MemoryDependenceAnalysis.cpp revision 616613d7a4ddc7cefce53b2bfe3fdcdec6b032c2
1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an analysis that determines, for a given memory
11// operation, what preceding memory operations it depends on.  It builds on
12// alias analysis information, and tries to provide a lazy, caching interface to
13// a common kind of alias information query.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "memdep"
18#include "llvm/Analysis/MemoryDependenceAnalysis.h"
19#include "llvm/Instructions.h"
20#include "llvm/IntrinsicInst.h"
21#include "llvm/Function.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/Analysis/InstructionSimplify.h"
24#include "llvm/Analysis/MemoryBuiltins.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/Support/PredIteratorCache.h"
28#include "llvm/Support/Debug.h"
29using namespace llvm;
30
31STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
32STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
33STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
34
35STATISTIC(NumCacheNonLocalPtr,
36          "Number of fully cached non-local ptr responses");
37STATISTIC(NumCacheDirtyNonLocalPtr,
38          "Number of cached, but dirty, non-local ptr responses");
39STATISTIC(NumUncacheNonLocalPtr,
40          "Number of uncached non-local ptr responses");
41STATISTIC(NumCacheCompleteNonLocalPtr,
42          "Number of block queries that were completely cached");
43
44char MemoryDependenceAnalysis::ID = 0;
45
46// Register this pass...
47static RegisterPass<MemoryDependenceAnalysis> X("memdep",
48                                     "Memory Dependence Analysis", false, true);
49
50MemoryDependenceAnalysis::MemoryDependenceAnalysis()
51: FunctionPass(&ID), PredCache(0) {
52}
53MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
54}
55
56/// Clean up memory in between runs
57void MemoryDependenceAnalysis::releaseMemory() {
58  LocalDeps.clear();
59  NonLocalDeps.clear();
60  NonLocalPointerDeps.clear();
61  ReverseLocalDeps.clear();
62  ReverseNonLocalDeps.clear();
63  ReverseNonLocalPtrDeps.clear();
64  PredCache->clear();
65}
66
67
68
69/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
70///
71void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
72  AU.setPreservesAll();
73  AU.addRequiredTransitive<AliasAnalysis>();
74}
75
76bool MemoryDependenceAnalysis::runOnFunction(Function &) {
77  AA = &getAnalysis<AliasAnalysis>();
78  if (PredCache == 0)
79    PredCache.reset(new PredIteratorCache());
80  return false;
81}
82
83/// RemoveFromReverseMap - This is a helper function that removes Val from
84/// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
85template <typename KeyTy>
86static void RemoveFromReverseMap(DenseMap<Instruction*,
87                                 SmallPtrSet<KeyTy, 4> > &ReverseMap,
88                                 Instruction *Inst, KeyTy Val) {
89  typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
90  InstIt = ReverseMap.find(Inst);
91  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
92  bool Found = InstIt->second.erase(Val);
93  assert(Found && "Invalid reverse map!"); Found=Found;
94  if (InstIt->second.empty())
95    ReverseMap.erase(InstIt);
96}
97
98
99/// getCallSiteDependencyFrom - Private helper for finding the local
100/// dependencies of a call site.
101MemDepResult MemoryDependenceAnalysis::
102getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
103                          BasicBlock::iterator ScanIt, BasicBlock *BB) {
104  // Walk backwards through the block, looking for dependencies
105  while (ScanIt != BB->begin()) {
106    Instruction *Inst = --ScanIt;
107
108    // If this inst is a memory op, get the pointer it accessed
109    Value *Pointer = 0;
110    uint64_t PointerSize = 0;
111    if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
112      Pointer = S->getPointerOperand();
113      PointerSize = AA->getTypeStoreSize(S->getOperand(0)->getType());
114    } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
115      Pointer = V->getOperand(0);
116      PointerSize = AA->getTypeStoreSize(V->getType());
117    } else if (isFreeCall(Inst)) {
118      Pointer = Inst->getOperand(1);
119      // calls to free() erase the entire structure
120      PointerSize = ~0ULL;
121    } else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
122      // Debug intrinsics don't cause dependences.
123      if (isa<DbgInfoIntrinsic>(Inst)) continue;
124      CallSite InstCS = CallSite::get(Inst);
125      // If these two calls do not interfere, look past it.
126      switch (AA->getModRefInfo(CS, InstCS)) {
127      case AliasAnalysis::NoModRef:
128        // If the two calls don't interact (e.g. InstCS is readnone) keep
129        // scanning.
130        continue;
131      case AliasAnalysis::Ref:
132        // If the two calls read the same memory locations and CS is a readonly
133        // function, then we have two cases: 1) the calls may not interfere with
134        // each other at all.  2) the calls may produce the same value.  In case
135        // #1 we want to ignore the values, in case #2, we want to return Inst
136        // as a Def dependence.  This allows us to CSE in cases like:
137        //   X = strlen(P);
138        //    memchr(...);
139        //   Y = strlen(P);  // Y = X
140        if (isReadOnlyCall) {
141          if (CS.getCalledFunction() != 0 &&
142              CS.getCalledFunction() == InstCS.getCalledFunction())
143            return MemDepResult::getDef(Inst);
144          // Ignore unrelated read/read call dependences.
145          continue;
146        }
147        // FALL THROUGH
148      default:
149        return MemDepResult::getClobber(Inst);
150      }
151    } else {
152      // Non-memory instruction.
153      continue;
154    }
155
156    if (AA->getModRefInfo(CS, Pointer, PointerSize) != AliasAnalysis::NoModRef)
157      return MemDepResult::getClobber(Inst);
158  }
159
160  // No dependence found.  If this is the entry block of the function, it is a
161  // clobber, otherwise it is non-local.
162  if (BB != &BB->getParent()->getEntryBlock())
163    return MemDepResult::getNonLocal();
164  return MemDepResult::getClobber(ScanIt);
165}
166
167/// getPointerDependencyFrom - Return the instruction on which a memory
168/// location depends.  If isLoad is true, this routine ignore may-aliases with
169/// read-only operations.
170MemDepResult MemoryDependenceAnalysis::
171getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad,
172                         BasicBlock::iterator ScanIt, BasicBlock *BB) {
173
174  Value *invariantTag = 0;
175
176  // Walk backwards through the basic block, looking for dependencies.
177  while (ScanIt != BB->begin()) {
178    Instruction *Inst = --ScanIt;
179
180    // If we're in an invariant region, no dependencies can be found before
181    // we pass an invariant-begin marker.
