MemoryDependenceAnalysis.cpp revision 73ec3cdd7140aee6d2b9ac32bc2298254ff48c97
1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an analysis that determines, for a given memory
11// operation, what preceding memory operations it depends on.  It builds on
12// alias analysis information, and tries to provide a lazy, caching interface to
13// a common kind of alias information query.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "memdep"
18#include "llvm/Analysis/MemoryDependenceAnalysis.h"
19#include "llvm/Constants.h"
20#include "llvm/Instructions.h"
21#include "llvm/Function.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/CFG.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Target/TargetData.h"
29using namespace llvm;
30
31STATISTIC(NumCacheNonLocal, "Number of cached non-local responses");
32STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
33
34char MemoryDependenceAnalysis::ID = 0;
35
36// Register this pass...
37static RegisterPass<MemoryDependenceAnalysis> X("memdep",
38                                     "Memory Dependence Analysis", false, true);
39
40/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
41///
42void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
43  AU.setPreservesAll();
44  AU.addRequiredTransitive<AliasAnalysis>();
45  AU.addRequiredTransitive<TargetData>();
46}
47
48/// getCallSiteDependency - Private helper for finding the local dependencies
49/// of a call site.
50MemoryDependenceAnalysis::DepResultTy MemoryDependenceAnalysis::
51getCallSiteDependency(CallSite C, BasicBlock::iterator ScanIt,
52                      BasicBlock *BB) {
53  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
54  TargetData &TD = getAnalysis<TargetData>();
55
56  // Walk backwards through the block, looking for dependencies
57  while (ScanIt != BB->begin()) {
58    Instruction *Inst = --ScanIt;
59
60    // If this inst is a memory op, get the pointer it accessed
61    Value *Pointer = 0;
62    uint64_t PointerSize = 0;
63    if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
64      Pointer = S->getPointerOperand();
65      PointerSize = TD.getTypeStoreSize(S->getOperand(0)->getType());
66    } else if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) {
67      Pointer = AI;
68      if (ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize()))
69        // Use ABI size (size between elements), not store size (size of one
70        // element without padding).
71        PointerSize = C->getZExtValue() *
72                      TD.getABITypeSize(AI->getAllocatedType());
73      else
74        PointerSize = ~0UL;
75    } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
76      Pointer = V->getOperand(0);
77      PointerSize = TD.getTypeStoreSize(V->getType());
78    } else if (FreeInst *F = dyn_cast<FreeInst>(Inst)) {
79      Pointer = F->getPointerOperand();
80
81      // FreeInsts erase the entire structure
82      PointerSize = ~0UL;
83    } else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
84      if (AA.getModRefBehavior(CallSite::get(Inst)) ==
85            AliasAnalysis::DoesNotAccessMemory)
86        continue;
87      return DepResultTy(Inst, Normal);
88    } else
89      continue;
90
91    if (AA.getModRefInfo(C, Pointer, PointerSize) != AliasAnalysis::NoModRef)
92      return DepResultTy(Inst, Normal);
93  }
94
95  // No dependence found.
96  return DepResultTy(0, NonLocal);
97}
98
99/// getDependency - Return the instruction on which a memory operation
100/// depends.  The local parameter indicates if the query should only
101/// evaluate dependencies within the same basic block.
102MemoryDependenceAnalysis::DepResultTy MemoryDependenceAnalysis::
103getDependencyFromInternal(Instruction *QueryInst, BasicBlock::iterator ScanIt,
104                          BasicBlock *BB) {
105  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
106  TargetData &TD = getAnalysis<TargetData>();
107
108  // Get the pointer value for which dependence will be determined
109  Value *MemPtr = 0;
110  uint64_t MemSize = 0;
111  bool MemVolatile = false;
112
113  if (StoreInst* S = dyn_cast<StoreInst>(QueryInst)) {
114    MemPtr = S->getPointerOperand();
115    MemSize = TD.getTypeStoreSize(S->getOperand(0)->getType());
116    MemVolatile = S->isVolatile();
117  } else if (LoadInst* L = dyn_cast<LoadInst>(QueryInst)) {
118    MemPtr = L->getPointerOperand();
119    MemSize = TD.getTypeStoreSize(L->getType());
120    MemVolatile = L->isVolatile();
121  } else if (VAArgInst* V = dyn_cast<VAArgInst>(QueryInst)) {
122    MemPtr = V->getOperand(0);
123    MemSize = TD.getTypeStoreSize(V->getType());
124  } else if (FreeInst* F = dyn_cast<FreeInst>(QueryInst)) {
125    MemPtr = F->getPointerOperand();
126    // FreeInsts erase the entire structure, not just a field.
