E = ReverseDeps.end(); I != E; ++I) {
1088      Instruction *InstDependingOnRemInst = *I;
1089      assert(InstDependingOnRemInst != RemInst &&
1090             "Already removed our local dep info");
1091
1092      LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1093
1094      // Make sure to remember that new things depend on NewDepInst.
1095      assert(NewDirtyVal.getInst() && "There is no way something else can have "
1096             "a local dep on this if it is a terminator!");
1097      ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
1098                                                InstDependingOnRemInst));
1099    }
1100
1101    ReverseLocalDeps.erase(ReverseDepIt);
1102
1103    // Add new reverse deps after scanning the set, to avoid invalidating the
1104    // 'ReverseDeps' reference.
1105    while (!ReverseDepsToAdd.empty()) {
1106      ReverseLocalDeps[ReverseDepsToAdd.back().first]
1107        .insert(ReverseDepsToAdd.back().second);
1108      ReverseDepsToAdd.pop_back();
1109    }
1110  }
1111
1112  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1113  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1114    SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
1115    for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
1116         I != E; ++I) {
1117      assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
1118
1119      PerInstNLInfo &INLD = NonLocalDeps[*I];
1120      // The information is now dirty!
1121      INLD.second = true;
1122
1123      for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1124           DE = INLD.first.end(); DI != DE; ++DI) {
1125        if (DI->getResult().getInst() != RemInst) continue;
1126
1127        // Convert to a dirty entry for the subsequent instruction.
1128        DI->setResult(NewDirtyVal);
1129
1130        if (Instruction *NextI = NewDirtyVal.getInst())
1131          ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
1132      }
1133    }
1134
1135    ReverseNonLocalDeps.erase(ReverseDepIt);
1136
1137    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1138    while (!ReverseDepsToAdd.empty()) {
1139      ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1140        .insert(ReverseDepsToAdd.back().second);
1141      ReverseDepsToAdd.pop_back();
1142    }
1143  }
1144
1145  // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1146  // value in the NonLocalPointerDeps info.
1147  ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1148    ReverseNonLocalPtrDeps.find(RemInst);
1149  if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1150    SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
1151    SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1152
1153    for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
1154         E = Set.end(); I != E; ++I) {
1155      ValueIsLoadPair P = *I;
1156      assert(P.getPointer() != RemInst &&
1157             "Already removed NonLocalPointerDeps info for RemInst");
1158
1159      NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].second;
1160
1161      // The cache is not valid for any specific block anymore.
1162      NonLocalPointerDeps[P].first = BBSkipFirstBlockPair();
1163
1164      // Update any entries for RemInst to use the instruction after it.
1165      for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1166           DI != DE; ++DI) {
1167        if (DI->getResult().getInst() != RemInst) continue;
1168
1169        // Convert to a dirty entry for the subsequent instruction.
1170        DI->setResult(NewDirtyVal);
1171
1172        if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1173          ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1174      }
1175
1176      // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1177      // subsequent value may invalidate the sortedness.
1178      std::sort(NLPDI.begin(), NLPDI.end());
1179    }
1180
1181    ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1182
1183    while (!ReversePtrDepsToAdd.empty()) {
1184      ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1185        .insert(ReversePtrDepsToAdd.back().second);
1186      ReversePtrDepsToAdd.pop_back();
1187    }
1188  }
1189
1190
1191  assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1192  AA->deleteValue(RemInst);
1193  DEBUG(verifyRemoved(RemInst));
1194}
1195/// verifyRemoved - Verify that the specified instruction does not occur
1196/// in our internal data structures.
1197void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1198  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1199       E = LocalDeps.end(); I != E; ++I) {
1200    assert(I->first != D && "Inst occurs in data structures");
1201    assert(I->second.getInst() != D &&
1202           "Inst occurs in data structures");
1203  }
1204
1205  for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1206       E = NonLocalPointerDeps.end(); I != E; ++I) {
1207    assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1208    const NonLocalDepInfo &Val = I->second.second;
1209    for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1210         II != E; ++II)
1211      assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
1212  }
1213
1214  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1215       E = NonLocalDeps.end(); I != E; ++I) {
1216    assert(I->first != D && "Inst occurs in data structures");
1217    const PerInstNLInfo &INLD = I->second;
1218    for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1219         EE = INLD.first.end(); II  != EE; ++II)
1220      assert(II->getResult().getInst() != D && "Inst occurs in data structures");
1221  }
1222
1223  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1224       E = ReverseLocalDeps.end(); I != E; ++I) {
1225    assert(I->first != D && "Inst occurs in data structures");
1226    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1227         EE = I->second.end(); II != EE; ++II)
1228      assert(*II != D && "Inst occurs in data structures");
1229  }
1230
1231  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1232       E = ReverseNonLocalDeps.end();
1233       I != E; ++I) {
1234    assert(I->first != D && "Inst occurs in data structures");
1235    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1236         EE = I->second.end(); II != EE; ++II)
1237      assert(*II != D && "Inst occurs in data structures");
1238  }
1239
1240  for (ReverseNonLocalPtrDepTy::const_iterator
1241       I = ReverseNonLocalPtrDeps.begin(),
1242       E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1243    assert(I->first != D && "Inst occurs in rev NLPD map");
1244
1245    for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
1246         E = I->second.end(); II != E; ++II)
1247      assert(*II != ValueIsLoadPair(D, false) &&
1248             *II != ValueIsLoadPair(D, true) &&
1249             "Inst occurs in ReverseNonLocalPtrDeps map");
1250  }
1251
1252}
1253