182    if (invariantTag == Inst) {
183      invariantTag = 0;
184      continue;
185    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
186      // If we pass an invariant-end marker, then we've just entered an
187      // invariant region and can start ignoring dependencies.
188      if (II->getIntrinsicID() == Intrinsic::invariant_end) {
189        uint64_t invariantSize = ~0ULL;
190        if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getOperand(2)))
191          invariantSize = CI->getZExtValue();
192
193        AliasAnalysis::AliasResult R =
194          AA->alias(II->getOperand(3), invariantSize, MemPtr, MemSize);
195        if (R == AliasAnalysis::MustAlias) {
196          invariantTag = II->getOperand(1);
197          continue;
198        }
199
200      // If we reach a lifetime begin or end marker, then the query ends here
201      // because the value is undefined.
202      } else if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
203                   II->getIntrinsicID() == Intrinsic::lifetime_end) {
204        uint64_t invariantSize = ~0ULL;
205        if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getOperand(1)))
206          invariantSize = CI->getZExtValue();
207
208        AliasAnalysis::AliasResult R =
209          AA->alias(II->getOperand(2), invariantSize, MemPtr, MemSize);
210        if (R == AliasAnalysis::MustAlias)
211          return MemDepResult::getDef(II);
212      }
213    }
214
215    // If we're querying on a load and we're in an invariant region, we're done
216    // at this point. Nothing a load depends on can live in an invariant region.
217    if (isLoad && invariantTag) continue;
218
219    // Debug intrinsics don't cause dependences.
220    if (isa<DbgInfoIntrinsic>(Inst)) continue;
221
222    // Values depend on loads if the pointers are must aliased.  This means that
223    // a load depends on another must aliased load from the same value.
224    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
225      Value *Pointer = LI->getPointerOperand();
226      uint64_t PointerSize = AA->getTypeStoreSize(LI->getType());
227
228      // If we found a pointer, check if it could be the same as our pointer.
229      AliasAnalysis::AliasResult R =
230        AA->alias(Pointer, PointerSize, MemPtr, MemSize);
231      if (R == AliasAnalysis::NoAlias)
232        continue;
233
234      // May-alias loads don't depend on each other without a dependence.
235      if (isLoad && R == AliasAnalysis::MayAlias)
236        continue;
237      // Stores depend on may and must aliased loads, loads depend on must-alias
238      // loads.
239      return MemDepResult::getDef(Inst);
240    }
241
242    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
243      // There can't be stores to the value we care about inside an
244      // invariant region.
245      if (invariantTag) continue;
246
247      // If alias analysis can tell that this store is guaranteed to not modify
248      // the query pointer, ignore it.  Use getModRefInfo to handle cases where
249      // the query pointer points to constant memory etc.
250      if (AA->getModRefInfo(SI, MemPtr, MemSize) == AliasAnalysis::NoModRef)
251        continue;
252
253      // Ok, this store might clobber the query pointer.  Check to see if it is
254      // a must alias: in this case, we want to return this as a def.
255      Value *Pointer = SI->getPointerOperand();
256      uint64_t PointerSize = AA->getTypeStoreSize(SI->getOperand(0)->getType());
257
258      // If we found a pointer, check if it could be the same as our pointer.
259      AliasAnalysis::AliasResult R =
260        AA->alias(Pointer, PointerSize, MemPtr, MemSize);
261
262      if (R == AliasAnalysis::NoAlias)
263        continue;
264      if (R == AliasAnalysis::MayAlias)
265        return MemDepResult::getClobber(Inst);
266      return MemDepResult::getDef(Inst);
267    }
268
269    // If this is an allocation, and if we know that the accessed pointer is to
270    // the allocation, return Def.  This means that there is no dependence and
271    // the access can be optimized based on that.  For example, a load could
272    // turn into undef.
273    // Note: Only determine this to be a malloc if Inst is the malloc call, not
274    // a subsequent bitcast of the malloc call result.  There can be stores to
275    // the malloced memory between the malloc call and its bitcast uses, and we
276    // need to continue scanning until the malloc call.
277    if (isa<AllocaInst>(Inst) || extractMallocCall(Inst)) {
278      Value *AccessPtr = MemPtr->getUnderlyingObject();
279
280      if (AccessPtr == Inst ||
281          AA->alias(Inst, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
282        return MemDepResult::getDef(Inst);
283      continue;
284    }
285
286    // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
287    switch (AA->getModRefInfo(Inst, MemPtr, MemSize)) {
288    case AliasAnalysis::NoModRef:
289      // If the call has no effect on the queried pointer, just ignore it.
290      continue;
291    case AliasAnalysis::Mod:
292      // If we're in an invariant region, we can ignore calls that ONLY
293      // modify the pointer.
294      if (invariantTag) continue;
295      return MemDepResult::getClobber(Inst);
296    case AliasAnalysis::Ref:
297      // If the call is known to never store to the pointer, and if this is a
298      // load query, we can safely ignore it (scan past it).
299      if (isLoad)
300        continue;
301    default:
302      // Otherwise, there is a potential dependence.  Return a clobber.
303      return MemDepResult::getClobber(Inst);
304    }
305  }
306
307  // No dependence found.  If this is the entry block of the function, it is a
308  // clobber, otherwise it is non-local.
309  if (BB != &BB->getParent()->getEntryBlock())
310    return MemDepResult::getNonLocal();
311  return MemDepResult::getClobber(ScanIt);
312}
313
314/// getDependency - Return the instruction on which a memory operation
315/// depends.
316MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
317  Instruction *ScanPos = QueryInst;
318
319  // Check for a cached result
320  MemDepResult &LocalCache = LocalDeps[QueryInst];
321
322  // If the cached entry is non-dirty, just return it.  Note that this depends
323  // on MemDepResult's default constructing to 'dirty'.
324  if (!LocalCache.isDirty())
325    return LocalCache;
326
327  // Otherwise, if we have a dirty entry, we know we can start the scan at that
328  // instruction, which may save us some work.
329  if (Instruction *Inst = LocalCache.getInst()) {
330    ScanPos = Inst;
331
332    RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
333  }
334
335  BasicBlock *QueryParent = QueryInst->getParent();
336
337  Value *MemPtr = 0;
338  uint64_t MemSize = 0;
339
340  // Do the scan.
341  if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
342    // No dependence found.  If this is the entry block of the function, it is a
343    // clobber, otherwise it is non-local.