127    MemSize = ~0UL;
128  } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst))
129    return getCallSiteDependency(CallSite::get(QueryInst), ScanIt, BB);
130  else  // Non-memory instructions depend on nothing.
131    return DepResultTy(0, None);
132
133  // Walk backwards through the basic block, looking for dependencies
134  while (ScanIt != BB->begin()) {
135    Instruction *Inst = --ScanIt;
136
137    // If the access is volatile and this is a volatile load/store, return a
138    // dependence.
139    if (MemVolatile &&
140        ((isa<LoadInst>(Inst) && cast<LoadInst>(Inst)->isVolatile()) ||
141         (isa<StoreInst>(Inst) && cast<StoreInst>(Inst)->isVolatile())))
142      return DepResultTy(Inst, Normal);
143
144    // MemDep is broken w.r.t. loads: it says that two loads of the same pointer
145    // depend on each other.  :(
146    if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
147      Value *Pointer = L->getPointerOperand();
148      uint64_t PointerSize = TD.getTypeStoreSize(L->getType());
149
150      // If we found a pointer, check if it could be the same as our pointer
151      AliasAnalysis::AliasResult R =
152        AA.alias(Pointer, PointerSize, MemPtr, MemSize);
153
154      if (R == AliasAnalysis::NoAlias)
155        continue;
156
157      // May-alias loads don't depend on each other without a dependence.
158      if (isa<LoadInst>(QueryInst) && R == AliasAnalysis::MayAlias)
159        continue;
160      return DepResultTy(Inst, Normal);
161    }
162
163    // FIXME: This claims that an access depends on the allocation.  This may
164    // make sense, but is dubious at best.  It would be better to fix GVN to
165    // handle a 'None' Query.
166    if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) {
167      Value *Pointer = AI;
168      uint64_t PointerSize;
169      if (ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize()))
170        // Use ABI size (size between elements), not store size (size of one
171        // element without padding).
172        PointerSize = C->getZExtValue() *
173          TD.getABITypeSize(AI->getAllocatedType());
174      else
175        PointerSize = ~0UL;
176
177      AliasAnalysis::AliasResult R =
178        AA.alias(Pointer, PointerSize, MemPtr, MemSize);
179
180      if (R == AliasAnalysis::NoAlias)
181        continue;
182      return DepResultTy(Inst, Normal);
183    }
184
185
186    // See if this instruction mod/ref's the pointer.
187    AliasAnalysis::ModRefResult MRR = AA.getModRefInfo(Inst, MemPtr, MemSize);
188
189    if (MRR == AliasAnalysis::NoModRef)
190      continue;
191
192    // Loads don't depend on read-only instructions.
193    if (isa<LoadInst>(QueryInst) && MRR == AliasAnalysis::Ref)
194      continue;
195
196    // Otherwise, there is a dependence.
197    return DepResultTy(Inst, Normal);
198  }
199
200  // If we found nothing, return the non-local flag.
201  return DepResultTy(0, NonLocal);
202}
203
204/// getDependency - Return the instruction on which a memory operation
205/// depends.
206MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
207  Instruction *ScanPos = QueryInst;
208
209  // Check for a cached result
210  DepResultTy &LocalCache = LocalDeps[QueryInst];
211
212  // If the cached entry is non-dirty, just return it.  Note that this depends
213  // on DepResultTy's default constructing to 'dirty'.
214  if (LocalCache.getInt() != Dirty)
215    return ConvToResult(LocalCache);
216
217  // Otherwise, if we have a dirty entry, we know we can start the scan at that
218  // instruction, which may save us some work.
219  if (Instruction *Inst = LocalCache.getPointer())
220    ScanPos = Inst;
221
222  // Do the scan.
223  LocalCache = getDependencyFromInternal(QueryInst, ScanPos,
224                                         QueryInst->getParent());
225
226  // Remember the result!
227  if (Instruction *I = LocalCache.getPointer())
228    ReverseLocalDeps[I].insert(QueryInst);
229
230  return ConvToResult(LocalCache);
231}
232
233/// getNonLocalDependency - Perform a full dependency query for the
234/// specified instruction, returning the set of blocks that the value is
235/// potentially live across.  The returned set of results will include a
236/// "NonLocal" result for all blocks where the value is live across.
237///
238/// This method assumes the instruction returns a "nonlocal" dependency
239/// within its own block.
240///
241void MemoryDependenceAnalysis::
242getNonLocalDependency(Instruction *QueryInst,
243                      SmallVectorImpl<std::pair<BasicBlock*,
244                                                      MemDepResult> > &Result) {
245  assert(getDependency(QueryInst).isNonLocal() &&
246     "getNonLocalDependency should only be used on insts with non-local deps!");
247  DenseMap<BasicBlock*, DepResultTy> &Cache = NonLocalDeps[QueryInst];
248
249  /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
250  /// the cached case, this can happen due to instructions being deleted etc. In
251  /// the uncached case, this starts out as the set of predecessors we care
252  /// about.
253  SmallVector<BasicBlock*, 32> DirtyBlocks;
254
255  if (!Cache.empty()) {
256    // If we already have a partially computed set of results, scan them to
257    // determine what is dirty, seeding our initial DirtyBlocks worklist.
258    // FIXME: In the "don't need to be updated" case, this is expensive, why not
259    // have a per-"cache" flag saying it is undirty?
260    for (DenseMap<BasicBlock*, DepResultTy>::iterator I = Cache.begin(),
261         E = Cache.end(); I != E; ++I)
262      if (I->second.getInt() == Dirty)
263        DirtyBlocks.push_back(I->first);
264
265    NumCacheNonLocal++;
266
267    //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
268    //     << Cache.size() << " cached: " << *QueryInst;
269  } else {
270    // Seed DirtyBlocks with each of the preds of QueryInst's block.
271    BasicBlock *QueryBB = QueryInst->getParent();
272    DirtyBlocks.append(pred_begin(QueryBB), pred_end(QueryBB));
273    NumUncacheNonLocal++;
274  }
275
276  // Iterate while we still have blocks to update.
277  while (!DirtyBlocks.empty()) {
278    BasicBlock *DirtyBB = DirtyBlocks.back();
279    DirtyBlocks.pop_back();
280
281    // Get the entry for this block.  Note that this relies on DepResultTy
282    // default initializing to Dirty.
283    DepResultTy &DirtyBBEntry = Cache[DirtyBB];
284
285    // If DirtyBBEntry isn't dirty, it ended up on the worklist multiple times.
286    if (DirtyBBEntry.getInt() != Dirty) continue;
287
288    // If the dirty entry has a pointer, start scanning from it so we don't have
289    // to rescan the entire block.
290    BasicBlock::iterator ScanPos = DirtyBB->end();
291    if (Instruction *Inst = DirtyBBEntry.getPointer())
292      ScanPos = Inst;
293
294    // Find out if this block has a local dependency for QueryInst.
295    DirtyBBEntry = getDependencyFromInternal(QueryInst, ScanPos, DirtyBB);
296
297    // If the block has a dependency (i.e. it isn't completely transparent to
298    // the value), remember it!
299    if (DirtyBBEntry.getInt() != NonLocal) {
300      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
301      // update this when we remove instructions.
302      if (Instruction *Inst = DirtyBBEntry.getPointer())
303        ReverseNonLocalDeps[Inst].insert(QueryInst);
304      continue;
305    }
306
307    // If the block *is* completely transparent to the load, we need to check
308    // the predecessors of this block.  Add them to our worklist.
309    DirtyBlocks.append(pred_begin(DirtyBB), pred_end(DirtyBB));
310  }
311
312
313  // Copy the result into the output set.
314  for (DenseMap<BasicBlock*, DepResultTy>::iterator I = Cache.begin(),
315       E = Cache.end(); I != E; ++I)
316    Result.push_back(std::make_pair(I->first, ConvToResult(I->second)));
317}
318
319/// removeInstruction - Remove an instruction from the dependence analysis,
320/// updating the dependence of instructions that previously depended on it.
321/// This method attempts to keep the cache coherent using the reverse map.
322void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
323  // Walk through the Non-local dependencies, removing this one as the value
324  // for any cached queries.
325  for (DenseMap<BasicBlock*, DepResultTy>::iterator DI =
326       NonLocalDeps[RemInst].begin(), DE = NonLocalDeps[RemInst].end();
327       DI != DE; ++DI)
328    if (Instruction *Inst = DI->second.getPointer())
329      ReverseNonLocalDeps[Inst].erase(RemInst);
330
331  // If we have a cached local dependence query for this instruction, remove it.
332  //
333  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
334  if (LocalDepEntry != LocalDeps.end()) {
335    // Remove us from DepInst's reverse set now that the local dep info is gone.