344    if (QueryParent != &QueryParent->getParent()->getEntryBlock())
345      LocalCache = MemDepResult::getNonLocal();
346    else
347      LocalCache = MemDepResult::getClobber(QueryInst);
348  } else if (StoreInst *SI = dyn_cast<StoreInst>(QueryInst)) {
349    // If this is a volatile store, don't mess around with it.  Just return the
350    // previous instruction as a clobber.
351    if (SI->isVolatile())
352      LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
353    else {
354      MemPtr = SI->getPointerOperand();
355      MemSize = AA->getTypeStoreSize(SI->getOperand(0)->getType());
356    }
357  } else if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) {
358    // If this is a volatile load, don't mess around with it.  Just return the
359    // previous instruction as a clobber.
360    if (LI->isVolatile())
361      LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
362    else {
363      MemPtr = LI->getPointerOperand();
364      MemSize = AA->getTypeStoreSize(LI->getType());
365    }
366  } else if (isFreeCall(QueryInst)) {
367    MemPtr = QueryInst->getOperand(1);
368    // calls to free() erase the entire structure, not just a field.
369    MemSize = ~0UL;
370  } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
371    CallSite QueryCS = CallSite::get(QueryInst);
372    bool isReadOnly = AA->onlyReadsMemory(QueryCS);
373    LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
374                                           QueryParent);
375  } else {
376    // Non-memory instruction.
377    LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
378  }
379
380  // If we need to do a pointer scan, make it happen.
381  if (MemPtr)
382    LocalCache = getPointerDependencyFrom(MemPtr, MemSize,
383                                          isa<LoadInst>(QueryInst),
384                                          ScanPos, QueryParent);
385
386  // Remember the result!
387  if (Instruction *I = LocalCache.getInst())
388    ReverseLocalDeps[I].insert(QueryInst);
389
390  return LocalCache;
391}
392
393#ifndef NDEBUG
394/// AssertSorted - This method is used when -debug is specified to verify that
395/// cache arrays are properly kept sorted.
396static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
397                         int Count = -1) {
398  if (Count == -1) Count = Cache.size();
399  if (Count == 0) return;
400
401  for (unsigned i = 1; i != unsigned(Count); ++i)
402    assert(Cache[i-1] <= Cache[i] && "Cache isn't sorted!");
403}
404#endif
405
406/// getNonLocalCallDependency - Perform a full dependency query for the
407/// specified call, returning the set of blocks that the value is
408/// potentially live across.  The returned set of results will include a
409/// "NonLocal" result for all blocks where the value is live across.
410///
411/// This method assumes the instruction returns a "NonLocal" dependency
412/// within its own block.
413///
414/// This returns a reference to an internal data structure that may be
415/// invalidated on the next non-local query or when an instruction is
416/// removed.  Clients must copy this data if they want it around longer than
417/// that.
418const MemoryDependenceAnalysis::NonLocalDepInfo &
419MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
420  assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
421 "getNonLocalCallDependency should only be used on calls with non-local deps!");
422  PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
423  NonLocalDepInfo &Cache = CacheP.first;
424
425  /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
426  /// the cached case, this can happen due to instructions being deleted etc. In
427  /// the uncached case, this starts out as the set of predecessors we care
428  /// about.
429  SmallVector<BasicBlock*, 32> DirtyBlocks;
430
431  if (!Cache.empty()) {
432    // Okay, we have a cache entry.  If we know it is not dirty, just return it
433    // with no computation.
434    if (!CacheP.second) {
435      NumCacheNonLocal++;
436      return Cache;
437    }
438
439    // If we already have a partially computed set of results, scan them to
440    // determine what is dirty, seeding our initial DirtyBlocks worklist.
441    for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
442       I != E; ++I)
443      if (I->second.isDirty())
444        DirtyBlocks.push_back(I->first);
445
446    // Sort the cache so that we can do fast binary search lookups below.
447    std::sort(Cache.begin(), Cache.end());
448
449    ++NumCacheDirtyNonLocal;
450    //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
451    //     << Cache.size() << " cached: " << *QueryInst;
452  } else {
453    // Seed DirtyBlocks with each of the preds of QueryInst's block.
454    BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
455    for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
456      DirtyBlocks.push_back(*PI);
457    NumUncacheNonLocal++;
458  }
459
460  // isReadonlyCall - If this is a read-only call, we can be more aggressive.
461  bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
462
463  SmallPtrSet<BasicBlock*, 64> Visited;
464
465  unsigned NumSortedEntries = Cache.size();
466  DEBUG(AssertSorted(Cache));
467
468  // Iterate while we still have blocks to update.
469  while (!DirtyBlocks.empty()) {
470    BasicBlock *DirtyBB = DirtyBlocks.back();
471    DirtyBlocks.pop_back();
472
473    // Already processed this block?
474    if (!Visited.insert(DirtyBB))
475      continue;
476
477    // Do a binary search to see if we already have an entry for this block in
478    // the cache set.  If so, find it.
479    DEBUG(AssertSorted(Cache, NumSortedEntries));
480    NonLocalDepInfo::iterator Entry =
481      std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
482                       std::make_pair(DirtyBB, MemDepResult()));
483    if (Entry != Cache.begin() && prior(Entry)->first == DirtyBB)
484      --Entry;
485
486    MemDepResult *ExistingResult = 0;
487    if (Entry != Cache.begin()+NumSortedEntries &&
488        Entry->first == DirtyBB) {
489      // If we already have an entry, and if it isn't already dirty, the block
490      // is done.
491      if (!Entry->second.isDirty())
492        continue;
493
494      // Otherwise, remember this slot so we can update the value.
495      ExistingResult = &Entry->second;
496    }
497
498    // If the dirty entry has a pointer, start scanning from it so we don't have
499    // to rescan the entire block.
500    BasicBlock::iterator ScanPos = DirtyBB->end();
501    if (ExistingResult) {
502      if (Instruction *Inst = ExistingResult->getInst()) {
503        ScanPos = Inst;
504        // We're removing QueryInst's use of Inst.
505        RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
506                             QueryCS.getInstruction());
507      }
508    }
509
510    // Find out if this block has a local dependency for QueryInst.
511    MemDepResult Dep;
512
513    if (ScanPos != DirtyBB->begin()) {
514      Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
515    } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
516      // No dependence found.  If this is the entry block of the function, it is
517      // a clobber, otherwise it is non-local.