336    if (Instruction *Inst = LocalDepEntry->second.getPointer()) {
337      SmallPtrSet<Instruction*, 4> &RLD = ReverseLocalDeps[Inst];
338      RLD.erase(RemInst);
339      if (RLD.empty())
340        ReverseLocalDeps.erase(Inst);
341    }
342
343    // Remove this local dependency info.
344    LocalDeps.erase(LocalDepEntry);
345  }
346
347  // Loop over all of the things that depend on the instruction we're removing.
348  //
349  SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
350
351  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
352  if (ReverseDepIt != ReverseLocalDeps.end()) {
353    SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
354    // RemInst can't be the terminator if it has stuff depending on it.
355    assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
356           "Nothing can locally depend on a terminator");
357
358    // Anything that was locally dependent on RemInst is now going to be
359    // dependent on the instruction after RemInst.  It will have the dirty flag
360    // set so it will rescan.  This saves having to scan the entire block to get
361    // to this point.
362    Instruction *NewDepInst = next(BasicBlock::iterator(RemInst));
363
364    for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
365         E = ReverseDeps.end(); I != E; ++I) {
366      Instruction *InstDependingOnRemInst = *I;
367
368      // If we thought the instruction depended on itself (possible for
369      // unconfirmed dependencies) ignore the update.
370      if (InstDependingOnRemInst == RemInst) continue;
371
372      LocalDeps[InstDependingOnRemInst] = DepResultTy(NewDepInst, Dirty);
373
374      // Make sure to remember that new things depend on NewDepInst.
375      ReverseDepsToAdd.push_back(std::make_pair(NewDepInst,
376                                                InstDependingOnRemInst));
377    }
378
379    ReverseLocalDeps.erase(ReverseDepIt);
380
381    // Add new reverse deps after scanning the set, to avoid invalidating the
382    // 'ReverseDeps' reference.
383    while (!ReverseDepsToAdd.empty()) {
384      ReverseLocalDeps[ReverseDepsToAdd.back().first]
385        .insert(ReverseDepsToAdd.back().second);
386      ReverseDepsToAdd.pop_back();
387    }
388  }
389
390  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
391  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
392    SmallPtrSet<Instruction*, 4>& set = ReverseDepIt->second;
393    for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
394         I != E; ++I)
395      for (DenseMap<BasicBlock*, DepResultTy>::iterator
396           DI = NonLocalDeps[*I].begin(), DE = NonLocalDeps[*I].end();
397           DI != DE; ++DI)
398        if (DI->second.getPointer() == RemInst) {
399          // Convert to a dirty entry for the subsequent instruction.
400          DI->second.setInt(Dirty);
401          if (RemInst->isTerminator())
402            DI->second.setPointer(0);
403          else {
404            Instruction *NextI = next(BasicBlock::iterator(RemInst));
405            DI->second.setPointer(NextI);
406            assert(NextI != RemInst);
407            ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
408          }
409        }
410
411    ReverseNonLocalDeps.erase(ReverseDepIt);
412
413    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
414    while (!ReverseDepsToAdd.empty()) {
415      ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
416        .insert(ReverseDepsToAdd.back().second);
417      ReverseDepsToAdd.pop_back();
418    }
419  }
420
421  NonLocalDeps.erase(RemInst);
422  getAnalysis<AliasAnalysis>().deleteValue(RemInst);
423  DEBUG(verifyRemoved(RemInst));
424}
425
426/// verifyRemoved - Verify that the specified instruction does not occur
427/// in our internal data structures.
428void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
429  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
430       E = LocalDeps.end(); I != E; ++I) {
431    assert(I->first != D && "Inst occurs in data structures");
432    assert(I->second.getPointer() != D &&
433           "Inst occurs in data structures");
434  }
435
436  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
437       E = NonLocalDeps.end(); I != E; ++I) {
438    assert(I->first != D && "Inst occurs in data structures");
439    for (DenseMap<BasicBlock*, DepResultTy>::iterator II = I->second.begin(),
440         EE = I->second.end(); II  != EE; ++II)
441      assert(II->second.getPointer() != D && "Inst occurs in data structures");
442  }
443
444  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
445       E = ReverseLocalDeps.end(); I != E; ++I)
446    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
447         EE = I->second.end(); II != EE; ++II)
448      assert(*II != D && "Inst occurs in data structures");
449
450  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
451       E = ReverseNonLocalDeps.end();
452       I != E; ++I)
453    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
454         EE = I->second.end(); II != EE; ++II)
455      assert(*II != D && "Inst occurs in data structures");
456}
457