518      Dep = MemDepResult::getNonLocal();
519    } else {
520      Dep = MemDepResult::getClobber(ScanPos);
521    }
522
523    // If we had a dirty entry for the block, update it.  Otherwise, just add
524    // a new entry.
525    if (ExistingResult)
526      *ExistingResult = Dep;
527    else
528      Cache.push_back(std::make_pair(DirtyBB, Dep));
529
530    // If the block has a dependency (i.e. it isn't completely transparent to
531    // the value), remember the association!
532    if (!Dep.isNonLocal()) {
533      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
534      // update this when we remove instructions.
535      if (Instruction *Inst = Dep.getInst())
536        ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
537    } else {
538
539      // If the block *is* completely transparent to the load, we need to check
540      // the predecessors of this block.  Add them to our worklist.
541      for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
542        DirtyBlocks.push_back(*PI);
543    }
544  }
545
546  return Cache;
547}
548
549/// getNonLocalPointerDependency - Perform a full dependency query for an
550/// access to the specified (non-volatile) memory location, returning the
551/// set of instructions that either define or clobber the value.
552///
553/// This method assumes the pointer has a "NonLocal" dependency within its
554/// own block.
555///
556void MemoryDependenceAnalysis::
557getNonLocalPointerDependency(Value *Pointer, bool isLoad, BasicBlock *FromBB,
558                             SmallVectorImpl<NonLocalDepEntry> &Result) {
559  assert(isa<PointerType>(Pointer->getType()) &&
560         "Can't get pointer deps of a non-pointer!");
561  Result.clear();
562
563  // We know that the pointer value is live into FromBB find the def/clobbers
564  // from presecessors.
565  const Type *EltTy = cast<PointerType>(Pointer->getType())->getElementType();
566  uint64_t PointeeSize = AA->getTypeStoreSize(EltTy);
567
568  // This is the set of blocks we've inspected, and the pointer we consider in
569  // each block.  Because of critical edges, we currently bail out if querying
570  // a block with multiple different pointers.  This can happen during PHI
571  // translation.
572  DenseMap<BasicBlock*, Value*> Visited;
573  if (!getNonLocalPointerDepFromBB(Pointer, PointeeSize, isLoad, FromBB,
574                                   Result, Visited, true))
575    return;
576  Result.clear();
577  Result.push_back(std::make_pair(FromBB,
578                                  MemDepResult::getClobber(FromBB->begin())));
579}
580
581/// GetNonLocalInfoForBlock - Compute the memdep value for BB with
582/// Pointer/PointeeSize using either cached information in Cache or by doing a
583/// lookup (which may use dirty cache info if available).  If we do a lookup,
584/// add the result to the cache.
585MemDepResult MemoryDependenceAnalysis::
586GetNonLocalInfoForBlock(Value *Pointer, uint64_t PointeeSize,
587                        bool isLoad, BasicBlock *BB,
588                        NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
589
590  // Do a binary search to see if we already have an entry for this block in
591  // the cache set.  If so, find it.
592  NonLocalDepInfo::iterator Entry =
593    std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
594                     std::make_pair(BB, MemDepResult()));
595  if (Entry != Cache->begin() && prior(Entry)->first == BB)
596    --Entry;
597
598  MemDepResult *ExistingResult = 0;
599  if (Entry != Cache->begin()+NumSortedEntries && Entry->first == BB)
600    ExistingResult = &Entry->second;
601
602  // If we have a cached entry, and it is non-dirty, use it as the value for
603  // this dependency.
604  if (ExistingResult && !ExistingResult->isDirty()) {
605    ++NumCacheNonLocalPtr;
606    return *ExistingResult;
607  }
608
609  // Otherwise, we have to scan for the value.  If we have a dirty cache
610  // entry, start scanning from its position, otherwise we scan from the end
611  // of the block.
612  BasicBlock::iterator ScanPos = BB->end();
613  if (ExistingResult && ExistingResult->getInst()) {
614    assert(ExistingResult->getInst()->getParent() == BB &&
615           "Instruction invalidated?");
616    ++NumCacheDirtyNonLocalPtr;
617    ScanPos = ExistingResult->getInst();
618
619    // Eliminating the dirty entry from 'Cache', so update the reverse info.
620    ValueIsLoadPair CacheKey(Pointer, isLoad);
621    RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
622  } else {
623    ++NumUncacheNonLocalPtr;
624  }
625
626  // Scan the block for the dependency.
627  MemDepResult Dep = getPointerDependencyFrom(Pointer, PointeeSize, isLoad,
628                                              ScanPos, BB);
629
630  // If we had a dirty entry for the block, update it.  Otherwise, just add
631  // a new entry.
632  if (ExistingResult)
633    *ExistingResult = Dep;
634  else
635    Cache->push_back(std::make_pair(BB, Dep));
636
637  // If the block has a dependency (i.e. it isn't completely transparent to
638  // the value), remember the reverse association because we just added it
639  // to Cache!
640  if (Dep.isNonLocal())
641    return Dep;
642
643  // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
644  // update MemDep when we remove instructions.
645  Instruction *Inst = Dep.getInst();
646  assert(Inst && "Didn't depend on anything?");
647  ValueIsLoadPair CacheKey(Pointer, isLoad);
648  ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
649  return Dep;
650}
651
652/// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
653/// number of elements in the array that are already properly ordered.  This is
654/// optimized for the case when only a few entries are added.
655static void
656SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
657                         unsigned NumSortedEntries) {
658  switch (Cache.size() - NumSortedEntries) {
659  case 0:
660    // done, no new entries.
661    break;
662  case 2: {
663    // Two new entries, insert the last one into place.
664    MemoryDependenceAnalysis::NonLocalDepEntry Val = Cache.back();
665    Cache.pop_back();
666    MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
667      std::upper_bound(Cache.begin(), Cache.end()-1, Val);
668    Cache.insert(Entry, Val);
669    // FALL THROUGH.
670  }
671  case 1:
672    // One new entry, Just insert the new value at the appropriate position.
673    if (Cache.size() != 1) {
674      MemoryDependenceAnalysis::NonLocalDepEntry Val = Cache.back();
675      Cache.pop_back();
676      MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
677        std::upper_bound(Cache.begin(), Cache.end(), Val);
678      Cache.insert(Entry, Val);
679    }
680    break;
681  default:
682    // Added many values, do a full scale sort.
683    std::sort(Cache.begin(), Cache.end());
684    break;
685  }
686}
687
688/// isPHITranslatable - Return true if the specified computation is derived from
689/// a PHI node in the current block and if it is simple enough for us to handle.
690static bool isPHITranslatable(Instruction *Inst) {
691  if (isa<PHINode>(Inst))
692    return true;
693
694  // We can handle bitcast of a PHI, but the PHI needs to be in the same block
695  // as the bitcast.
696  if (BitCastInst *BC = dyn_cast<BitCastInst>(Inst))
697    if (PHINode *PN = dyn_cast<PHINode>(BC->getOperand(0)))
698      if (PN->getParent() == BC->getParent())
699        return true;
700
701  // We can translate a GEP that uses a PHI in the current block for at least
702  // one of its operands.
703  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
704    for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
705      if (PHINode *PN = dyn_cast<PHINode>(GEP->getOperand(i)))
706        if (PN->getParent() == GEP->getParent())
707          return true;
708  }
709
710  //   cerr << "MEMDEP: Could not PHI translate: " << *Pointer;
711  //   if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst))
712  //     cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0);
713
714  return false;
715}
716
717/// PHITranslateForPred - Given a computation that satisfied the
718/// isPHITranslatable predicate, see if we can translate the computation into
719/// the specified predecessor block.  If so, return that value.
720Value *MemoryDependenceAnalysis::
721PHITranslatePointer(Value *InVal, BasicBlock *CurBB, BasicBlock *Pred,
722                    const TargetData *TD) const {
723  // If the input value is not an instruction, or if it is not defined in CurBB,
724  // then we don't need to phi translate it.
725  Instruction *Inst = dyn_cast<Instruction>(InVal);
726  if (Inst == 0 || Inst->getParent() != CurBB)
727    return InVal;
728
729  if (PHINode *PN = dyn_cast<PHINode>(Inst))
730    return PN->getIncomingValueForBlock(Pred);
731
732  // Handle bitcast of PHI.
733  if (BitCastInst *BC = dyn_cast<BitCastInst>(Inst)) {
734    PHINode *BCPN = cast<PHINode>(BC->getOperand(0));
735    Value *PHIIn = BCPN->getIncomingValueForBlock(Pred);
736
737    // Constants are trivial to phi translate.
738    if (Constant *C = dyn_cast<Constant>(PHIIn))
739      return ConstantExpr::getBitCast(C, BC->getType());
740
741    // Otherwise we have to see if a bitcasted version of the incoming pointer
742    // is available.  If so, we can use it, otherwise we have to fail.
743    for (Value::use_iterator UI = PHIIn->use_begin(), E = PHIIn->use_end();
744         UI != E; ++UI) {
745      if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI))
746        if (BCI->getType() == BC->getType())
747          return BCI;
748    }
749    return 0;
750  }
751
752  // Handle getelementptr with at least one PHI operand.
753  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
754    SmallVector<Value*, 8> GEPOps;
755    BasicBlock *CurBB = GEP->getParent();
756    for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
757      Value *GEPOp = GEP->getOperand(i);
758      // No PHI translation is needed of operands whose values are live in to
759      // the predecessor block.
760      if (!isa<Instruction>(GEPOp) ||
761          cast<Instruction>(GEPOp)->getParent() != CurBB) {
762        GEPOps.push_back(GEPOp);
763        continue;
764      }
765
766      // If the operand is a phi node, do phi translation.
767      if (PHINode *PN = dyn_cast<PHINode>(GEPOp)) {
768        GEPOps.push_back(PN->getIncomingValueForBlock(Pred));
769        continue;
770      }
771
772      // Otherwise, we can't PHI translate this random value defined in this
773      // block.
774      return 0;
775    }
776
777    // Simplify the GEP to handle 'gep x, 0' -> x etc.
778    if (Value *V = SimplifyGEPInst(&GEPOps[0], GEPOps.size(), TD))
779      return V;
780
781
782    // Scan to see if we have this GEP available.
783    Value *APHIOp = GEPOps[0];
784    for (Value::use_iterator UI = APHIOp->use_begin(), E = APHIOp->use_end();
785         UI != E; ++UI) {
786      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI))
787        if (GEPI->getType() == GEP->getType() &&
788            GEPI->getNumOperands() == GEPOps.size() &&
789            GEPI->getParent()->getParent() == CurBB->getParent()) {
790          bool Mismatch = false;
791          for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
792            if (GEPI->getOperand(i) != GEPOps[i]) {
793              Mismatch = true;
794              break;
795            }
796          if (!Mismatch)
797            return GEPI;
798        }
799    }
800    return 0;
801  }
802
803  return 0;
804}
805
806/// InsertPHITranslatedPointer - Insert a computation of the PHI translated
807/// version of 'V' for the edge PredBB->CurBB into the end of the PredBB
808/// block.
809///
810/// This is only called when PHITranslatePointer returns a value that doesn't
811/// dominate the block, so we don't need to handle the trivial cases here.
812Value *MemoryDependenceAnalysis::
813InsertPHITranslatedPointer(Value *InVal, BasicBlock *CurBB,
814                           BasicBlock *PredBB, const TargetData *TD) const {
815  // If the input value isn't an instruction in CurBB, it doesn't need phi
816  // translation.
817  Instruction *Inst = cast<Instruction>(InVal);
818  assert(Inst->getParent() == CurBB && "Doesn't need phi trans");
819
820  // Handle bitcast of PHI.
821  if (BitCastInst *BC = dyn_cast<BitCastInst>(Inst)) {
822    PHINode *BCPN = cast<PHINode>(BC->getOperand(0));
823    Value *PHIIn = BCPN->getIncomingValueForBlock(PredBB);
824
825    // Otherwise insert a bitcast at the end of PredBB.
826    return new BitCastInst(PHIIn, InVal->getType(),
827                           InVal->getName()+".phi.trans.insert",
828                           PredBB->getTerminator());
829  }
830
831  // Handle getelementptr with at least one PHI operand.
832  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
833    SmallVector<Value*, 8> GEPOps;
834    Value *APHIOp = 0;
835    BasicBlock *CurBB = GEP->getParent();
836    for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
837      GEPOps.push_back(GEP->getOperand(i)->DoPHITranslation(CurBB, PredBB));
838      if (!isa<Constant>(GEPOps.back()))
839        APHIOp = GEPOps.back();
840    }
841
842    GetElementPtrInst *Result =
843      GetElementPtrInst::Create(GEPOps[0], GEPOps.begin()+1, GEPOps.end(),
844                                InVal->getName()+".phi.trans.insert",
845                                PredBB->getTerminator());
846    Result->setIsInBounds(GEP->isInBounds());
847    return Result;
848  }
849
850  return 0;
851}
852
853/// getNonLocalPointerDepFromBB - Perform a dependency query based on
854/// pointer/pointeesize starting at the end of StartBB.  Add any clobber/def
855/// results to the results vector and keep track of which blocks are visited in
856/// 'Visited'.
857///
858/// This has special behavior for the first block queries (when SkipFirstBlock
859/// is true).  In this special case, it ignores the contents of the specified
860/// block and starts returning dependence info for its predecessors.
861///
862/// This function returns false on success, or true to indicate that it could
863/// not compute dependence information for some reason.  This should be treated
864/// as a clobber dependence on the first instruction in the predecessor block.
865bool MemoryDependenceAnalysis::
866getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
867                            bool isLoad, BasicBlock *StartBB,
868                            SmallVectorImpl<NonLocalDepEntry> &Result,
869                            DenseMap<BasicBlock*, Value*> &Visited,
870                            bool SkipFirstBlock) {
871
872  // Look up the cached info for Pointer.
873  ValueIsLoadPair CacheKey(Pointer, isLoad);
874
875  std::pair<BBSkipFirstBlockPair, NonLocalDepInfo> *CacheInfo =
876    &NonLocalPointerDeps[CacheKey];
877  NonLocalDepInfo *Cache = &CacheInfo->second;
878
879  // If we have valid cached information for exactly the block we are
880  // investigating, just return it with no recomputation.
881  if (CacheInfo->first == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
882    // We have a fully cached result for this query then we can just return the
883    // cached results and populate the visited set.  However, we have to verify
884    // that we don't already have conflicting results for these blocks.  Check
885    // to ensure that if a block in the results set is in the visited set that
886    // it was for the same pointer query.
887    if (!Visited.empty()) {
888      for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
889           I != E; ++I) {
890        DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->first);
891        if (VI == Visited.end() || VI->second == Pointer) continue;
892
893        // We have a pointer mismatch in a block.  Just return clobber, saying
894        // that something was clobbered in this result.  We could also do a
895        // non-fully cached query, but there is little point in doing this.
896        return true;
897      }
898    }
899
900    for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
901         I != E; ++I) {
902      Visited.insert(std::make_pair(I->first, Pointer));
903      if (!I->second.isNonLocal())
904        Result.push_back(*I);
905    }
906    ++NumCacheCompleteNonLocalPtr;
907    return false;
908  }
909
910  // Otherwise, either this is a new block, a block with an invalid cache
911  // pointer or one that we're about to invalidate by putting more info into it
912  // than its valid cache info.  If empty, the result will be valid cache info,
913  // otherwise it isn't.
914  if (Cache->empty())
915    CacheInfo->first = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
916  else
917    CacheInfo->first = BBSkipFirstBlockPair();
918
919  SmallVector<BasicBlock*, 32> Worklist;
920  Worklist.push_back(StartBB);
921
922  // Keep track of the entries that we know are sorted.  Previously cached
923  // entries will all be sorted.  The entries we add we only sort on demand (we
924  // don't insert every element into its sorted position).  We know that we
925  // won't get any reuse from currently inserted values, because we don't
926  // revisit blocks after we insert info for them.
927  unsigned NumSortedEntries = Cache->size();
928  DEBUG(AssertSorted(*Cache));
929
930  while (!Worklist.empty()) {
931    BasicBlock *BB = Worklist.pop_back_val();
932
933    // Skip the first block if we have it.
934    if (!SkipFirstBlock) {
935      // Analyze the dependency of *Pointer in FromBB.  See if we already have
936      // been here.
937      assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
938
939      // Get the dependency info for Pointer in BB.  If we have cached
940      // information, we will use it, otherwise we compute it.
941      DEBUG(AssertSorted(*Cache, NumSortedEntries));
942      MemDepResult Dep = GetNonLocalInfoForBlock(Pointer, PointeeSize, isLoad,
943                                                 BB, Cache, NumSortedEntries);
944
945      // If we got a Def or Clobber, add this to the list of results.
946      if (!Dep.isNonLocal()) {
947        Result.push_back(NonLocalDepEntry(BB, Dep));
948        continue;
949      }
950    }
951
952    // If 'Pointer' is an instruction defined in this block, then we need to do
953    // phi translation to change it into a value live in the predecessor block.
954    // If phi translation fails, then we can't continue dependence analysis.
955    Instruction *PtrInst = dyn_cast<Instruction>(Pointer);
956    bool NeedsPHITranslation = PtrInst && PtrInst->getParent() == BB;
957
958    // If no PHI translation is needed, just add all the predecessors of this
959    // block to scan them as well.
960    if (!NeedsPHITranslation) {
961      SkipFirstBlock = false;
962      for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
963        // Verify that we haven't looked at this block yet.
964        std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
965          InsertRes = Visited.insert(std::make_pair(*PI, Pointer));
966        if (InsertRes.second) {
967          // First time we've looked at *PI.
968          Worklist.push_back(*PI);
969          continue;
970        }
971
972        // If we have seen this block before, but it was with a different
973        // pointer then we have a phi translation failure and we have to treat
974        // this as a clobber.
975        if (InsertRes.first->second != Pointer)
976          goto PredTranslationFailure;
977      }
978      continue;
979    }
980
981    // If we do need to do phi translation, then there are a bunch of different
982    // cases, because we have to find a Value* live in the predecessor block. We
983    // know that PtrInst is defined in this block at least.
984
985    // We may have added values to the cache list before this PHI translation.
986    // If so, we haven't done anything to ensure that the cache remains sorted.
987    // Sort it now (if needed) so that recursive invocations of
988    // getNonLocalPointerDepFromBB and other routines that could reuse the cache
989    // value will only see properly sorted cache arrays.
990    if (Cache && NumSortedEntries != Cache->size()) {
991      SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
992      NumSortedEntries = Cache->size();
993    }
994
995    // If this is a computation derived from a PHI node, use the suitably
996    // translated incoming values for each pred as the phi translated version.
997    if (isPHITranslatable(PtrInst)) {
998      Cache = 0;
999
1000      for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1001        BasicBlock *Pred = *PI;
1002        Value *PredPtr = PHITranslatePointer(PtrInst, BB, Pred, TD);
1003
1004        // If PHI translation fails, bail out.
1005        if (PredPtr == 0)
1006          goto PredTranslationFailure;
1007
1008        // Check to see if we have already visited this pred block with another
1009        // pointer.  If so, we can't do this lookup.  This failure can occur
1010        // with PHI translation when a critical edge exists and the PHI node in
1011        // the successor translates to a pointer value different than the
1012        // pointer the block was first analyzed with.
1013        std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1014          InsertRes = Visited.insert(std::make_pair(Pred, PredPtr));
1015
1016        if (!InsertRes.second) {
1017          // If the predecessor was visited with PredPtr, then we already did
1018          // the analysis and can ignore it.
1019          if (InsertRes.first->second == PredPtr)
1020            continue;
1021
1022          // Otherwise, the block was previously analyzed with a different
1023          // pointer.  We can't represent the result of this case, so we just
1024          // treat this as a phi translation failure.
1025          goto PredTranslationFailure;
1026        }
1027
1028        // FIXME: it is entirely possible that PHI translating will end up with
1029        // the same value.  Consider PHI translating something like:
1030        // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1031        // to recurse here, pedantically speaking.
1032
1033        // If we have a problem phi translating, fall through to the code below
1034        // to handle the failure condition.
1035        if (getNonLocalPointerDepFromBB(PredPtr, PointeeSize, isLoad, Pred,
1036                                        Result, Visited))
1037          goto PredTranslationFailure;
1038      }
1039
1040      // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1041      CacheInfo = &NonLocalPointerDeps[CacheKey];
1042      Cache = &CacheInfo->second;
1043      NumSortedEntries = Cache->size();
1044
1045      // Since we did phi translation, the "Cache" set won't contain all of the
1046      // results for the query.  This is ok (we can still use it to accelerate
1047      // specific block queries) but we can't do the fastpath "return all
1048      // results from the set"  Clear out the indicator for this.
1049      CacheInfo->first = BBSkipFirstBlockPair();
1050      SkipFirstBlock = false;
1051      continue;
1052    }
1053
1054  PredTranslationFailure:
1055
1056    if (Cache == 0) {
1057      // Refresh the CacheInfo/Cache pointer if it got invalidated.
1058      CacheInfo = &NonLocalPointerDeps[CacheKey];
1059      Cache = &CacheInfo->second;
1060      NumSortedEntries = Cache->size();
1061    }
1062
1063    // Since we did phi translation, the "Cache" set won't contain all of the
1064    // results for the query.  This is ok (we can still use it to accelerate
1065    // specific block queries) but we can't do the fastpath "return all
1066    // results from the set"  Clear out the indicator for this.
1067    CacheInfo->first = BBSkipFirstBlockPair();
1068
1069    // If *nothing* works, mark the pointer as being clobbered by the first
1070    // instruction in this block.
1071    //
1072    // If this is the magic first block, return this as a clobber of the whole
1073    // incoming value.  Since we can't phi translate to one of the predecessors,
1074    // we have to bail out.
1075    if (SkipFirstBlock)
1076      return true;
1077
1078    for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
1079      assert(I != Cache->rend() && "Didn't find current block??");
1080      if (I->first != BB)
1081        continue;
1082
1083      assert(I->second.isNonLocal() &&
1084             "Should only be here with transparent block");
1085      I->second = MemDepResult::getClobber(BB->begin());
1086      ReverseNonLocalPtrDeps[BB->begin()].insert(CacheKey);
1087      Result.push_back(*I);
1088      break;
1089    }
1090  }
1091
1092  // Okay, we're done now.  If we added new values to the cache, re-sort it.
1093  SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1094  DEBUG(AssertSorted(*Cache));
1095  return false;
1096}
1097
1098/// RemoveCachedNonLocalPointerDependencies - If P exists in
1099/// CachedNonLocalPointerInfo, remove it.
1100void MemoryDependenceAnalysis::
1101RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
1102  CachedNonLocalPointerInfo::iterator It =
1103    NonLocalPointerDeps.find(P);
1104  if (It == NonLocalPointerDeps.end()) return;
1105
1106  // Remove all of the entries in the BB->val map.  This involves removing
1107  // instructions from the reverse map.
1108  NonLocalDepInfo &PInfo = It->second.second;
1109
1110  for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1111    Instruction *Target = PInfo[i].second.getInst();
1112    if (Target == 0) continue;  // Ignore non-local dep results.
1113    assert(Target->getParent() == PInfo[i].first);
1114
1115    // Eliminating the dirty entry from 'Cache', so update the reverse info.
1116    RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1117  }
1118
1119  // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1120  NonLocalPointerDeps.erase(It);
1121}
1122
1123
1124/// invalidateCachedPointerInfo - This method is used to invalidate cached
1125/// information about the specified pointer, because it may be too
1126/// conservative in memdep.  This is an optional call that can be used when
1127/// the client detects an equivalence between the pointer and some other
1128/// value and replaces the other value with ptr. This can make Ptr available
1129/// in more places that cached info does not necessarily keep.
1130void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
1131  // If Ptr isn't really a pointer, just ignore it.
1132  if (!isa<PointerType>(Ptr->getType())) return;
1133  // Flush store info for the pointer.
1134  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1135  // Flush load info for the pointer.
1136  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1137}
1138
1139/// removeInstruction - Remove an instruction from the dependence analysis,
1140/// updating the dependence of instructions that previously depended on it.
1141/// This method attempts to keep the cache coherent using the reverse map.
1142void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
1143  // Walk through the Non-local dependencies, removing this one as the value
1144  // for any cached queries.
1145  NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1146  if (NLDI != NonLocalDeps.end()) {
1147    NonLocalDepInfo &BlockMap = NLDI->second.first;
1148    for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
1149         DI != DE; ++DI)
1150      if (Instruction *Inst = DI->second.getInst())
1151        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1152    NonLocalDeps.erase(NLDI);
1153  }
1154
1155  // If we have a cached local dependence query for this instruction, remove it.
1156  //
1157  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1158  if (LocalDepEntry != LocalDeps.end()) {
1159    // Remove us from DepInst's reverse set now that the local dep info is gone.
1160    if (Instruction *Inst = LocalDepEntry->second.getInst())
1161      RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1162
1163    // Remove this local dependency info.
1164    LocalDeps.erase(LocalDepEntry);
1165  }
1166
1167  // If we have any cached pointer dependencies on this instruction, remove
1168  // them.  If the instruction has non-pointer type, then it can't be a pointer
1169  // base.
1170
1171  // Remove it from both the load info and the store info.  The instruction
1172  // can't be in either of these maps if it is non-pointer.
1173  if (isa<PointerType>(RemInst->getType())) {
1174    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1175    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1176  }
1177
1178  // Loop over all of the things that depend on the instruction we're removing.
1179  //
1180  SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
1181
1182  // If we find RemInst as a clobber or Def in any of the maps for other values,
1183  // we need to replace its entry with a dirty version of the instruction after
1184  // it.  If RemInst is a terminator, we use a null dirty value.
1185  //
1186  // Using a dirty version of the instruction after RemInst saves having to scan
1187  // the entire block to get to this point.
1188  MemDepResult NewDirtyVal;
1189  if (!RemInst->isTerminator())
1190    NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
1191
1192  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1193  if (ReverseDepIt != ReverseLocalDeps.end()) {
1194    SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
1195    // RemInst can't be the terminator if it has local stuff depending on it.
1196    assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
1197           "Nothing can locally depend on a terminator");
1198
1199    for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
1200         E = ReverseDeps.end(); I != E; ++I) {
1201      Instruction *InstDependingOnRemInst = *I;
1202      assert(InstDependingOnRemInst != RemInst &&
1203             "Already removed our local dep info");
1204
1205      LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1206
1207      // Make sure to remember that new things depend on NewDepInst.
1208      assert(NewDirtyVal.getInst() && "There is no way something else can have "
1209             "a local dep on this if it is a terminator!");
1210      ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
1211                                                InstDependingOnRemInst));
1212    }
1213
1214    ReverseLocalDeps.erase(ReverseDepIt);
1215
1216    // Add new reverse deps after scanning the set, to avoid invalidating the
1217    // 'ReverseDeps' reference.
1218    while (!ReverseDepsToAdd.empty()) {
1219      ReverseLocalDeps[ReverseDepsToAdd.back().first]
1220        .insert(ReverseDepsToAdd.back().second);
1221      ReverseDepsToAdd.pop_back();
1222    }
1223  }
1224
1225  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1226  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1227    SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
1228    for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
1229         I != E; ++I) {
1230      assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
1231
1232      PerInstNLInfo &INLD = NonLocalDeps[*I];
1233      // The information is now dirty!
1234      INLD.second = true;
1235
1236      for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1237           DE = INLD.first.end(); DI != DE; ++DI) {
1238        if (DI->second.getInst() != RemInst) continue;
1239
1240        // Convert to a dirty entry for the subsequent instruction.
1241        DI->second = NewDirtyVal;
1242
1243        if (Instruction *NextI = NewDirtyVal.getInst())
1244          ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
1245      }
1246    }
1247
1248    ReverseNonLocalDeps.erase(ReverseDepIt);
1249
1250    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1251    while (!ReverseDepsToAdd.empty()) {
1252      ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1253        .insert(ReverseDepsToAdd.back().second);
1254      ReverseDepsToAdd.pop_back();
1255    }
1256  }
1257
1258  // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1259  // value in the NonLocalPointerDeps info.
1260  ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1261    ReverseNonLocalPtrDeps.find(RemInst);
1262  if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1263    SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
1264    SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1265
1266    for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
1267         E = Set.end(); I != E; ++I) {
1268      ValueIsLoadPair P = *I;
1269      assert(P.getPointer() != RemInst &&
1270             "Already removed NonLocalPointerDeps info for RemInst");
1271
1272      NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].second;
1273
1274      // The cache is not valid for any specific block anymore.
1275      NonLocalPointerDeps[P].first = BBSkipFirstBlockPair();
1276
1277      // Update any entries for RemInst to use the instruction after it.
1278      for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1279           DI != DE; ++DI) {
1280        if (DI->second.getInst() != RemInst) continue;
1281
1282        // Convert to a dirty entry for the subsequent instruction.
1283        DI->second = NewDirtyVal;
1284
1285        if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1286          ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1287      }
1288
1289      // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1290      // subsequent value may invalidate the sortedness.
1291      std::sort(NLPDI.begin(), NLPDI.end());
1292    }
1293
1294    ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1295
1296    while (!ReversePtrDepsToAdd.empty()) {
1297      ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1298        .insert(ReversePtrDepsToAdd.back().second);
1299      ReversePtrDepsToAdd.pop_back();
1300    }
1301  }
1302
1303
1304  assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1305  AA->deleteValue(RemInst);
1306  DEBUG(verifyRemoved(RemInst));
1307}
1308/// verifyRemoved - Verify that the specified instruction does not occur
1309/// in our internal data structures.
1310void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1311  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1312       E = LocalDeps.end(); I != E; ++I) {
1313    assert(I->first != D && "Inst occurs in data structures");
1314    assert(I->second.getInst() != D &&
1315           "Inst occurs in data structures");
1316  }
1317
1318  for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1319       E = NonLocalPointerDeps.end(); I != E; ++I) {
1320    assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1321    const NonLocalDepInfo &Val = I->second.second;
1322    for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1323         II != E; ++II)
1324      assert(II->second.getInst() != D && "Inst occurs as NLPD value");
1325  }
1326
1327  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1328       E = NonLocalDeps.end(); I != E; ++I) {
1329    assert(I->first != D && "Inst occurs in data structures");
1330    const PerInstNLInfo &INLD = I->second;
1331    for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1332         EE = INLD.first.end(); II  != EE; ++II)
1333      assert(II->second.getInst() != D && "Inst occurs in data structures");
1334  }
1335
1336  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1337       E = ReverseLocalDeps.end(); I != E; ++I) {
1338    assert(I->first != D && "Inst occurs in data structures");
1339    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1340         EE = I->second.end(); II != EE; ++II)
1341      assert(*II != D && "Inst occurs in data structures");
1342  }
1343
1344  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1345       E = ReverseNonLocalDeps.end();
1346       I != E; ++I) {
1347    assert(I->first != D && "Inst occurs in data structures");
1348    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1349         EE = I->second.end(); II != EE; ++II)
1350      assert(*II != D && "Inst occurs in data structures");
1351  }
1352
1353  for (ReverseNonLocalPtrDepTy::const_iterator
1354       I = ReverseNonLocalPtrDeps.begin(),
1355       E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1356    assert(I->first != D && "Inst occurs in rev NLPD map");
1357
1358    for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
1359         E = I->second.end(); II != E; ++II)
1360      assert(*II != ValueIsLoadPair(D, false) &&
1361             *II != ValueIsLoadPair(D, true) &&
1362             "Inst occurs in ReverseNonLocalPtrDeps map");
1363  }
1364
1365}
1366